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Abstract. This paper presents an approximate solution for the analysis of the dynamic characteristics of a spring-mass-beam
system. The spring-mass can be distributed or concentrated on a beam, which can represent a crowd or an individual on a
beam. The analysis is based on the fact that a spring-mass-beam system can be modeled approximately as a series of two
degree-of-freedom (TDOF) systems and the frequency coupling occurs mainly at the first TDOF system. The Galerkin method
is used to derive the frequency equation of the TDOF system. Static beam functions of a beam with distributed and concentrated
spring-masses are developed for the solutions, in which the effect of the magnitude and position of the mass of the spring-mass
on the beam is considered. Using a set of simple formulae, the first pair of coupled frequencies and the corresponding mode can
be obtained. The mass and stiffness factors in the TDOF system are tabled for engineering applications. For verification and use
of the proposed method, a case of human-structure interaction is analysed using the proposed method and FE method. Parametric
studies show that using the proposed functions, not only the first pair of natural frequencies but also the mode and internal forces
of the coupled system can be obtained with high accuracy.

Keywords: Human-structure interaction, free vibration, beam, spring-mass, vibratory characteristics, approximate solution,
Galerkin method

1. Introduction

It has been experimentally identified that a structure occupied by an individual or a crowd acts at least as a two
degree-of-freedom (TDOF) system when the individual or crowd is stationary, such as sitting or standing [1,2]. In
other words, the structure can be modeled as a single degree-of-freedom (SDOF) system and the individual or crowd
can be considered as another SDOF system [3,4], which forms a TDOF system. Alternatively, an individual or a
crowd can be modelled as a concentrated or distributed spring-mass while a structure can be represented as a beam
or a plate for theoretical investigation. It is often that a TDOF system is directly used to describe human-structure
interaction. Actually, a structure is a continuous system and people distribute on the structure. Thus the link between
the actual continuous system and the discrete TDOF system should be established.

It has been noted from practice that only one of the two resonance frequencies of a human-structure was often
measured [1,5,6]. This is due to the fact that the supporting structure has a light damping ratio while human bodies
possess a much larger damping ratio. A recently study on the frequency characteristics of a highly damped TDOF
human-structure system [7] shows that the differences between the resonance frequencies and the natural frequency
of the TDOF system become larger and the areas where two resonance frequencies exist reduces as the damping
ratio of the body increases. However, the damping ratio affects the resonance frequencies rather than the natural
frequencies of the system. When human-structure interaction is studied using structural dynamics methods, the
equation of motion contains the parameters of the natural frequencies rather resonance frequencies of the system.
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Thus it is still necessary and useful to examine the free vibration of an undamped human-structure system and its
dynamic characteristics, in particular, a continuous human-structure system.

Some investigators studied the vibratory characteristics of beams attached by concentrated [8–10] or distribut-
ed [11,12] rigid masses. Moreover, the free vibration of beams carrying concentrated spring-masses has also been
studied [13–16]. It is noted that these models are inapplicable to describe a distributed spring-mass representing a
crowd on a structure.

Recently, the authors [17] obtained the exact solution for free vibration of a spring-mass-beam system by modeling
a crowd as a distributed spring-mass. It is shown that the beam with distributed spring-mass which has a constant
natural frequency can be simulated approximately as a series of TDOF systems where the frequency coupling occurs
mainly in the low order of TDOF systems, especially in the first TDOF system if the spring- mass frequency is close
to the first beam frequency.

The exact solution [17] provides the benchmark to evaluate the other solutions of coupled vibration of spring-mass-
beam system. However, it is not easy to apply the exact solution directly to practical applications in engineering due
to the requirement of the complicated mathematic knowledge and programming. The present study aims to provide
an approximate solution with satisfactory accuracy, which can be easily applied to engineering design and analysis.
In this paper, the Galerkin method is used for reaching such a solution. It is well known that the key of using the
Galerkin method to obtain a good approximate solution is the selection of the mode shape function. Therefore,
static beam functions are derived in which, the effect of both position and magnitude of the mass distribution are
considered. An example of hand-worked calculation is provided linking with a comparison to the FE solution.
Parametric study is conducted and results are tabled for practical use.

