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Abstract. The optimal control of the deceleration of a particle moving along a straight line after an impact against an isolated
surface is considered. The force applied to the particle by the surface is treated as the control variable. The deceleration distance
is minimized subject to a constraint on the Head Injury Criterion functional. This functional is an integral criterion that is utilized
in engineering biomechanics to evaluate the expected severity of impact-induced head injury of a human being. The solution
obtained provides characteristics of the limiting capabilities for the prevention of head injuries by means of an impact isolator,
such as a coating of the surface against which the impacts occur. The head injuries can be due to impact occurrences, including
traffic crashes, falling, and contacts with ballistic objects.
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1. Introduction

The Head Injury Criterion (HIC) is an empirical integral criterion that evaluates the possible severity of human
brain injury induced by an impact in terms of kinematic parameters of this impact. Formally, this criterion is defined
by

HIC = max
t1,t2, t2−t1�∆





 1

t2 − t1

t2∫
t1

a(t)dt




2.5

(t2 − t1)


 , (1)

wherea(t) is the magnitude of the acceleration of the center of mass of the brain, and∆ is a constant parameter
having the dimension of time. The criterion of Eq. (1) reflects the dependence of the severity of the injury on both
the mean magnitude of the head acceleration induced by the impact pulse and the duration of this pulse. With
the increase of either or both of these quantities the expected severity of the head injury increases. In Eq. (1), the
expression in the square brackets is the head acceleration mean magnitude on the time intervalt 1 � t � t2.

The HIC functional is utilized as a standard crashworthiness criterion for transport vehicles (road and airborne)
and as the basic quality index for playground (sporting and children) surfaces and helmets. To establish the degree
of correspondence to the standard, the vehicle, structure, or equipment should be subjected to tests the conditions
of which are specified in appropriate documents. Typically, the equipment for such tests involves a human dummy
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with sensors to measure the parameters of the motion occurring in the functionals regarded as the injury criteria.
The HIC tests require three accelerometers to be placed at the center of mass of the dummy’s head to measure three
components of the acceleration of that point.

The definition of the HIC functional implies that its dimension isL2.5/T 4, whereL is the dimension of the unit
of length andT is the dimension of the unit of time. For example, in SI units HIC is measured inm 2.5/s4. In the
literature on impact biomechanics and crashworthiness, the acceleration in the expression for HIC is conventionally
measured in units of the mean value of the acceleration due to gravity on the earth surface (g ≈ 9.81m/s 2) and time
in seconds. In this case, as a rule, only the numerical value of this functional is given and the dimension (seconds)
is omitted.

The value of the HIC (for a prescribed functiona(t)) depends on the parameter∆. This parameter bounds the
duration of the time intervalst1 � t � t2 for which the interval providing the maximum for the expression in the
curly brackets in Eq. (1) is calculated. The value of∆ is specified by test standards. For example, car crash test
standards specify∆ = 15 ms or∆ = 36 ms. Note that the value of HIC does not decrease as∆ increases, since in
this case, the class of time intervals with respect to which the maximization in Eq. (1) is performed increases.

We choose to provide a brief review of development of the HIC functional and its biomechanical validation. The
HIC is based on biomechanical experiments aimed at the investigation of the influence of the magnitude and duration
of the acceleration pulse occurring on the characteristics of brain injury. Gurdjian and his colleagues [5–7] at the
Wayne State University (Michigan, USA) were the first to perform such investigations in the 1950s. Laboratory
animals (dogs and monkeys) and human cadavers were utilized for the experiments. The head was subjected to an
impact loading. The duration of the impact pulse, the average acceleration of a certain reference point of the head
over that duration, as well as the intracranial pressure were measured. The intracranial pressure indicated the degree
of severity of the head injury. The distinction was made between major (severe) injuries, which were associated
with irreversible changes that lead to serious malfunctions of the brain or death, and minor (less severe) injuries in
which such changes were not observed. The experimental results were processed as follows. Each experiment was
marked by a point on the coordinate plane (∆t, ā), where∆t is the duration of the impact pulse andā is the mean
acceleration of the reference point of the head over this time, time being measured in seconds and the acceleration
in g. For each point, the degree of severity of the head injury (major or minor) was indicated and the curve that
separated the points corresponding to major injuries from those corresponding to minor injuries was plotted. This
curve (Fig. 1) is known as the Wayne State University Cerebral Concussion Tolerance Curve (WSTC). When plotted
on the logarithmic scale (i.e., in the log∆t – log ā coordinates), the tolerance curve is close to a straight line. The
least squares linear approximation of this curve on the logarithmic scale yields

