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Abstract. Rattling vibration in gear boxes of automobiles is an annoying problem. It may be generated in those gear wheels of
a car transmission system, which are unloaded. In recent years, very general models have been developed to analyze the rattling
phenomenon. One of them, in consideration of plays being the consequence of tolerances, backlashes and others, is modeled
as an impulsive system that consists of some unloaded gears being able to rattle. Modern research has shown that the chaotic
vibration may occur on a rattling system. In this paper, a stochastic modulated rattling system with two-stage was studied. A
discrete stochastic model described by mean map was established using non-Gaussian technique. By the analysis of the example
this model can reveal chaotic stochastic behaviors.
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1. Introduction

Rattling vibration in gear boxes of automobiles is an annoying problem. It may be generated in those gear wheels
of a car transmission system, which are not under load. In recent years, the rattling phenomenon has been received
attention by many scientists and researchers [1–8]. The very general models have been developed to analyze the
rattling phenomenon. One of them, in consideration of plays being the consequence of tolerances, backlashes and
others, is modeled as an impulsive system that consists of some unloaded gears being able to rattle. Modern research
has shown that the chaotic vibration can occur on a rattling system.

In 1988, Pfeiffer came up with an idea from Fermi’s experiment and elaborated a discrete model using a map
to describe the rattling vibration [4]. In 1990, Pfeiffer and Kunter introduced stochastic model into the analysis
considering the effects of an additional noise [6]. The random model is also more realistic because a finite level
of noise is present everywhere in reality. In 1998, Q.Feng and F. Pfeiffer proposed the discrete stochastic model
describing the single rattling system by a mean map [7], and they revealed the stochastic vibration of rattling. The
two-stage model describing the rattling vibration has been established by kunter [8]. However, his analysis was only
limited to the investigation of deterministic chaos using the stochastic perturbing technique. In fact, due to influence
of the noise, another type of vibration can be introduced. On the one hand, except for an additional noise, a random
modulation of the control parameter of a nonlinear system can also induce interesting behavior [9]. On the other
hand, chaotic stochastic vibration may occur in random dynamical systems [10]. In this paper, these problems were
considered. A discrete stochastic model described by the mean map was established using non-Gaussian technique
for the two-stage rattling system. By means of analysis of an example it is proved that the model can reveal the
chaotic stochastic behavior. Through investigation, the Poincaré maps exhibit typical chaotic vibrations and the
power spectrum of the mean velocity shows the characteristics of a continuous spectrum. The maximal exponent of
Lyapunov showed the region of chaos by parameterα. The findings in a special impulsive system are also significant
for chaos study.
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Fig. 1. Mechanical model.

2. Mechanical model

In order to establish the stochastic model, a brief review about the deterministic model is necessary. The
deterministic model was put forward by Kunter in 1992 [8], in which a two-stage rattling system is considered. In
Fig. 1, the driven gear wheel not under load can move freely between backlashes, and the free flight motion is only
stopped by the backlash boundary, where an impact occurs. The motion of the driven wheel can be distinguished
into two phases: the free flight phase and the contact phase. In the free flight phase, the equation of motion can be
written as [8]:

Iiϕ̈i + diϕ̇i = −Ti (i = 1, 2) (1)

In the contact phase, it can be expressed by(
ϕ̇+

1

ϕ̇+
2

)
=

1
I1R2

2 + I2R2
1

·
(
I1R

2
2 − εI2R

2
1 (1 + ε)I2R1R2

(1 + ε)I1R1R2 I2R
2
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2
2

)(
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1
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In which i(i = 1, 2) is the number of gear wheels;R1 andR2 are basic radius;ϕ1 andϕ2 stand for the angular
displacements;I1 andI2 denote the inertia moments of driven wheels;d1 andd2 are mean damping ratios in the free
flight phase;T1 andT2 are constant moments;ε is the restitution coefficient. The signs (−) and (+) denote short
time before and after impact;e(t) is a harmonic rotation with amplitudea andω frequency;