2. Governing differential equations

Consider a spring-mass-beam system as shown in Fig. 1. The spring-mass can be distributed or concentrated on
the beam. When the spring-mass is distributed on the beam, the differential equations of free vibration of the beam
and spring-mass are respectively:

EI
∂4y

∂x4
+ ρA

∂2y

∂t2
= −

J∑
j=1

kj [U(x− x1j) − U(x− x2j)](y − zj) (1)

mj
∂2zj

∂t2
= kj(y − zj), x1j � x � x2j (2)

wherej means thejth section of the distributed mass-springs where the mass and spring are constants andJ is the
total number of sections of the mass-springs.y = y(x, t) is the displacement of the beam,EI is the flexural stiffness
andρA is the mass per unit length of the beam.zj = zj(x, t) is the displacement of the distributed spring-mass
within the interval [x1j , x2j ], mj andkj are the mass and stiffness per unit length of the spring-mass respectively.
U(x− x1j) andU(x− x2j) are the Heaviside functions.

The solutions of the above equations have the following form:

y(x, t) = Y (x)e−iωt, zj(x, t) = Zj(x)e−iωt (3)

whereω is the natural frequency of the spring-mass-beam system.Y (x) andZ j(x) are the mode shape functions of
the beam and the spring-mass respectively. In the present analysis, it has been assumed thatk j/mj = ω2

h, i.e. the
spring-mass on the beam has a constant natural frequency. This means that the mass and stiffness of the spring-mass
system cannot be arbitrary but may vary proportionally in an interval. Substituting Eq. (3) into Eq. (2) gives

Zj(x) =
1

1 − (ω/ωh)2
Y (x), x1j � x � x2j (4)

Substituting Eqs (3) and (4) into Eq. (1) obtains

EI
d4Y

dx4
− ρAω2Y =

ω2

1 − (ω/ωh)2

J∑
j=1

mj [U(x− x1j) − U(x− x2j)]Y (5)
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(a) A beam with distributed spring-masses 

(b) A beam with concentrated spring-masses 
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Fig. 1. A spring-mass-beam system.

Similarly, when concentrated spring-masses are placed on the beam atx = x j , the differential equations of free
vibration of the spring-mass-beam system are

EI
d4Y

dx4
− ρAω2Y =

ω2

1 − (ω/ωh)2

J∑
j=1

mdjδ(x − xj)Y (6)

whereω2
h = kdj/mdj, mdj andkdj is the mass and stiffness of the discrete spring-mass respectively.δ(x − xj) is

the Dirac-delta function.
Equation (5) is the governing differential equation of free vibration of a beam and distributed-spring-mass system

and Eq. (6) is that of a beam and concentrated-spring-mass system.

3. Galerkin solutions

Multiplying Y (x) to the two sides of Eq. (5) then integrating along the length of the beam, the Galerkin solutions
can be obtained as follows

Ks −Msω
2 =

ω2

1 − (ω/ωh)2
Mh (7)

whereMs andKs are the modal mass and modal stiffness of the beam respectively,Mh is the modal mass of the
spring-mass. The modal mass and modal stiffness are as follows

Ms = ρA

∫ l

0

Y (x)2dx, Ks = EI

∫ l

0

[
d2Y (x)
dx2

]2

dx (8)
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Fig. 2. The approximate TDOF model of a spring-mass-beam system.

The modal mass of the spring-mass is

Mh =
J∑

j=1

mj

∫ x2j

x1j

Y (x)2dx (9)

From Eq. (7), a pair of natural frequencies of the spring-mass-beam system can be obtained:

ω1 =

√
1
2

{
(1 + µ)ω2

h + ω2
s −

√
[(1 + µ)ω2

h + ω2
s ]2 − 4ω2

sω
2
h

}
,

(10)