2.5log ā + log ∆t = 3, (2)

where log denotes the logarithm to the base 10. The relation of Eq. (2) can be rewritten in the form

ā2.5∆t = 1000. (3)

Gadd [4] and Versace [13] proposed quantitative integral measures for head injury severity on the basis of the
left-hand side of Eq. (3). Gadd’s measure (Gadd severity index) is defined by the integral

G =

t2∫
t1

[a(t)]2.5dt, (4)

wheret1 andt2 are the starting and end instants of the impact pulse, respectively, anda is the magnitude of the
acceleration of the brain center of mass.

Versace’s measure is defined by the expression

V =


 1

t2 − t1

t2∫
t1

a(t)dt




2.5

(t2 − t1). (5)

This measure coincides with the left-hand side of relation Eq. (3), since the duration of the impact pulse,∆t, is
defined by the differencet2 − t1, and the expression in the square brackets is the mean acceleration over this time
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Fig. 1. Wayne State University Cerebral Concussion Tolerance Curve.

interval. On the other hand, the functionalV coincides in form with the expression to be maximized in the HIC
functional of Eq. (1). For both measures of Eqs (4) and (5), the value 1000 is regarded as critical; exceeding this
value threatens one with severe head injuries.

Unlike the criteria of Eqs (4) and (5), in the criterion of Eq. (1), the time interval on which the expression in
the curly brackets is calculated is to be chosen on the basis of maximization, rather than being fixed. This is done
to avoid obtaining an underestimated value if the impact pulse involves time intervals on which the acceleration
magnitude is substantially less than its maximum value.

Although the HIC is utilized in a number of countries as a standard crashworthiness criterion of transport
vehicles and some structures (for example, sporting playgrounds [12]) with respect to head injuries and as the basic
performance index for impact protection helmets, the biomechanical adequacy of this measure is still being disputed
and was criticized in a number of papers (see, e.g., [9,10]).

We choose to use HIC as a tolerance criterion to be taken into account when designing systems for which impacts
of the head against various surfaces can occur. These surfaces should be covered with impact isolation materials.
The mechanical properties of these materials and the thickness of the coating should be chosen so as to provide HIC
values lying below the major injury threshold for impacts with typical velocities. (The range of these velocities is
usually defined by appropriate standards.)

One of the basic problems associated with the creation of impact isolation coatings is that of determining the
minimal thickness of the coating that guarantees a prescribed degree of head injury prevention (in terms of the HIC).
It is also of interest to know the specific features of the deceleration of the head by this coating. Furthermore,
the inverse problem, in which the HIC functional is to be minimized provided that the thickness of the coating is
constrained is important. From the mathematics point of view, such problems are stated as optimal control problems
in which HIC is either to be minimized or constrained.

To the authors’ knowledge, a comprehensive analysis of the optimal control problems with the HIC functional has
not yet been performed, although an optimal control has been constructed in some special cases. For example, the
solution is known for the problem of the optimal deceleration of a point mass (particle) moving along a straight line
with a given initial velocity. The deceleration distance is minimized under the condition that the HIC does not exceed
a prescribed admissible value, with the parameter∆ being assumed to be equal to the deceleration pulse duration.
This model allows one to analyze the limiting capabilities of the isolation of the head from impacts for helmets
or coatings of surfaces against which the impacts can occur. The analytical solution of this problem is presented
(without proof) in [11] in connection with the crashworthy design of the car hood to reduce the head injury of a
pedestrian caused by an impact against the hood. In [3], a numerical solution of a similar problem was constructed
in connection with the limiting performance analysis of impact protection helmets.