The above motion equation can be reformed to describe by relative displacement and relative velocity. If

x1 =
Ree(t) −R1ϕ1

ν1
, x2 =

R2ϕ2 −R1ϕ1

ν2
, τ = ωt,

βi =
di
Iiω

, i = 1, 2, γi =
TiRi
Iiνiω2

, i = 1, 2,

the following dimensionless equation are obtained

ẋ1 = y1
ẏ1 = −β1y1 + γ1 + f̈ + β1ḟ
ẋ2 = y2
ẏ2 = −β1y2 + (β2 − β1)y1 + γ1 − γ2 + (β1 − β2)ḟ

(3)

in the free flight phase:x1 ∈ (0.5, 0.5), x2 ∈
(
− ν2

2ν1
,
ν2
2ν1

)
, and
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y+
1 = y−1 − I2R

2
1(1 + ε)

I1R2
2 + I2R2

1

y−2 , y+
2 = −εy−2 (4)

in the contact phase:x1 ∈ {−0.5, 0.5}, x2 ∈
{
− ν1

2ν2
, ν12ν2

}
, wherexi, (i = 1, 2) andyi, (i = 1, 2) denote relative

displacement and relative velocity,νi, (i = 1, 2) are plays respectively.βi, (i = 1, 2) is the damping ratio in the free
flight phase,γi, (i = 1, 2) indicates constant moment.f = α sin τ, α = Rea

ν1
, τ is dimensionless time.α stands for

excitation amplitude. An accurate solution by a map for the above deterministic equations has been derived [8].

3. Discrete stochastic model

In deterministic model, the plays between gear teeth are assumed constant which is not fitting for the reality,
because even with modern production possibilities no gear tooth can be manufactured in an ideal way and there
is a lot of additional small irregularities due to the complete system behavior. It is assumed that the magnitude
of backlash consists of two parts: average values and measure tolerance. After normalization, the first backlash
magnitude is equal to1 + 2c1, and the second backlash magnitude isν1

ν2
+ 2c2. Then a modified equation of motion

can be written as:

in free flight phase:x1s ∈ (−(0.5 + c1), (0.5 + c1)), x2s ∈
(
−
(
ν1
2ν2

+ c2

)
,

(
ν1
2ν2

+ c2

))


ẋ1s = y1s
ẏ1s = −β1y1s + γ1 + (α + ση(τ))(− sin τ + β1 cos τ)
ẋ2s = y2s
ẏ2s = −β1y2s + (β2 − β1)y1s + (γ1 − γ2) + (β1 − β2)(α+ ση(τ)) cos τ

(5)

Where, the subscripts indicates the perturbed system that differs from unperturbed systems Eqs (3) and (4),
xis, yis, (i = 1, 2) stand for relative displacement and relative velocity of the perturbed system,α is the deterministic
part of the excitation amplitude.σ represents the intensity of random forces described by a standard Gaussian white
noiseη(τ). That satisfied the following conditions.

E[η(τ)] = 0 E[η(τ)η(s)] = δ(τ − s)

In the contact phase:x1s ∈ {−(0.5 + c1), (0.5 + c1)}, x2s ∈
{
−
(
ν1
2ν2

+ c2

)
,

(
ν1
2ν2

+ c2

)}
, the modified

equation of motion has the form of

y+
1s = y−1s −

I2R
2
1(1 + ε)

I1R2
2 + I2R2

1

y−2s y+
2s = −εy−2s (6)

In general, when noise intensity is small, the stochastic model Eqs (5) and (6) can be considered as a modification
for the deterministic models Eqs (3) and (4). Equation (5) is a nonlinear equation without a high order term that
can be decoupled. In order to derive a discrete stochastic model, it is attempted to decouple the Eqs (5) and (6) into
two parts: deterministic and stochastic. It is assumed that the solution of perturbed systems Eqs (5) and (6) can be
separated into deterministic and stochastic parts with the form:

x1s = x1 + ξ1, y1s = y1 + ζ1,
(7)

x2s = x2 + ξ2, y2s = y2 + ζ2

In which,xi, (i = 1, 2) andyi, (i = 1, 2) are the solutions of unperturbed system Eqs (3) and (4), whileξ i andζi
are stochastic variables. Substituting Eq. (7) into Eqs (5) and (6) and subtracting Eqs (3) and (4), we can obtain the
motion equation of the stochastic part as following.