ω2 =

√
1
2

{
(1 + µ)ω2

h + ω2
s +

√
[(1 + µ)ω2

h + ω2
s ]2 − 4ω2

sω
2
h

}

whereµ = Mh/Ms, ω2
s = Ks/Ms. It is demonstrated that a spring-mass-beam system can be approximately

expressed by a TDOF system as shown in Fig. 2.
Equation (8) can be written as

Ms = asρAl, Ks = bsEI/l3 (11)

in which,

as =
∫ 1

0

Y (ξ)2dξ, bs =
∫ 1

0

[
d2Y (ξ)
dξ2

]2

dξ (12)

whereξ = x/l. Equation (9) can be written as

Mh =
J∑

j=1

ahjmj l (13)

in which,

ahj =
∫ ξ2j

ξ1j

Y (ξ)2dξ (14)

whereξ1j = x1j/l andξ2j = x2j/l (j = 1, 2, . . ., J).
When spring-masses are concentrated on the beam, Eq. (9) becomes

Mh =
J∑

j=1

mdjY (xj)2 (15)

Similarly, Eq. (13) becomes

Mh =
J∑

j=1

adjmdj (16)

where

adj = Y (ξj)2 (17)
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4. Basic characteristics of solutions

The following relationships can be demonstrated [1] from Eq. (11)

ω1ω2 = ωhωs, ω1 < (ωh, ωs) < ω2 (18)

It can be noted from Eq. (4) that the spring-mass mode is equal to the product of the beam mode and a magnifying
factor 1/[1 − (ω/ωh)2]. It is known from Eqs (4) and (18) that the vibrations of the spring-mass and the beam
are always in the same direction corresponding toω1 and always in the opposite directions corresponding toω 2. It
should be noted thatωs =

√
Ks/Ms �= ωb in the coupled TDOF system, whereωb is the natural frequency of the

bare beam, becauseY (x) is the mode shape of the beam coupling with the spring-mass, which is different from that
of the bare beam. However,ωh in the coupled TDOF system is identical as the natural frequency of the independent
spring-mass.

The selection of the mode shape functionY (ξ) is fundamental to convert the spring-mass-beam system into a
TDOF system with high accuracy. In addition to the boundary conditions, two factors should be considered when
determining the mode shapeY (ξ): the positions and magnitudes of the mass and stiffness of the spring-mass. In the
following study, the static beam function will be developed as the approximate mode shape, in which the effect of
the mass position and magnitude of the spring-mass on the mode shape are considered. However, the effect of the
stiffness of the spring-mass on the mode shape is neglected. The numerical results show later that the effect of the
spring stiffness on the mode shape is not significant generally.

5. Static beam functions

We consider a static uniform beam under self-weight and several parts of spring-mass in the intervals[x 1j , x2j ]
(j = 1, 2, . . ., J). The self-weight of the beam and mass per unit length in the interval [x 1j , x2j ] areρAg andmjg
respectively, whereg is the gravity acceleration. The static deflectiony(x) should satisfy the following governing
differential equation:

EI
d4y(x)
dx4

= g

J∑
j=1

mj [U(x− x1j) − U(x− x2j)] + ρAg (19)

The general solution of Eq. (19) can be given as:

y(ξ) =
ρAg

EI
Y (ξ),

Y (ξ) = d0 + d1ξ + d2ξ
2 + d3ξ

3 +
1
4!

J∑
j=1

αj [(ξ − ξ1j)4U(ξ − ξ1j) − (ξ − ξ2j)4U(ξ − ξ2j)] +
1
4!
ξ4 (20)

whereαj = mj/(ρA). Four unknown coefficientsdi (i = 0, 1, 2, 3) in the above equation can be uniquely
determined using the boundary conditions of the beam, as given in Table 1.

Similarly, we consider a static uniform beam under self-weight and several concentrated spring-masses atx = x j

(j = 1, 2, 3, . . ., J). The weight of each mass atx = xj is mdjg. The static deflectiony(x) is

Y (ξ) = d0 + d1ξ + d2ξ
2 + d3ξ

3 +
1
3!

J∑
j=1

αdj(ξ − ξj)3U(ξ − ξj) +
1
4!
ξ4 (21)

whereαdj = mdj/(ρAl), ξj = xj/l (j = 1, 2, 3, . . ., J). Four unknown coefficientsdi (i = 0, 1, 2, 3) in the above
equation can also be uniquely determined using the boundary conditions of the beam, as given in Table 2.

Equations (20) and (21) are called as the static beam functions under the self-weight of the beam and the
spring-mass, which will be used as the approximate mode shape to estimate the first coupled frequencies of the
spring-mass-beam system and the internal forces (moment and shear force) of the beam.
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Table 1
The coefficientsdi (i = 0, 1, 2, 3) in Eq. (20) for different boundary conditions (B.C.)