In [8], mathematical features of the HIC functional are studied for the case where the functiona(t) in Eq. (1) is
defined on a finite time interval, vanishes at the ends of this interval, is continuous and piecewise differentiable, and
the parameter∆ coincides with the length of the interval on which the functiona(t) is defined. The class of functions
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a(t) considered in [8] covers all cases that can be encountered in practice. Therefore, the algorithms proposed in the
cited paper are suitable for the determination of the upper bound for the HIC (i.e., the maximum of the functional of
Eq. (1) over all delta∆) when processing crash-test measurement data. At the same time, for theoretical analyses of
problems involving the HIC, in particular, optimal control problems, it is reasonable to extend the class of functions
a(t) to that of functions integrable (generally speaking, in the improper sense) on a prescribed time interval. In what
follows, we will show that the solution of optimal control problems with the HIC functional can lead to functions
a(t) tending to infinity at some time instants, the number of such instants depending on the parameter∆.

In the present paper, a complete solution is given for the problem of the optimal deceleration of the rectilinear
motion of a particle. The particle is acted upon by the control force that models the interaction with the surface
against which the impact has occurred. The deceleration distance is minimized subject to a constraint on the HIC
functional. In contrast to [3,11], the parameters of the problem – the mass of the particle, the initial velocity (impact
velocity), the maximum allowable value of the HIC, and the parameter∆ occurring in the definition of this criterion –
are arbitrary. Analytical expressions are obtained for the optimal control and the minimal deceleration distance. The
qualitative behavior of the optimal control is investigated as a function of these parameters. The optimal control is
compared with other control laws in terms of the deceleration distance.

2. Statement of the optimal control problem

Consider a particle of massm moving along a straight line under the action of the forceu. Such a motion is
governed by the differential equation

mẍ = u, (6)

subjected to the initial conditions

x(0) = 0, ẋ(0) = v0, (7)

wherex is the coordinate of the particle measured from some initial position in a fixed (inertial) reference frame and
v0 is the initial velocity. Without loss of generality we assumev0 > 0.

The system of Eqs (6) and (7) can be utilized as a model of the motion of the center of mass of a body after an
impact against a surface, if the velocity of the body at the impact instant is directed along the normal to the surface.
In this case,u is the force of interaction of the body with the impact surface, andv 0 is the velocity of the body center
of mass at the instant of the impact. The positive values of the coordinatex measure the deformation of the surface.

Also, this model describes the motion of the center of mass of a body placed in an impact isolation container after
the latter has come to an instantaneous stop as a result of a perfectly inelastic impact against a rigid surface. The
body to be protected from the impact is separated from the container walls by a relatively soft padding that deforms
thereby reducing the impact force. In this case,u is the force exerted on the body by the padding andx measures
the deformation of the padding.

The model of Eqs (6) and (7) can be utilized for the analysis of the limiting capabilities of protection of the head
from impacts by means of impact isolation coatings or helmets, if the severity of the head injury is measured by HIC,
since this criterion takes into account only the motion of the center of mass of the head. Of course, when hitting a
surface, the head interacts not only with the coating of this surface or with the padding of the helmet but also with the
remaining portion of the human body. However, when considering the motion of the head on the time interval the
duration of which is close to that of impact (defined, for example, as the time of the deceleration of the head center
of mass in coming to a complete stop due to the deformed coating or padding), one can neglect this interaction for
many types of impact in view of the relatively high stiffness of the coating or padding, as compared, for example,
with the bending rigidity of the cervical spine.

We will characterize the quality of the impact isolation in terms of the model under consideration by the peak
magnitude of the displacement of the particle,

J1 = max
t∈[0,∞)

|x(t)|, (8)

and the HIC functional,



D.V. Balandin et al. / Optimal impact isolation for injury prevention evaluated by the head injury criterion 359

J2 = max
t1,t2, t2−t1�∆





 1

t2 − t1

t2∫
t1

|u(t)|
m

dt




2.5

(t2 − t1)


 . (9)

Consider the optimal control problem for the system of Eqs (6) and (7).