In the free flight phase:

ξ1 ∈ (−(0.5 + c1 − x1), (0.5 + c1 − x1)) ξ2 ∈
(
−
(
ν1
2ν2

+ c2 − x2

)
,

(
ν1
2ν2

+ c2 − x2

))
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ξ̇1 = ζ1
ζ̇1 = −β1ζ1 + ση(τ)(− sin τ + β1 cos τ)
ξ̇2 = ζ2
ζ̇2 = −β2ζ2 + (β2 − β1)ζ1 + ση(τ)(β1 − β2) cos τ

(8)

In the contact phase:

ξ1 ∈ {−(0.5 + c1 − x1), (0.5 + c1 − x1)} ξ2 ∈
{
−
(
ν1
2ν2

+ c2 − x2

)
,

(
ν1
2ν2

+ c2 − x2

)}

ζ+
1 = ζ−1 − I2R

2
1(1 + ε)

I1R2
2 + I2R2

1

ζ−2 ξ+2 = −εζ−2 (9)

Now Eqs (5) and (6) have been separated into two parts. The deterministic part is the same as Eqs (3) and (4).
The stochastic part consists of Eqs (8) and (9). Integrating Eq. (3), if the sequence of the system states before or
after impacts are known,xi, (i = 1, 2) andyi, (i = 1, 2) can be defined exactly. Considering the mapping before
impactH : X−

i,k → X−
i,k+1, in whichXi = [xi, yi]T is a state vector of the unperturbed system, an iterated operator

is obtained as derived in reference [8].

x−1,k+1 = x−1,k +
(
−εy−1,k − αm cos τk − γ1

β1

)
· 1
β1

(1 − exp(−β1∆τk))

+αm(sin τk+1 − sin τk) +
γ1

β1
∆τk

y−1,k+1 = αm cos τk+1 +
γ1

β1
+
(
−εy−1,k − αm cos τk − γ1

β1

)
exp(−β1∆τk)

x−2,k+1 = x−2,k +
(
y−2,k − y−1,k + αm cos τk +

γ2

β2

)
· 1
β2

(1 − exp(−β2∆τk)) +
(
γ1

β1
− γ2

β2

)
∆τk (10)

+
1
β1

(
−εy−1,k − αm cos τk − γ1

β1

)
· (1 − exp(1 − β1∆τk))

y−2,k+1 =
(
γ1

β1
− γ2

β2

)
+
(
y−2,k − y−1,k + αm cos τk +

γ2

β2

)
exp(−β2∆τk)

+
(
−εy−1,k − αm cos τk − γ1

β1

)
exp(−β1∆τk)

In the above operator, the time difference∆τk of the two successive impacts has not been defined yet.
Equation (8) in the free flight phase is a non-linear stochastic differential equation without the restitution force

term whose exact solution cannot be solved. The correlation coefficientρ of the random variablesξ i andζi from the
corresponding moment equation of Eq. (9) does not always satisfy the relationρ ξiζi � 1, therefore, its distribution

is out of accord with a Gaussian normal distribution. Here,ρ ξiζi = Cξiζi

σξi
σζi

, Cξiζi is covariance,σξi andσζi are the
standard derivations.

