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Abstract. Higher-order nonlinear vibrations of Timoshenko beams with immovable ends are studied. The nonlinear effects of
axial deformation, bending curvature and transverse shear strains are considered. The nonlinear governing differential equations
are solved using a spline-based differential quadrature method (SDQM), which is constructed based on quartic B-splines. Ratios
of the nonlinear to the linear frequencies are extracted and their variations with the ratio of amplitude to radius of gyration
are examined. In contrast to the well-recognized finding for the nonlinear fundamental frequency of beams, some higher-order
nonlinear frequencies decrease with the increase of ratio of amplitude to radius of gyration.
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1. Introduction

Nonlinear vibrations of beams have been of interest to researchers for many years since they are found in
applications of various structural components, from micro-systems to members in conventional mechanical and
structural engineering. The majority of the available publications [1-9] are based on the classic Bernoulli-Euler
beam model which has been deemed capable of evaluating the low order modes and frequencies of slender beams.
In recognition of the transverse shear deformation and rotary inertia for stubby beams, Timoshenko beam theory has
been employed by some researchers in the nonlinear vibration analysis of beams.

It seems that Rao et al. [10] first examined the nonlinear vibration of Timoshenko beams by setting up a finite ele-
ment formulation. In their analysis, an improper linearization of the nonlinear axial strain resulted in underestimated
nonlinear fundamental frequency. Sarma and Varadan [11] developed a Ritz finite element formulation to study the
nonlinear fundamental frequency of a hinged-hinged beam. They reported the increase of the nonlinear fundamental
frequency considering the contribution of second order nonlinear curvature. In the case of slender beams, their
results were larger than the available exact solution. Furthermore, the use of reduced integration therein during the
construction of nonlinear equations for alleviation of shear-lock phenomenon further exacerbated the “hardening”
of the nonlinear fundamental frequency. Lin and Tsai [12] also developed a finite element formulation taking into
account the nonlinear effects of bending curvature and shear strain in addition to the nonlinear axial strain. In their
analysis, the nonlinear effects other than the nonlinear axial strain led to the decrease of the nonlinear fundamental
frequency. Adopting a space average approach, Foda [13] studied the nonlinear fundamental frequency of simply
supported Timoshenko beams with multiscale method. Similar results were obtained, i.e., the inclusion of transverse
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shear deformation and rotary inertia brought about decrease of the nonlinear fundamental frequency of Timoshenko
beams. More recently, Zhong and Guo [14] established the nonlinear dynamic equations of Timoshenko beams
and solved for the nonlinear fundamental frequency using the differential quadrature method. In their analysis, the
nonlinear effects of bending curvature and of transverse shear deformation as well as the nonlinear axial deformation
were taken into account. They also found that the nonlinear effects of nonlinear transverse shear deformation and
bending curvature gave rise to the “softening” of the nonlinear fundamental frequency. An examination of the cause
indicates that the conflicting observations are ascribed to the different kinematic relations used in the respective
analysis.

The use of Timoshenko beam theory allows the investigation to higher-order modes and frequencies of beams.
However, to the best knowledge of the authors, no attempt has so far been made for higher-order vibration analysis
of Timoshenko beams. Even for Bernoulli-Euler beams, very limited study has been carried out in regard to the
higher-order nonlinear modes and frequencies. The only available work was from Benamar et al. [15]. With the
harmonic-balance method, they found the first three nonlinear mode shapes of simply supported and clamped-
clamped Bernoulli-Euler beams. They also reported that the higher-order mode contributions and frequencies
increase at large amplitudes.

The differential quadrature method (DQM) [16,17] has been used to perform structural analysis for nearly twenty
years. It excels at solution of differential equations over relatively regular geometric domains. Although the
employment of Chebyshev-Gauss-Lobatto grid points enables the DQM to cope with various complex problems, the
limitation of the number of grid points in the discrete domain still exists. Experience indicates that it is impossible to
achieve convergent solution of higher-order nonlinear modes of Timoshenko beams by the conventional differential
guadrature method. In contrast, the newly developed spline-based differential quadrature method [18,19], without
restriction on the number of grid points, has exhibited edges in the solution of nonlinear initial value problems [20] as
well as nonlinear boundary value problems [21]. Experience indicates that B-splines of two orders higher than that
of differential equations are more suitable for construction of the differential quadrature method for boundary-value
problems in light of efficiency and accuracy. In this paper, quartic B-splines are used to construct the spline-based
differential quadrature method. The higher-order nonlinear vibrations of Timoshenko beams are then studied.