B.C. d0 d1 d2 d3

S-S 0 {1+
J∑

j=1

αj [(1 − ξ1j)2(1+

2ξ1j − ξ2
1j) − (1 − ξ2j)

2(1+

2ξ2j − ξ2
2j)]}/24

0 −{1 +
J∑

j=1

αj [(1 − ξ1j)2−

(1 − ξ2j)
2]}/12

S-C 0 {1+
J∑

j=1

αj [(1−ξ1j )3(1+3ξ1j )−

(1 − ξ2j)3(1 + 3ξ2j )]}/48

0 −{3 +
J∑

j=1

αj [(1 − ξ1j)
3(3 + ξ1j)−

(1 − ξ2j)3(3 + ξ2j)]}/48

C-C 0 0 {1 +
J∑

j=1

αj [(1−

ξ1j)3(1 + 3ξ1j ) − (1−
ξ2j)3(1 + 3ξ2j )]}/24

−{1 +
J∑

j=1

αj [(1 − ξ1j)
3(1 + ξ1j)−

(1 − ξ2j)3(1 + ξ2j)]}/12

C-F 0 0 {1 −
J∑

j=1

αj [ξ2
1j−

ξ2
2j ]}/4

−{1 −
J∑

j=1

αj [ξ1j − ξ2j ]}/6

Notes: S means simply supported; C means clamped; F means free.

Table 2
The coefficientsdi (i = 0, 1, 2, 3) in Eq. (21) for different boundary conditions (B.C.)

B.C. d0 d1 d2 d3

S-S 0 1/24 +
J∑

j=1

αdjξj(1−

ξj)(2 − ξj)/6

0 −1/12 −
J∑

j=1

αdj(1 − ξj)/6

S-C 0 1/48+
J∑

j=1

αdjξj(1 − ξj)
2/4

0 −1/16−
J∑

j=1

αdj(1 − ξj)
2(2 + ξj)/12

C-C 0 0 1/24+
J∑

j=1

αdjξj(1 − ξj)2/2

−1/12−
J∑

j=1

αdj(1 − ξj)2(1 + 2ξj)/6

C-F 0 0 1/4 +
J∑

j=1

αdjξj /2 −(1 +
J∑

j=1

αdj)/6

6. Determination of factors

Taking Eq. (20) as the mode shape, the mass factora s and stiffness factorbs of the beam, and the spring-mass
factor ahj (j = 1, 2, . . ., 3, J) for the distributed spring-mass can be obtained from Eqs (12) and (14). For the
distributed spring-mass, the factorsas andbs in Eq. (12) can be written as without integration:

as = as0 +
J∑

j=1

as1jαj +
J∑

j=1

as2jα
2
j , bs = bs0 +

J∑
j=1

bs1jαj +
J∑

j=1

bs2jα
2
j (22)

The factorahj in Eq. (14) can be written as:

ahj = ah0j + ah1jαj + ah2jα
2
j (23)

as0 andbs0 in Eq. (22) are the mass and stiffness factors of the bare beam, which are independent of the magnitude
of the mass and the position of the spring-mass.ah0j in Eq. (23) only related to the position of the spring-mass,
but not the magnitude of the mass. We can normalize the amplitude of the mode shape witha s0 = 1. In this case,
bs0 = λ2

b whereλb = ωbl
2
√

ρA/(EI) is the dimensionless natural frequency of the bare beam. It is seen from
Eqs (22) and (23) that if lettingαj = 0, the factors degenerated into those when using the mode shape of bare beam
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Table 3
The mass and stiffness factors of a beam with a uniformly distributed spring-mass

Positions as1 as2 bs1 bs2 ah0 ah1 ah2

Simply supported beam
ξ1 = 0, xi2 = 1/4 0.293 2.17× 10−2 28.8 2.60 9.22× 10−2 3.29× 10−2 2.94× 10−3