In order to derive a mean iterated operator, a non-Gaussian closure technique is used. An Edgeworth expansion
is adopted to approximate the true distribution [11]. It is assumed that the variablesξ 1 andζ1 have nothing to do
with ξ2 andζ2 because the variablesξ2 andζ2 have not arisen in the equation aboutξ1 andζ1. They follow the
two-dimensional Edgeworth expansion respectively. The two-dimensional Edgeworth expansion is expressed as
follow [11].

p∗(ξ, ζ) = P (ξ, ζ)

{
N∑
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λjl

σjξσ
1
ζ

N∑
n=0
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(
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σxi

)
Hn+l

(
ζ

σζ

)
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+
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ζ
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N∑
n=0

ρn

n!
Hn+j+r

(
ξ
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Hn+l+s

(
ζ
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)}

In which, λnp = E[ξnζp](n = j or r, p = l or s) is moment,ρξζ = λ11
σξσζ

is the correlation,Hk(z) is the
polynomial in the form of reference [11].

H0(z) = 1, H1(z) = z, H2(z) = z2 − 1, . . . . . . , Hn+1(z) = zHn(z) − nHn−1(z), . . . . . .

WhereP (ξ, ζ) means a standard Gaussian normal distribution, it has the form

P (ξ, ζ) =
1

2πσξσζ
exp

(
− (ξ −mξ)2

2σ2
ξ

)
exp

(
− (ζ −mζ)2

2σ2
ζ

)
(12)

where the standard derivationsσi(i = ξ, ζ) and the mean valuesmi(i = ξ, ζ) can be solved from the 2-order and
the 1-order moment equation, respectively. According to the reference [7], the Eq. (11) can be deduced for the state
before impact.

P ∗−
k+1(ξ, ζ) = P (ξ, ζ)

N∑
i=0

N∑
j=0

[aij ]−k+1 Hi

(
ξ

σξ

)
Hj

(
ζ

σζ

)
(13)

Where the coefficients[aij ]−k+1 are the function related to the moments[λnp]−k+1 and can be expressed as:

[a00]−k+1 = 1; [a10]−k+1 = 0; [a20]−k+1 = 0; [a30]−k+1 =
[λ30]−k+1

6σ3
ξ

;

[a01]−k+1 = 0; [a21]−k+1 =
[λ21]−k+1

2σ2
ξσζ

; [a11]−k+1 =
[λ11]−k+1

σξσζ
= ρ−k+1;

. . . . . .

In our problem, the momentmnp aboutξ2 andζ2 can be determined as follows:ṁnp = ∂E�ψnp�
∂τ

ṁnp =
∂E�ψnp�

∂τ
= E

[
ζ2
∂ψnp
∂ξ2

]
− β2E

[
ζ2
∂ψnp
∂ζ2

]
+ (β2 − β1)E[ζ1]E

[
∂ψnp
∂ζ2

]
+
σ2

2
E

[
∂2ψnp
∂ζ2

2

]
(14)

in the free flight phase, wheren, p = 1, 2, 3, . . . , ψnp = ξn2 ζ
p
2 . In the contact phase, there exists the impact

constrained conditions of the moments as:

m+
np = −εm−

np, p �= 0
(n, p = 0, 1, 2, . . .)

m+
np = m−

np, p = 0
(15)

The momentλnp aboutξ1 andζ1 can be satisfied the following equation:

λ̇np =
∂E�ϕnp�

∂τ
= E

[
ζ1
∂ϕnp
∂ξ1

]
− β1E

[
ζ1
∂ϕnp
∂ζ1

]
+
σ2

0

2
sin2(τ + α0)E

[
∂2ϕnp
∂ζ2

1

]
(16)

in the free flight phase. In which,ϕnp = ξnζp, σ0 = σ
√

1 + β2
1 , sinα0 =

β1√
1 + β2

1

, cosα0 =
−1√
1 + β2

1

. In the

contact phase, there exist the impact-constrained conditions of the moments as:
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λ+
np = λ−np −

I2R
2
1(1 + ε)

I1R2
2 + I2R2

1

m−
np, p �= 0

, (n, p = 0, 1, 2, . . .)
λ+
np = λ−np, p = 0

(17)

In the free flight phase, the moment equation chains Eq. (14) are closed and the moments can be solved uniquely
without closing tolerance. Therefore the approximately distributionP ∗(ξ, ζ) may be tend to be true ifN → ∞ [11].