2. Spline-based differential quadrature

To construct the basis functions with quartic B-splines for differential quadrature, a set of uniformly spaced nodes
are selected in a normalized interval [0, 1],

l‘():(),l']\]:1,1'j+17$]':h,j:(),].,"',Nf]., (1)
whereh is the length of every subinterval. The normalized quartic B-spline function [22] is given by
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where ? are the binomial coefficients, add{z) is the unit step function. Apparently it is a piecewise polynomial
that covers six consecutive segments only. To construct a global interpolation function over the normalized interval,
extra nodes outside the interjab, =] are usually needed to meet boundary condition requirements, i.e.
Tog=-2hx_1=—h,xny1 = (N+ 1h,znt2 = (N + 2)h. 3)
A typical spline interpolation function over the given interval can be expressed as

N+2
sa(@) = Y ®j(x)y;, j(x) = Do(x — jh), (4)

=2

where®; (x) are usually given in terms of a combination of translated and scaled spline functions. The interpolation
condition requires thab ; (x) satisfy the cardinal condition at every node, i.e.
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Fig. 1. A quartic cardinal spline functioi ().

To this end, three auxiliary spline interpolation functions are constructed,
N+-2

v)= Y yjpala — ), (6)
j=—2

<1/4> plas <1/4> )
= yer (@ —ay), (7)
j=—2

<1/2> plas <1/2> )
= yes (@ —ay), 8)
j=—2

where
01" (@) = alz + h/4) + pa(x — h/4), ©)
0% (@) = palz + h/2) + palz — h/2). (10)

With the local non-zero property gf,(z), all the terms but the one containipg on the right side of Egs (6) to
(8) are eliminated. In consequence, the quartic cardinal spline interpolation function is obtained as

136 256 113
sa(@) = =va(@) = =~ (@) + gl (@), (11)
Hence
136 256 113
‘I’j(m) = T%(?ﬁ - ij) - Tsﬁfl/b(x ) 1—8<P§1/2>(33 —xj). (12)

It can be shown that Eq. (5) is satisfied at every node. Figure 1 illustrates the quartic cardinal spline function
®y(x). Since the extra nodes outside the interval are often cumbersome to handle, non-integral nodes within the
interval in the vicinity of the two ends of the interval are introduced instead, i.e.
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Ty =h/4, 210 =h/2,xN 10 = (N —1/2)h,xn_1/4 = (N —1/4)h. (13)
The function values at the non-integral nodes are given as

N+2

Y1/a = Z D (Z) Y; = a11Y—2 + a12y—1 + @13Yo + d14Y1 + a15Yy2 + ai6Ys, (14)
j=—2
N+2

Y12 = Z b, (5) Y; = Q21y—2 + qooy_1 + @23y + Q2ay1 + qasy2 + Q26Ys, (15)
j=—2

wherea;; (i = 1,2;j = 1,2, ---,6) are constants that are listed in the Appendix of the paper. The function values
at the extra nodes outside the left end of the interval are solved for from the above two equations

Y-1 = B11yo + Biayi/a + Brayry2 + Brayr + Bisy2 + Bieys, (16)

Y—2 = PB21yo + B22y1/4 + B23y1/2 + B2ayr + P2sy2 + Ba6ys, (17)

whereg;; (i = 1,2;j = 1,2,---,6) are constants also given in the Appendix. In the same manner, the extra nodes
outside the right end of the interval are expressed as

Yn+1 = Buiyn + Br2yn—1/4 + B13yn—1/2 + brayn—1 + Bisyn—2 + freyn—3, (18)

YN+2 = B21YN + Bo2yn—1/4 + B23yn—1/2 + Boayn—1 + Basyn—2 + Ba6yn—3. (19)