Problem 1. For the system governed by the differential equation of Eq. (6) subjected to the initial conditions of
Eq. (7), find an optimal controlu = u0(t) in the class of integrable functions that minimizes the peak displacement
J1, provided that the criterionJ2 does not exceed the prescribed positive numberH , i.e.,

J1(u0) = min
u

{J1(u)|J2(u) � H}. (10)

This problem is characterized by 4 parameters –m, v0, ∆, andH . The transition to the dimensionless (primed)
variables

x′ =
H2/3

v
8/3
0

x, t′ =
H2/3

v
5/3
0

t, u′ =
u

m

(v0

H

)2/3

, ∆′ =
H2/3

v
5/3
0

∆,

(11)

J ′
1 =

H2/3

v
8/3
0

J1, J
′
2 =

1
H

J2

reduces this number to one. By performing the change of variables of Eq. (11) in the relations of Eqs (6)–(10) and
omitting the primes, we obtain the relations of the same form but withm = 1, v 0 = 1, andH = 1. The only free
parameter remaining after this change of variables is the dimensionless parameter∆ ′.

When constructing the solution of the problem, we will utilize the dimensionless variables. The primes will be
omitted, apart from the cases where the dimensionless variables are considered along with the dimensional ones.

3. Construction of the solution

To determine the minimum of the criterionJ1, it suffices to solve the problem stated in the previous section on
the time interval[0, T ], whereT is the instant (unknown in advance) at which the velocityẋ(t) vanishes for the first
time. For the control defined asu(t) ≡ 0 for t > T , the particle remains indefinitely at the positionx(T ).

To construct the solution, we will perform a number of transformations. Integrate the equation of (6) subjected to
the initial condition of Eq. (7) to obtain the expression for the velocity

ẋ = 1 − v(t), v(t) = −
t∫

0

u(τ)dτ. (12)

The constraintJ2 � 1, whereJ2 is defined by Eq. (9) withm = 1, is equivalent to the inequality
 1

t2 − t1

t2∫
t1

|u(τ)|dτ




5/2

(t2 − t1) � 1, 0 < t2 − t1 � ∆. (13)

Raise this inequality to a power of 2/5 to represent it in the form

t2∫
t1

|u(τ)|dτ � (t2 − t1)3/5, 0 < t2 − t1 � ∆. (14)

The last inequality implies

−
t2∫

t1

u(τ)dτ � (t2 − t1)3/5, 0 < t2 − t1 � ∆ (15)
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or, with reference to Eq. (12),

v(t2) − v(t1) � (t2 − t1)3/5, 0 < t2 − t1 � ∆. (16)

Consider first the simple special case where∆ = ∞. By settingt1 = 0 andt2 = t in Eq. (16) we obtain

v(t) � t3/5. (17)

The relations of Eqs (17) and (12) lead to the inequality

ẋ(t) � 1 − t3/5. (18)

The integration of this inequality from 0 tot for the initial conditionx(0) = 0 yields

x(t) � t − 5
8
t8/5. (19)

Hence, the lower bound ofx for anyt is defined by

x(t) = t − 5
8
t8/5. (20)

and is attained atv(t) = t3/5, which, in accordance with Eq. (12), impliesu(t) = −(3/5)t−2/5. The variableẋ(t)
vanishes att = 1. At this time instant, the variablex(t) attains its maximumx(1) = 3/8. Therefore, the control

u(t) =

{
−3

5
t−2/5, if t � 1,

0, if t > 1
(21)

is optimal in the case of∆ = ∞, if this control satisfies the inequality of Eq. (16). We will prove this inequality.
For the control of Eq. (21), we have

v(t) =
{

t3/5, if t � 1,
1, if t > 1

(22)

For t2 � 1, the inequality of Eq. (16) becomes

t
3/5
2 − t

3/5
1 − (t2 − t1)3/5 � 0, t2 > t1. (23)

The relation of Eq. (23) can be represented as

t
3/5
2 Ψ(ξ) � 0, Ψ(ξ) = 1 − ξ3/5 − (1 − ξ)3/5, ξ = t1/t2, 0 < ξ < 1. (24)

The functionΨ(ξ) is continuous on the interval[0, 1], vanishes at the end points of this interval, is differentiable on
the interval(0, 1) and convex downward (Ψ ′′(ξ) > 0 for 0 < ξ < 1). Hence,Ψ(ξ) < 0 for 0 < ξ < 1, which proves
the inequality of Eq. (24) and thereby Eq. (23).