ξ1 = 1/4, ξ2 = 1/2 0.707 0.125 68.7 12.6 0.408 0.298 5.46× 10−2

ξ1 = 3/8, ξ2 = 5/8 0.765 0.146 74.3 14.4 0.472 0.366 7.08× 10−2

ξ1 = 0, ξ2 = 1/2 1.00 0.251 97.5 25.9 0.5 0.527 0.139
ξ1 = 1/4, ξ2 = 3/4 1.41 0.500 137 48.8 0.816 1.16 0.411

Clamped beam
ξ1 = 0, ξ2 = 1/4 0.200 1.08× 10−2 104 9.61 4.89× 10−2 1.72× 10−2 1.52× 10−3

ξ1 = 1/4, ξ2 = 1/2 0.800 0.162 400 87.1 0.451 0.392 8.51× 10−2

ξ1 = 3/8, ξ2 = 5/8 0.914 0.209 453 106 0.567 0.531 0.124
ξ1 = 0, ξ2 = 1/2 1.00 0.255 504 144 0.500 0.577 0.156
ξ1 = 1/4, ξ2 = 3/4 1.60 0.644 799 321 0.902 1.45 0.584

Simply supported-clamped beam
ξ1 = 0, ξ2 = 1/4 0.384 3.77× 10−2 91.4 11.1 0.141 6.7× 10−2 8.13× 10−3

ξ1 = 1/4, ξ2 = 1/2 0.835 0.175 197 42.4 0.510 0.439 9.43× 10−2

ξ1 = 3/8, ξ2 = 5/8 0.813 0.166 193 40.2 0.490 0.408 8.52× 10−2

ξ1 = 0, ξ2 = 1/2 1.22 0.374 288 92.9 0.651 0.832 0.266
ξ1 = 1/4, ξ2 = 3/4 1.47 0.544 351 130 0.832 1.24 0.459
ξ1 = 1/2, ξ2 = 1 0.781 0.155 189 43.2 0.349 0.311 6.95× 10−2

Cantilevered beam
ξ1 = 0, ξ2 = 1/4 4.28× 10−2 4.64× 10−4 0.572 1.22× 10−2 2.30× 10−3 1.87× 10−4 3.81× 10−6

ξ1 = 1/4, ξ2 = 1/2 0.268 1.80× 10−2 3.45 0.276 5.29× 10−2 1.67× 10−2 1.32× 10−3

ξ1 = 3/8, ξ2 = 5/8 0.438 4.80× 10−2 5.56 0.651 0.131 6.10× 10−2 7.12× 10−3

ξ1 = 1/2, ξ2 = 3/4 0.632 9.99× 10−2 7.91 1.27 0.259 0.166 2.67× 10−2

ξ1 = 3/4, ξ2 = 1 1.06 0.280 13.0 3.48 0.685 0.736 0.197
ξ1 = 0, ξ2 = 1/2 0.310 2.42× 10−2 4.02 0.389 5.52× 10−2 2.07× 10−2 1.95× 10−3

ξ1 = 1/4, ξ2 = 3/4 0.900 0.203 11.4 2.66 0.312 0.290 6.73× 10−2

ξ1 = 1/2, ξ2 = 1 1.69 0.714 20.9 8.83 0.945 1.60 0.677

to replace the mode shape of the coupled system. Therefore, the first order and second order terms ofα j are the
modification to the mode shape of the bare beam.

Similarly, for the concentrated spring-mass, the factorsa s andbs in Eq. (12) can be written as:

as = as0 +
J∑

j=1

as1jαdj +
J∑

j=1

as2jα
2
dj , bs = bs0 +

J∑
j=1

bs1jαdj +
J∑

j=1

bs2jα
2
dj (24)

The factoradj in Eq. (17) can be written as:

adj = ad0j + ad1jαdj + ad2jα
2
dj (25)

In the following analysis, the study will focus on the beam with distributed spring-mass in a single region or a
single concentrated spring-mass at a point. For simplicity, the subscript to indicate the number of distributed or
concentrated spring-mass can be omitted. According to the principle of superposition, a beam with multi-regions
of distributed spring-mass or several concentrated spring-masses can be inferred from the typical cases. The mass
and stiffness factors of a beam with a distributed spring-mass and a beam with a concentrated spring-mass at
different positions on the beam are given in Tables 3 and 4 respectively, where four different boundary conditions
are considered. In these calculations, the normalised modes have been used. Using Tables 3 and 4, the calculations
can be carried out by handwork.