Now, the quartic spline interpolation function, without extra outside nodes, is rearranged as follows

N i =7
sa(x) = Zﬂj(m)ijﬂj(mi) =0 = {(1):2 ;i ’

= 20
SEUE S SPPIVERHVEE SO )
where
Qo(x) = Po1P—2(x) + S11P-1(z) + Po(2),
Q1 (2) = P22 P—2(2) + Pr2P-1(2),
Q% (z) = B23®_2(x) + B13P_1(7),
M (2) = Boa®_2(x) + f1a®_1(x) + 1 (x),
Qa(z) = P25 P—2(7) + P15P-1(z) + P2(z),
Q3(x) = BasP_2(x) + P16P_1(x) + P3(x),
Q;(z) = 0;(x), 4<j< N -4, (21)
On_3(x) = P26 Pny2(x) + fr6P N1 (x) + Pr_3(x),
Qn_2(x) = BosPrnt2(x) + B15Pn+1(2) + Pr—2(2),
Qn-1(z) = Poa®n2(2) + P1a®n1(2) + Pr-1(2),
Q-1 () = Bas®ny2(7) + F13Pn41(),
Qn_1(2) = Br2Pn42(2) + fr2Pn 41 (),
Qn(z) = P21 Pny2(z) + B11PN11(2) + PN ().

Thus, the weighting coefficients in the spline-based differential quadrature are given in explicit form as
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The localized non-zero nature of splines results in banded weighting coefficient matrices for derivatives. Mean-
while, the following symmetric properties exist among the weighting coefficients

(22)
i,j=0

1) A @) _ A2
Cij’ = —Clv—nv—j) Cij" = Cn—iy(v—j)’
8) 3 (1) _ A1)
Cii” = =Cv-nwv—y) Cii” = Civ—iv—iy (23)
11 1 1
i=0--12 - N—-2N—-1,N—=N—=N.
Z?] 07 47 27 bl b) b) b) b) 2’ 4’

3. Nonlinear vibrationsof Timoshenko beams

A beam with uniform cross-section and immovable ends is considered. Following [14], the kinematic relations
adopted for the beam are
2

1
€=Uz + §wx, (24)

0 1 3
= _~0,(1-wi+uwt 25
o= g <o (-t et )

1 .
lww—emwx—gwg—& (26)
whereu, w andé are the axial displacement, deflection and rotation, respectiwglyand-~ are the axial strain,
curvature and the cross-section rotation, respectively. The governing differential equations for nonlinear vibrations

of Timoshenko beams with immovable ends are derived via the Hamilton principle, which are

v = tan

EA L
—pAwy + kGA(Wee — 0,) + Ewm/ widm + EI [95 (—wac + 2“’2)}1
1
—pI0y + BI04 + kGA (w, — 0) + EI [(—w} +wy) 02 — ngAwf; =0, (28)

whereL, A, p, I, E, G andk represent the length of the beam, cross-section area, mass density per unit volume,
moment of inertia, Young's modulus, shear modulus and shear modification coefficient, respectively. The subscripts
x andt denote the partial differentiation with respect to the axial coordinated the time coordinaterespectively.

The reader may refer to [14] for the derivation details.

For nonlinear vibration analysis of beams, there are usually two options for simplifying the governing equations.
One is the separation of space and time variables, which is believed to be valid for simply supported beams [23].
The other assumes that a point of maximum amplitude exists during the vibration and it is also the point of reversal
of motion for every point of the beam, which is applicable to beams with other boundary conditions in addition
to simply supported condition [24—26]. The latter option is chosen herein to simplify the governing equations of

Timoshenko beams. Namely, it is assumed that at the point of motion reversal, there exist
W = —wa, wy = 0,

(29)

Htt = —w29, Ht = 0,

wherew is the nonlinear frequency.