Note that the inequality of Eq. (23) is valid for anyt 1 andt2 satisfying the conditiont2 > t1 � 0, rather than only
for t2 < 1.

If t1 < 1 andt2 � 1, the inequality of Eq. (16) forv(t) defined by Eq. (22) can be represented in the form

1 − t
3/5
1 − (t2 − t1)3/5 � 0, t2 > t1. (25)

To prove this inequality, it suffices to add the nonpositive quantity1 − t
3/5
2 to both parts of Eq. (23).

For t1 > 1 andv(t) defined by Eq. (22), the left-hand side of Eq. (16) vanishes, whereas the right-hand side is
positive and, hence, this inequality holds.

Thus, the control of Eq. (21) is optimal in the case of∆ = ∞, with J 1 = 3/8 andJ2 = 1. This control remains
optimal for any∆ � 1. The proof of this fact is quite similar to the proof of the optimality in the case of∆ = ∞.

Consider now the case of∆ < 1. To construct the optimal control we will follow the scheme that was utilized for
the case of∆ = ∞. First we will construct a lower bound for the variablex(t), similar to that of Eq. (19), then find
a control at which this lower bound is attained and verify that the constraint of Eq. (16) holds for this control.

Let k∆ < t � (k + 1)∆, wherek is a nonnegative integer. Sett1 = k∆ andt2 = t in Eq. (16) to obtain
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v(t) � v(k∆) + (t − k∆)3/5, k∆ < t � (k + 1)∆, k = 0, 1, 2, . . . . (26)

For t = (k + 1)∆, we have

v((k + 1)∆) � v(k∆) + ∆3/5, k = 0, 1, 2, . . . . (27)

With reference to the initial conditionv(0) = 0, from Eq. (27) it follows thatv(k∆) � k∆ 3/5. Substitute this upper
bound forv(k∆) into Eq. (26) to obtain

v(t) � k∆3/5 + (t − k∆)3/5, k∆ < t � (k + 1)∆, k = 0, 1, 2, . . . . (28)

The relations of Eqs (12) and (28) imply the lower bound for the velocity

ẋ(t) � 1 − k∆3/5 − (t − k∆)3/5, k∆ < t � (k + 1)∆, k = 0, 1, 2, . . . . (29)

The integration of this inequality from 0 tot with reference to the initial conditionx(0) = 0 yields the lower bound
for the coordinate

x(t) � k∆
(

1 −
(

1
8

+
k

2

)
∆3/5

)
+ (t − k∆)

(
1 − k∆3/5

)
− 5

8
(t − k∆)8/5 ,

(30)
k∆ < t � (k + 1)∆.

The inequalities of Eqs (29) and (30) are analogues of the inequalities of Eqs (18) and (19) for the case under
consideration. From these inequalities it follows that the lower bound of the variablex(t) for anyt is defined by

x(t) = k∆
(

1 −
(

1
8

+
k

2

)
∆3/5

)
+ (t − k∆)

(
1 − k∆3/5

)
− 5

8
(t − k∆)8/5

,

(31)
k∆ < t � (k + 1)∆

and is attained at

v(t) = k∆3/5 + (t − k∆)3/5, k∆ < t � (k + 1)∆, k = 0, 1, 2, . . . , (32)

which corresponds to the control

u(t) = −v̇(t) = −3
5

1
(t − k∆)2/5

, k∆ < t � (k + 1)∆, 0 < ∆ � 1. (33)