7. An example

To illustrate the use of the method and to verify the method, an example of human-structure interaction is
assumed for analysis. Consider a uniform plate of length 5.0 m, width 6.0 m and thickness 0.3 m. One of the
longer sides of the plate is fully fixed and the other sides are free. The material properties of the plate are mass
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Table 4
The mass and stiffness factors of a beam with a concentrated spring-mass

Positions as1 as2 bs1 bs2 ad0 ad1 ad2

Simply supported beam
ξ1 = 1/8 1.20 0.367 118 46.7 0.299 0.472 0.186
ξ1 = 1/4 2.22 1.24 217 137 1.01 2.55 1.61
ξ1 = 3/8 2.90 2.11 282 214 1.70 5.17 3.92
ξ1 = 1/2 3.14 2.47 305 244 1.98 6.35 5.08

Clamped beam
ξ1 = 1/8 0.680 0.128 362 158 9.02× 10−2 0.158 6.90× 10−2

ξ1 = 1/4 2.08 1.13 1063 797 0.779 2.34 1.75
ξ1 = 3/8 3.33 2.81 1661 1557 1.90 7.13 6.68
ξ1 = 1/2 3.82 3.66 1890 1890 2.46 9.84 9.84

Simply supported-clamped beam
ξ1 = 1/4 2.84 2.04 671 546 1.48 4.79 3.90
ξ1 = 1/2 3.36 2.83 796 696 2.07 7.25 6.35
ξ1 = 3/4 1.52 0.595 373 210 0.455 1.02 0.576

Cantilevered beam
ξ1 = 1/8 0.133 4.46× 10−3 1.79 0.162 3.21× 10−3 1.17× 10−3 1.06× 10−4

ξ1 = 1/4 0.498 6.25× 10−2 6.57 1.30 4.33× 10−2 3.42× 10−2 6.76× 10−3

ξ1 = 3/8 1.05 0.276 13.6 4.38 0.184 0.238 7.70× 10−2

ξ1 = 1/2 1.74 0.754 22.1 10.4 0.488 0.919 0.433
ξ1 = 5/8 2.52 1.59 31.6 20.3 0.999 2.57 1.65
ξ1 = 3/4 3.36 2.82 41.6 35.0 1.74 5.85 4.93
ξ1 = 7/8 4.23 4.47 51.9 55.7 2.70 11.6 12.4
ξ1 = 1 5.11 6.53 62.3 83.1 3.89 20.8 27.7

densityρ =2400 kg/m3 and Young’s modulusE = 30 × 109 N/m2. A crowd of standing people is distributed
at a density of four people per square meters equivalent to 300 kg/m2. The effective body mass contributing to
vibration is considered to be two thirds of the body mass [18] with the fundamental natural frequency of 5.5 Hz [19].
Assume that the crowd is uniformly distributed on a half of the plate from its free end (opposite to the fixed)
and the distribution does not change along the longer sides of the plate, the analysis of the natural frequencies
of the human-structure system can be converted to a spring-mass-beam system when only the fundamental mode
of vibration is interested. Thus the equivalent beam has a length 5.0 m, width 6.0 m and thickness 0.3 m.
The distributed spring-mass, representing the crowd, has mass densitym = 300 × 6 × 2/3 = 1200 kg/m and
stiffness densityk = mω2 = 1200 × (2π × 5.5)2 = 1.433 × 106 Nm2. The equivalent beam has the properties:
ρA = 2400 × 6 × 0.3 = 4320 kg/m andEI = 30 × 109 × 6 × 0.33/12 = 4.05 × 108 Nm2. The corresponding
parameters for the simplified calculations areJ = 1, ξ1 = 1/2 andξ2 = 1, α = 0.278. The approximate natural
frequency of the bare beam isωb ≈ 43.23/s (orfb = 6.88 Hz) which is obtained using the static beam function.

Substituting the parameters shown in Table 3 into Eq. (22) givesa s ≈ 1.52, bs ≈ 18.95. From Eq. (23), we have
ah ≈ 1.44. Equations (11) and (13) giveMs ≈ 3.29 × 104 kg,Ks ≈ 6.14 × 107 N/m,Mh ≈ 8.65 × 103 kg.