412 H. Zhong and M. Liao / Higher-order nonlinear vibration analysis of Timoshenko beams

Substituting the above expressions into the governing equations and introducing the following dimensionless
parameters

x w E I pAL*w?
T e MR "Tar YTV Er (30)

the dimensionless form of the governing equations can be written as

%77 (0 — vee) — % (%)2% /O1 vEdg +n (%)292%5 +2n (%)2 O¢Oceve

(31)
2 (0N 5 o 2 (0\* 5 1 aN? 2 2 2,
—6n (;) 951)5’055 — 4’17 (;) 959551}5 — X (;) (9&1)5 + 29’1)5’055 — 41)51)&5) — Q%0 = 0,
1 1 a\? o a\? a\* 4
75955 + )\—772 (9 — vg) + (;) 1)6955 +2 (;) vgv&@g —-n (;) vgagg
a\?t 4 1 ra\2 4 02 (32)
~in () vivests 5 (T) i -t =0
wherea is the maximum vibration amplitude of the beam and the radius of gyration is given by
I
r= (33)

Applying the spline-based differential quadrature rule to Egs (31) to (32) and invoking the boundary conditions,
a set of nonlinear algebraic equations are produced. An iterative procedure [27] is employed to extract the eigen-
frequencies.

4, Numerical results

In all computations, the Poisson’s ratio is 0.30 and the shear modification coefficient is 5/6. A benchmark
problem — the fundamental frequency of a simply supported slender beam is investigated first using the present
nonlinear Timoshenko beam model, for there exists the analytical solution of the nonlinear to the linear fundamental
frequency ratio on the basis of Bernoulli-Euler beam model [5,28]

* 3 2
SNL =14 =2 (34)
Wiy 16 r

wherew;, is the analytical solution of the linear fundamental frequency of the beam. In the meantime, the
convergence of the spline-based differential quadrature is examined. The relative error of the nonlinear fundamental
frequency is defined as
WINL — wTNL

€re = ) (35)

WiNL
which is plotted in Fig. 2 against the number of nodes used in the analysis.

Itis seen that the relative error is kept below 0.2% if the number of nodes is more than 25. Not only the Timoshenko
model is verified but also the efficacy of the spline-based differential quadrature is demonstrated. In addition, the
stability of the spline-based differential quadrature is also demonstrated in Fig. 2, where the results of fundamental
frequency are virtually invariant for larg¥.

Table 1 gives the first nonlinear mode shapes of simply supported beams with the increment ratio of amplitude to
radius of gyration foll /r = 100 and L /r = 20, respectively. It is found that the mode shapes vary insignificantly
with the increment of amplitude ratio for the slender bedit(= 100), but significantly for the stubby beam
(L/r = 20). Itis observed that the largest deviation is merely 0.1%for = 100, but 2.5% forL/r = 20 when
the ratio of amplitude to radius of gyration increases from 0.1 to 2.0. Thus, for stubby beams (beams with small
slenderness ratio), the variation of mode shapes is noticeable with the variation of ratio of amplitude to radius of
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Table 1
Nonlinear first mode shape for simply supported beams
£ a/r
L/r =100 L/r=20
0.1 1.0 2.0 0.1 1.0 2.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.05 0.1564 0.1565 0.1566 0.1564 0.1573 0.1601
0.10 0.3090 0.3091 0.3093 0.3090 0.3106 0.3157
0.15 0.4540 0.4541 0.4543 0.4540 0.4560 0.4625
0.20 0.5878 0.5879 0.5881 0.5878 0.5899 0.5967
0.25 0.7071 0.7072 0.7074 0.7071 0.7091 0.7151
0.30 0.8090 0.8091 0.8093 0.8090 0.8105 0.8152
0.35 0.8910 0.8910 0.8912 0.8910 0.8920 0.8950
0.40 09511 0.9511 0.9511 0.9511 0.9515 0.9530
0.45 09877 0.9877 0.9877 0.9877 0.9878 0.9882
050 1.0 1.0 1.0 1.0 1.0 1.0
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£ 0.025

g

o
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0.015
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Fig. 2. Relative error of nonlinear fundamental frequency for simply supported béams= 100, a/r = 0.1).

gyration even for simply supported beams. As a result, separation of space and time variables is inappropriate for
nonlinear vibration analysis of stubby beams, but is applicable to the vibration analysis of simply supported slender
beams with moderately large amplitudes.