The maximum of the expression of Eq. (31) is attained at the time instant

T (∆) =
[
∆−3/5

]
∆ +

(
1 −

[
∆−3/5

]
∆3/5

)5/3

(34)

and is defined by

x(T ) = k∆
(

1 −
(

1
8

+
k

2

)
∆3/5

)
+

3
8

(
1 − k∆3/5

)8/3

, k =
[
∆−3/5

]
. (35)

The square brackets denote the integer part of the expression enclosed.
Hence, the control

u(t) =


−3

5
1

(t − k∆)2/5
, k∆ < t � (k + 1)∆, t � T,

0, t > T
(36)

is optimal, if the inequality of Eq. (16) holds for this control. We will prove this inequality.
Let t2 � T and, hence,t1 < T . The functionv(t) for t � T has the form of Eq. (32). According to the constraint

0 < t2 − t1 � ∆, the instantst1 andt2 can belong to either one interval of continuity of the control of Eq. (36),

k∆ < t1 � (k + 1)∆, k∆ < t2 � (k + 1)∆, (37)

or two adjacent intervals of continuity,

k∆ < t1 � (k + 1)∆, (k + 1)∆ < t2 � (k + 2)∆. (38)
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If t1 andt2 belong to one interval of continuity of the control, then, in accordance with Eq. (32), we have

v(t2) − v(t1) = (t2 − k∆)3/5 − (t1 − k∆)3/5. (39)

The right-hand side of this relation satisfies the inequality

(t2 − k∆)3/5 − (t1 − k∆)3/5 � (t2 − t1)3/5. (40)

This inequality is in fact the inequality of Eq. (23) in whicht 1 andt2 have been replaced by(t1−k∆) and(t2−k∆),
respectively. Such a replacement is justified, sincet1 andt2 in Eq. (23) can be treated as abstract variables that
satisfy the conditionst1 > 0 andt2 > t1. The inequalities of Eqs (39) and (40) imply that of Eq. (16).

If t1 andt2 belong to two adjacent intervals of continuity of the control, then

v(t2) − v(t1) = ∆3/5 + (t2 − (k + 1)∆)3/5 − (t1 − k∆)3/5 (41)

and Eq. (16) is equivalent to the inequality

∆3/5 + (t2 − (k + 1)∆)3/5 − (t1 − k∆)3/5 − (t2 − t1)3/5 � 0,
(42)

k∆ < t1 � (k + 1)∆, (k + 1)∆ < t2 � t1 + ∆.

We denote the left-hand side of Eq. (42) byχ(t2) and will treat it as a function of the argumentt2 on the time interval
(k + 1)∆ < t2 � t1 + ∆. The straightforward substitution shows thatχ(t1 + ∆) = 0. Differentiatingχ(t2) yields

dχ

dt2
=

3
5

(t2 − (k + 1)∆)−2/5 − 3
5

(t2 − t1)
−2/5 . (43)

From the inequalityt1 � (k + 1)∆ it follows that t2 − (k + 1)∆ � t2 − t1. Hence, the minuend on the right-
hand side of Eq. (43) is greater than or equal to the subtrahend and, in addition,dχ(t 2)/dt2 � 0 on the interval
(k + 1)∆ < t2 � t1 + ∆. Then, with reference to the relationχ(t1 + ∆) = 0, we obtainχ(t2) � 0 on this time
interval, which proves the inequality of Eq. (42) and, hence, that of Eq. (16).

Let now at least one of the instantst1 or t2 exceedT of Eq. (34). In accordance with Eqs (12), (34), and (36),
we havev(t) ≡ 1 for t > T . If t1 > T (and, hence,t2 > T ), thenv(t2) − v(t1) = 0 and the inequality of Eq. (16)
apparently holds. Consider the case wheret1 � T but t2 > T . We have proved thatv(t2) − v(t1) � (t2 − t1)3/5

for 0 � t1 � t2 � T . Substitutet2 = T into this inequality to obtain, with reference to the relationv(T ) = 1, that
1− v(t1) � (T − t1)3/5 and, hence,1− v(t1) � (t2 − t1)3/5. Sincev(t) ≡ 1 for t � T for the control of Eq. (36),
we havev(t2) − v(t1) � (t2 − t1)3/5 for t1 � T andt2 > T .