According Eqs (14), (15), (16) and (17), all moments in the time interval∆τ k can be obtained when the initial
conditions[λnp]0 = 0 and [mnp]0 = 0 are used. Based on the Eq. (13), the probability distribution of system
between the two successive impacts can be approached by Eqs (18) and (19).

p∗−1,k+1(ξ1, ζ1) = P (ξ1, ζ1)
N∑
i=0

N∑
j=0

[aij ]−k+1Hi

(
ξ1
σξ1

)
Hj

(
ζ1
σζ1

)
(18)

p∗−2,k+1(ξ2, ζ2) = P (ξ2, ζ2)
N∑
i=0

N∑
j=0

[bij ]−k+1Hi

(
ξ2
σξ2

)
Hj

(
ζ2
σζ2

)
(19)

After twice integration of Eq. (18), the discrete mean values of random variablesξ 1 andζ1 for the state before
impact are expressed as follows.

E[ξ1]−k+1 =
∫ d12

d11

ξ1

∫ +∞

−∞
P ∗−

1,k+1(ξ1, ζ1)dζ1dξ1 = σξ1A
−
k+1

(20)

E[ζ1]−k+1 =
∫ +∞

−∞
ζ1

∫ d12

d11

P ∗−
1,k+1(ξ1, ζ1)dξ1dζ1 = σζ1B

−
k+1

Where

d11 = −(0.5 + c1max + x1), d12 = 0.5 + c2max − x1

A−
k+1 = ψ0 + [a40]−k+1(ψ4 − 2ψ2 + ψ0) + . . . . . .

ψi =
(
d11

σxi1

)i
exp

(
− d2

11

2σ2
ξ1

)
−
(
d12

σξ1

)
exp

(
− d2

12

2σ2
ξ1

)
B−
k+1 =

N∑
i=1

[a11]−k+1 ·mi

m1 = ψ0; m2 = ψ1;

. . . . . .

m3 = ψ2 − ψ0; m4 = ψ3 − 3ψ1;

Using the same way, the discrete mean variable of random variablesξ 2 andζ2 can be obtained.

E[ξ2]−k+1 =
∫ d22

d21

ξ2

∫ +∞

−∞
P ∗−

2,k+1(ξ2, ζ2)dζ2dξ2 = σξ2C
−
k+1

(21)

E[ζ2]−k+1 =
∫ +∞

−∞
ξ2

∫ d22

d21

P ∗−
2,k+1(ξ2, ζ2)dξ2dζ2 = σξ2D

−
k+1

Where

d21 = −
(
ν1
2ν2

+ c2max + x2

)
; d22 =

ν1
2ν2

+ c2 max − x2

C−
k+1 = ϕ0 + [b30]−k+1ϕ3 + [b40]−k+1(ϕ4 − 2ϕ2 + ϕ0) + . . . . . .

ϕi =
(
d21

σξ2

)i
exp

(
− d2

21

2σξ2

)
−
(
d22

σξ2

)i
exp

(
− d2

22

2σξ2

)



J.M Wen and Q. Feng / Two-stage stochastic model on rattling vibration with amplitude modulation 699

(b) 

E
[y

2]
 

(a) 

E
[y

1]
 

∆τ

∆τ

Fig. 2. the mean poincaré map.E[y1], E[y2] – mean velocity;∆τ – time difference

D−
k+1 =

N∑
i=1

[bi1]−k+1 · ki

k1 = ϕ0; k2 = ϕ1; k3 = ϕ2 − ϕ0; k4 = ϕ3 − 3ϕ1; . . . . . .