Tables 2—4 show the ratios of the first six nonlinear frequencies to the corresponding linear frequangies,
with various slenderness ratidg'r and amplitude ratiog/r for simply supported beams, clamped-clamped beams
and beams with one end clamped and the other simply supported, respectively.

In Table 2, the first six ratios of nonlinear frequencies to linear frequencies for simply supported beams are
presented. Itis seen that the ratios are all larger than unity for slender beams. The ratio increases with the ratio of the
amplitude to radius of gyration, and the chosen iterative algorithm runs into difficulty in achieving the convergence
of higher-order frequencies. The increase of number of nodes makes the algorithm more sensitive to the selection
of initial guest of eigen-mode vector. On the other hand, it becomes even difficult to converge for the higher-order
frequencies of stubby beams despite the increase of number of nodes. The results in the table are obtaiied when
is around 80. It is noted that convergent results cannot be obtained for every chosen node number. A trail and error
strategy is therefore adopted to gain a convergent solution. In addition, a distinct discovery is that the fourth and the
fifth nonlinear frequencies of the stubby beam are less than their linear counterparts and thfe saiig$2,;, and
Qsn1/51, decrease monotonically with the increase of amplitude to radius of gyration. This is certainly attributed
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Table 2
Ratio of nonlinear frequencies to linear frequencies for simply supported beams

L/r  afr Qunrp/Qr  Qonrp/Qr  Qanp/Qr Qunp/ur Qsnvp/Qsr Qenr/Qer

20 0.1 1.0012 1.0010 1.0012 0.9992 0.9985 1.0009
0.2 1.0047 1.0038 1.0049 0.9968 0.9938 1.0036
0.3 1.0105 1.0085 1.0111 0.9926 0.9870 1.0086
0.4 1.0185 1.0151 1.0199 — — —

60 0.1 1.0012 1.0012 1.0015 1.0005 1.0004 1.0014
0.2 1.0049 1.0048 1.0060 1.0019 1.0015 1.0055
0.3 1.0111 1.0107 1.0134 1.0044 1.0034 1.0123
0.4 1.0196 1.0190 1.0237 1.0077 — —

100 0.1 1.0012 1.0012 1.0015 1.0006 1.0006 1.0015
0.2 1.0050 1.0049 1.0061 1.0025 1.0023 1.0059
0.3 1.0112 1.0110 1.0137 1.0056 1.0051 1.0132
0.4 1.0197 1.0194 1.0242 1.0098 1.0090 1.0229
0.5 1.0307 1.0300 1.0376 1.0152 — —

Table 3

Ratio of nonlinear frequencies to linear frequencies for clamped beams
L/r  a/r  Qanip/Qr  Qoni/Qr  Q3np/Qsr Qunp/Qur Qsnvp /s Qeni/Qer

20 0.1 1.0002 1.0003 1.0009 0.9995 0.9984 1.0005
0.2 1.0009 1.0013 1.0037 0.9978 0.9934 1.0019
0.3 1.0020 1.0030 1.0082 0.9949 0.9853 1.0048
0.4 1.0034 1.0053 1.0145 0.9904 0.9728 —

60 0.1 1.0003 1.0005 1.0011 1.0005 0.99999 1.0006
0.2 1.0012 1.0021 1.0043 1.0022 0.99996 1.0025
0.3 1.0026 1.0046 1.0096 1.0048 0.99990 1.0057
0.4 1.0046 1.0082 1.0175 1.0085 0.99980 1.0114
0.5 1.0072 1.0126 1.0263 1.0133 0.99956 —