Therefore, we haveµ ≈ 0.263, ωs ≈ 43.18/s andωh ≈ 34.56/s. Substituting these data into Eq. (10) gives
ω1 = 30.01/s andω2 = 49.72/s, i.e.f1 = 4.78 Hz andf2 = 7.91 Hz.

Finite element analysis of the mass-spring-beam system is also conducted using the commercial software package
LUSAS [20]. The fundamental frequency of the bare beam is 6.85 Hz from the FE analysis, which is the same
as that from the exact solution. Thin beam elements are used to represent the beam and non-rotational joints are
taken to modal the discrete spring-masses. The beam is equally divided into 20 elements and each element has a
length of 0.25 m. The distributed spring mass is thus converted into concentrated spring masses with the properties
of mc = 1200 × 0.25 = 300 kg andkc = 1.433 × 0.25 = 3.58 × 105 N/m. The first concentrated spring mass at
the centre of the beam and the last at the free end of the beam have a half of the values of the other spring-masses.
The corresponding natural frequencies are 4.77 Hz (the first mode in the FE analysis) and 7.90 Hz (the twelfth mode
in the FE analysis), which are just the same as the exact solutions. The mode shapes from the second mode to the
eleventh mode show only the vibrations of the spring masses.
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Fig. 3. The mode shapes of a simply supported beam with a uniformly distributed spring-mass in respect to different positions and mass density
ratios, (ξ1 = 0.0, ξ2 = 0.5), (ξ1 = 0.25, ξ2 = 0.75).
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Fig. 4. The mode moments of a simply supported beam with a uniformly distributed spring-mass in respect to different positions and mass density
ratios, (ξ1 = 0.0, ξ2 = 0.5), (ξ1 = 0.25, ξ2 = 0.75).

8. Characteristics of solutions

Figure 3 shows the estimated mode shapesY (ξ) of a simply supported beam with a uniformly distributed spring-
mass on a half length of the beam (ξ1 = 0.0, ξ2 = 0.5 andξ1 = 0.25, ξ2 = 0.75) with two different mass ratios
(α = 1 andα = 10). Figures 4 and 5 give the corresponding mode momentsT (ξ) and shear forcesV (ξ) in the
beam respectively, which are approximated by those of the static solutions.

In Eqs (20) and (21), if lettingαj = 0 orαdj = 0, the mode degenerates into the static beam function of the bare
beam. Using this approximate mode, the dimensionless fundamental eigenfrequencyλ b = ωbl

2
√

ρA/(EI) of the
beam can be obtained. Table 5 gives the comparison of the dimensionless natural frequencies obtained from the
present solution and the exact solution for four kinds of boundary condition. It is seen that the maximum error is
less than 0.4%.

It has been demonstrated that when a beam is fully occupied by a uniformly distributed spring-mass, the coupled
mode is the same as that of the bare beam [18]. Such a special case can also be recurred using the present solution.
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Table 5
The fundamental eigenfrequencyλb = ωbl

2√
ρA/(EI) of bare beams with different bound-

ary conditions

Method C-C S-C S-S C-F

Present 22.45 15.45 9.877 3.530
Exact 22.37 15.42 9.870 3.516
Error 0.36% 0.19% 0.07% 0.40%
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Fig. 5. The mode shear forces of a simply supported beam with a uniformly distributed spring-mass in respect to different positions and mass
density ratios, (ξ1 = 0.0, ξ2 = 0.5), (ξ1 = 0.25, ξ2 = 0.75).

In Eq. (20), if takingξ1 = 0 andξ2 = 1 (in such a case,j = 1), the mode automatically degenerates into that of the
bare beam, no matter what the mass density is.

Various numerical examples show that in most cases, the accuracy of the first natural frequency is higher than that
of the second. It has been numerically demonstrated [17] that the products of a pair of frequencies from the exact
solution are close to the product of the natural frequencies of the independent beam and the spring-mass. Therefore,
whenω1 has been given by Eq. (10), the second natural frequencyω 2 can also be given using the equation

ω2 = ωbωh/ω1 (26)

A number of numerical examples show thatω2 obtained from Eq. (26) is slightly more accurate than that from
Eq. (10). This becauseω2 from Eq. (10) is generally larger than the exact value. Due toω b < ωs, ω2 given by
Eq. (26) is always slightly smaller than that given by Eq. (10), which is generally more close to the exact value.