If the iterated operator Eqs (7), (20) and (21) are superposed a mean mapH s : E[Xis]−k → E[Xis]−k+1 for the state
before impact to describe the two-stage stochastic rattling system, five dimensional mean mapping can be derived as

E[x1s]−k+1 = x−1,k+1 + σξ1A
−
k+1

E[y1s]−k+1 =
(
−εE[y1s]−k − α cos τk − γ1

β1

)
· exp(−β1∆τk) +

γ1

β1
+ α cos τk+1

+(B−
k+1 + εB−

k exp(−β1∆τk)) · σζ1
E[x2s]−k+1 = x−2,k+1 + σξ2 · C−

k+1
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Fig. 3. the power spectra of mean velocity,f——frequency.

E[y2s]−k+1 =
(
E[y2s]−k − (1 + ε)E[y1s]−k − α cos τk − γ1

β1

)
exp(−β1∆τk)

+
(
E[y2s]−k − E[y1s]−k + α cos τk +

γ2

β2

)
· exp(−β2∆τk) +

(
γ1

β1
− γ2

β2

)

+(D−
k+1 −D−

k exp(−β2∆τk) −D−
k exp(−β2∆τ))σζ2

+((1 + ε) exp(−β1∆τk) + exp(−β2∆τk))B−
k · σζ1

τk+1 = τk + ∆τk, ∆τk = min(∆τk,1,∆τk,2) (mod ulo, 2π) (22)

Now the time difference∆τk of the two successive impacts can be solved from the following mesh condition of
the gears:E[xis]−k+1 = −E[xis]−k .
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Fig. 4. the maximal exponent of Lyapunov.

4. Analysis of example

In order to study the above model, data from the reference [8] is used as follows:
DAT21 [8]: α = 1.5, ε = 0.9, ω = 300 s−1,
Ii = 4000.0 kgmm2, I2 = 2500 kgmm2, R1 = 41.0 mm, R2 = 26.4 mm,
ν1 = ν2 = 0.2 mm, d1 = d2 = 100 Nmms, T1 = 100 Nmm, T2 = 50 Nmm.
Performing the iterated operator Eq. (22) for the above data and the noise intensityσ =

√
α and the initial

condition Ys,0 = {2.0, 2.0} andXs0 = {0.5, 0.5}, dm = 0.5 and considering counter meshes of the gears
E[xis]k+1 = −E[xis]k, the representative calculating results are shown in the following figures. Figure 2(a,b) are
mean Poincar¤¤ map, in which the horizontal coordinate is the time difference∆τ k, and the vertical coordinate is the
mean velocity before impactE[yis]−k+1. The structures of Fig. 2 display a fuzzy set of points. Figure 3(a,b) show the
power spectra of mean velocity, in which the horizontal coordinate is the dimensionless frequencyf , and the vertical
coordinate is the power spectral density of mean velocity. In the Fig. 3 narrow band spectra are exhibited. Through
Figs 2 and 3 the above model may reveal chaotic stochastic behavior. Figure 4 indicates the maximal exponent of
Lyapunov, in which the horizontal coordinate is the parameterα and the vertical coordinate is the maximal exponent
of Lyapunov. Figure 4 shows the region of chaos by parameterα. From the Fig. 4, it can be obtained that the
maximal exponent of Lyapunov is plus when0.2 � α � 1.7. In this range, the chaos can be happen.

5. Conclusions

In the present paper, a discrete stochastic model has been developed to describe two-stage rattling vibration in
gearbox. It is well known that rattling vibration cause noise and its deterministic model is only an ideal one, so that
in the present work the use of a stochastic model described by a mean map is suggested to investigation rattling noise.
In our study, the mean Poincaré map , the power spectrum density and the maximal exponent of Lyapunov have been
investigated for the dynamics of random chaos. The calculation results have shown that the mean Poincar¤¤ maps
exhibit chaos and the power spectra of mean velocity display the behavior of a continuous spectrum. The result of
the maximal exponent of Lyapunov has shown that the chaotic stochastic vibration can be controlled by variation of
a two-stage rattling system parameter. Comparing the two-stage model with the single stage model [7], both models
reveal the random chaos on the dynamics of a rattling system. The existe the random chaos in the rattling system
has been justified again.
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