100 0.1 1.0003 1.0005 1.0011 1.0007 1.0002 1.0008
0.2 1.0012 1.0021 1.0045 1.0027 1.0008 1.0030
0.3 1.0027 1.0048 1.0100 1.0061 1.0018 1.0068
0.4 1.0047 1.0085 1.0176 1.0108 1.0032 1.0118
0.5 1.0074 1.0132 1.0271 1.0166 1.0049 1.0181
0.6 1.0106 1.0189 1.0389 1.0236 1.0070 1.0267
0.7 1.0144 1.0256 1.0526 1.0317 — —

to the intricate nonlinear effects of axial strain, bending curvature and shear strain. It proves difficult to identify the
direct cause that leads to the decrease of some nonlinear frequencies since some higher-order frequencies of stubby
beams are still found larger than their linear counterparts, as in the case of the sixth nonlinear frequency in Table 2.
Similar situations arise for clamped beams and the beams with one end clamped and the other simply supported, as
shown in Tables 3 and 4. The mode shapes of a stubby beam with one end clamped and the other simply supported
are illustrated in Fig. 3. In a nutshell, the vibration amplitude acts as a magnifier that controls either the increase or
the decrease of the nonlinear to the linear frequency ratios.

5. Conclusion

Higher-order vibrations of Timoshenko beams have been studied using a spline-based differential quadrature
method which is constructed with quartic B-splines. A quartic cardinal spline function is given and the explicit
weighting coefficients for derivatives are obtained. Attempts have been made to find the first six nonlinear frequencies
of clamped beams, simply supported beams and beams with one end clamped and the other simply supported.
Although the convergence of the higher-order frequencies proves difficult with the increase of vibration amplitude,
especially for stubby beams, the variation tendency of the nonlinear frequencies has been identified. In particular,
some higher-order frequencies are found lower than their linear counterparts. Further research is needed to probe
into the cause of the decrease of some nonlinear frequencies of stubby beams with the increase of ratio of vibration
amplitude to radius of gyration.
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Table 4
Ratio of nonlinear frequencies to linear frequencies for beams with one end clamped and the other simply supported

L/r  afr Qunrp/Qr  Qonrp/Qr  Qanp/Qr Qunp/ur Qsnvp/Qsr Qenr/Qer

20 0.1 1.0005 1.0005 1.0009 0.9994 0.9986 1.0006
0.2 1.0021 1.0021 1.0036 0.9977 0.9943 1.0025
0.3 1.0047 1.0047 1.0082 0.9947 0.9868 1.0059
0.4 1.0085 1.0085 1.0147 0.9902 — —

60 0.1 1.0006 1.0007 1.0011 1.0005 1.0002 1.0008
0.2 1.0024 1.0030 1.0044 1.0021 1.0009 1.0033
0.3 1.0054 1.0067 1.0099 1.0047 1.0020 1.0075
0.4 1.0096 1.0119 1.0176 1.0084 1.0036 1.0127
0.5 1.0149 1.0183 1.0267 1.0128 — —

100 0.1 1.0006 1.0008 1.0011 1.0007 1.0004 1.0009
0.2 1.0025 1.0031 1.0046 1.0026 1.0017 1.0038
0.3 1.0055 1.0069 1.0103 1.0059 1.0038 1.0085
0.4 1.0097 1.0123 1.0183 1.0105 1.0068 1.0149
0.5 1.0151 1.0190 1.0278 1.0164 1.0105 1.0230
0.6 1.0216 1.0272 1.0399 1.0228 — —

10 6thr5th4:th 3rd de 1st

Id ~

N 7/

0.8

0.6

0.4

0.2

Mode shapes

Length

Fig. 3. First six nonlinear mode shapes of a beam with the left end clamped and the right end simply supgerted2Q, a/r = 0.3).
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Appendix

The coefficients in Eqs (14) and (15) are given as
ap = 1777/110592, a2 = —13043/110592, a5 = 50465,/55296,
aq4 = 11905/55296, a5 = —2995/110592, a6 = 113/110592;

91 = 3/256, 99 = —25/256, Q23 = 75/128,
94 = 75/128, Qo5 = —25/256, Qo — 3/256.
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The coefficients in Eqs (16) and (17) are given by

Bi1 = —2265/331, B2 = 20736/331, B13 = —28432/331,
Bia = 12195/331, B15 = —2215/331, B16 = 312/331;

By = —35425/331, B2 = 172800/331, Ba3 = —208688/331,
By = 85075/331, 5 = —15700/331, a6 = 2269/331.
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