This completes the proof of optimality of the control of Eq. (36) for∆ < 1.
We will represent the final solution of the optimal control problem. The optimal controlu 0(t) has the form

u0(t) =


−3

5
1

(t − k∆)2/5
, k∆ < t � (k + 1)∆, if t � T,

0, if t > T
,

(44)

T =
[
∆−3/5

]
∆ +

(
1 −

[
∆−3/5

]
∆3/5

)5/3

,

if ∆ < 1 or

u0(t) =

{
−3

5
t−2/5, if t � 1,

0, if t > 1,
(45)

if ∆ � 1.
The minimum of the maximum displacement (deceleration distance) of the particle for the optimal control is

defined by

J1(u0) = k∆
(

1 −
(

1
8

+
k

2

)
∆3/5

)
+

3
8

(
1 − k∆3/5

)8/3

, k =
[
∆−3/5

]
, (46)

if ∆ < 1 or

J1(u0) = 3/8, (47)

if ∆ � 1.
The corresponding value of the HIC functional is equal to the maximum value allowed for this quantity,J 2(u0) = 1.
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Fig. 2. Optimal control for∆ = 1.
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Fig. 3. Optimal control for∆ = 0.5.

4. Analysis and discussion of the results

We will list the characteristic qualitative features of the behavior of the optimal control of Eqs (44)–(45) and the
minimum deceleration distance of Eqs (46)–(47), depending on the dimensionless parameter∆.

The optimal controlu0(t) is constant in sign (negative) on the deceleration interval(0, T ], is continuous on the
intervalsk∆ < t < (k + 1)∆ and has discontinuities at the pointst = k∆, k = 0, 1, . . . , [∆−3/5]. (The square
brackets denote the integer part of the corresponding number.) The functionu 0(t) monotonically increases on the
intervals of continuity and tends to−∞ on the right at the points of discontinuity. The points of discontinuity
occur with period∆, beginning fromt = 0. The number of the discontinuity points on the deceleration interval is
[∆−3/5] + 1. This number increases without limit as∆ → 0.

Figures 2–4 show the time history of the optimal control on the interval(0, T ] for ∆ = 1 (Fig. 2), ∆ = 0.5
(Fig. 3), and∆ = 0.25 (Fig. 4).

Consider the relation of Eq. (11) that expresses the dimensionless parameter∆ (denoted by∆ ′ in Eq. (11)) in
terms of the primary dimensional parameters∆, H , andv0. The lower theH and/or the greater thev0, the lower
the∆′. Therefore, a decrease in the maximum allowable value of the HIC and/or increase in the initial velocity can
lead to the appearance of additional points of discontinuity in the optimal control law at which the magnitude of the
control force becomes infinite.

These observations are illustrated by a diagram in Fig. 5. This diagram shows the curves of constant levels of the
minimal deceleration distanceJ1(u0) as a function of the impact velocityv0 and the maximum tolerable value of
the HIC functional,H . The numbers labeling the curves correspond to the values ofJ 1(u0) measured in meters.The
quantityv0 is measured in kilometers per hour andH in standard units adopted in engineering biomechanics. These
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Fig. 4. Optimal control for∆ = 0.25.
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Fig. 5. Curves of constant levels ofJ1(u0) as a function ofv0 andH. Regions with different numbers of discontinuity points of the optimal
control.

units imply thata in Eq. (1) is measured in units ofg (the acceleration due to gravity), i.e., the definition of Eq. (1)
is replaced by

HIC = max
t1,t2, t2−t1�∆





 1

t2 − t1

t2∫
t1

a(t)
g

dt




2.5

(t2 − t1)


 , (48)

and time is measured in seconds. The diagram of Fig. 5 corresponds to∆ = 15 ms.
There are several regions on the diagram corresponding to different number of discontinuity points of the optimal

control. The number of the region indicates the number of the discontinuity points.
In accordance with Eqs (46) and (47), the minimum (dimensionless) deceleration distanceJ 1(u0) monotonically

increases from 0 to 3/8, as the (dimensionless) parameter∆ increases from 0 to 1. As∆ continues to increase
beyond 1, the valueJ1(u0) remains equal to 3/8. The plot ofJ1(u0) versus∆ on the interval0 � ∆ < 1 is shown
in Fig. 6. The asymptotic behavior of this curve for small∆ is determined by the relation