In order to evaluate the accuracy of the present method, the natural frequencies calculated using the present
method and the exact solution are compared. Table 6 compares the dimensionless natural frequencies obtained
using the present method and the exact solution. A cantilever with four different positions of the distributed spring-
mass is considered. The mass ratio is selected atα = m/(ρA) = 1. Four different stiffnesses are examined,
i.e. β = kl4/(EI) = 4, 9, 16 and 25. The relation of spring-mass frequency and bare beam frequency is
ωh/ωb =

√
β/αλb . The second frequency parameterλ2 is obtained from Eq. (26) where the exact value ofω b

from Table 5 is used. It is seen from Table 6 that for the beam with the distributed spring-mass, the present solutions
are very close to the exact solutions. The maximum error is less than 1% for all studied cases. For the beam with
the concentrated spring-mass, the first natural frequencies of the present solutions are also close to those of the exact
solutions. The maximum error is less than 2%. In most cases, the errors of the second natural frequencies are
larger than those of the first natural frequencies. It is shown from Table 6 that in general the error should increase
with increasing the stiffness of the spring because the effect of the spring stiffness on static beam function is not
considered in the analysis.
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Table 6
The first pair of natural frequencies of a cantilever (C-F) with a uniformly distributed spring-mass in the interval [ξ1,

ξ2], α = m/(ρA) = 1, β = kl4/(EI), λ = ωl2
√

ρA/(EI)

β, ωh/ωb ξ1 = 0.0, ξ2 = 0.5 ξ1 = 0.25, ξ2 = 0.75 ξ1 = 0.5, ξ2 = 1.0 ξ1 = 0.0, ξ2 = 1.0

λ1 λ2 λ1 λ2 λ1 λ2 λ1 λ2

4, 0.569 1.974 3.562 1.873 3.755 1.692 4.157 1.681 4.183
Exact 1.973 3.558 1.873 3.747 1.691 4.159 1.679 4.189
Error 0.05% 0.11% 0.00% 0.21% 0.06% −0.05% 0.12% −0.14%
9, 0.853 2.841 3.713 2.493 4.232 2.090 5.048 2.070 5.096
Exact 2.841 3.697 2.491 4.219 2.089 5.054 2.065 5.109
Error 0.00% 0.43% 0.08% 0.31% 0.05% 0.08% 0.24%−0.25%
16, 1.138 3.277 4.292 2.789 5.042 2.273 6.186 2.250 6.251
Exact 3.268 4.271 2.784 5.013 2.269 6.195 2.242 6.272
Error 0.28% 0.49% 0.18% 0.58% 0.18% −0.15% 0.36% −0.33%
25, 1.422 3.379 5.203 2.915 6.031 2.363 7.440 2.338 7.519
Exact 3.361 5.169 2.908 5.974 2.359 7.447 2.330 7.545
Error 0.54% 0.66% 0.24% 0.95% 0.17% −0.09% 0.34% −0.34%

9. Conclusions

An approximate estimation is provided in this paper to determine the dynamic characteristics of a beam with
distributed or concentrated spring-masses. The static beam function is derived, in which the effect of the magnitude
and position of the mass of the spring-mass on the mode shape is considered. By using the static beam function as
the approximate mode shape, a pair of coupled frequencies for a spring-mass-beam system is obtained. An example
of human-structure interaction is provided to show the use of the proposed method. The conclusions obtained from
this study include:

1. The comparison between the present solutions, the exact solutions and FE solutions shows that the present
method provides the natural frequencies with satisfactory accuracy.

2. The internal forces of the coupled system are examined using the static beam function. The high accuracy
achieved by the function cannot be obtained by using the mode shape of the bare beam. It shows that small
variation in mode shapes can lead to large differences on internal forces.

3. The effect of the magnitude and position of the mass of the spring-mass on the mode shape becomes important
as the mass ratio increases. The effect should be considered when the coupled frequencies and the internal
forces of the spring-mass-beam system are calculated using a TDOF model.
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