J1(u0) ∼ 1
2
∆2/5, ∆ → 0. (49)

For applications, it is convenient to have an explicit relationship between the minimum value of the performance in-
dex and the input parameters of the problem represented in the primary dimensional variables. To express the relations
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of Eqs (46) and (47) in the dimensional variables, multiply the right-hand sides of the cited relations byv
8/3
0 /H2/3

and change∆ toH 2/3∆/v
5/3
0 in accordance with Eq. (11). This representation shows that the minimum deceleration

distance in the optimal control problem monotonically increases as the initial velocity,v 0, increases and monoton-
ically decreases as the maximum value allowed for the HIC functional,H , increases. Figure 7 showsJ 1(u0) as a
function ofH in the dimensional variables for∆ = 0.015 s andv0 = 40 (curve 1), 50 (curve 2) 60 (curve 3) km/h.

For H2/3∆/v
5/3
0 � 1 (which corresponds to∆ � 1 in the dimensionless variables) andH 2/3∆/v

5/3
0 
 1

(∆ 
 1 in the dimensionless variables), this dependence can be represented by simple analytical expressions.
Proceeding to the dimensional variables in Eqs (47) and (49), we obtain

J1(u0) =
3
8

v
8/3
0

H2/3
, if ∆

H2/3

v
5/3
0

� 1. (50)

J1(u0) ∼ v2
0

2H2/5
∆2/5, if ∆

H2/3

v
5/3
0


 1. (51)

The region of Eq. (50) is important for applications, since it covers a rather wide range of velocities for the values
of ∆ andH adopted by car crash test standards. The region of Eq. (51) is of interest, apparently, only from the
viewpoint of theory. The corresponding asymptotic relation shows the behavior of the optimal value ofJ 1 asv0

increases without limit orH tends to zero.
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The dimensionless deceleration timeT corresponding to the optimal control of Eq. (44) monotonically increases
from 0 to 1 as∆ increases from 0 to 1. For∆ > 1, the deceleration time corresponding to the control of Eq. (45) is
equal to unity. The behavior of the functionT (∆) for small∆ is defined by the asymptotic relation

T ∼ ∆2/5, ∆ → 0. (52)

To proceed to the primary dimensional variables in the expressions forT , one should, in accordance with Eq. (11),
multiply the corresponding expressions byv

5/3
0 /H2/3 and change∆ to H 2/3∆/v

5/3
0 . In the dimensional variables,

T decreases asH increases and/orv0 decreases. We choose to present the expressions forT for H 2/3∆/v
5/3
0 � 1

(which corresponds to∆ � 1 in the dimensionless variables) andH 2/3∆/v
5/3
0 
 1 (∆ 
 1 in the dimensionless

variables),

T =
v
5/3
0

H2/3
, if ∆

H2/3

v
5/3
0

� 1. (53)

T ∼ v0

H2/5
∆2/5, if ∆

H2/3

v
5/3
0


 1. (54)

As was the case for the expressions of Eqs (50) and (51) for the optimal deceleration distance, the expression of
Eq. (53) for the deceleration time is important for applications, since it corresponds to a broad range of the parameters
typical of car crash test conditions, whereas the expression of Eq. (54), which characterizes the increase in the
deceleration time as the initial velocity,v0, increases without limit orH tends to zero, can be of interest only for
theory.

5. Minimization of the HIC for constrained deceleration distance

Along with Problem 1, considered thus far, it is reasonable to consider the problem in which the HIC is the
performance index to be minimized and the deceleration distance is subjected to a constraint.

Problem 2. For the system governed by the differential equation of (6) subjected to the initial conditions of Eq. (7),
find an optimal controlu = u0(t) in the class of integrable functions to minimize the criterionJ2, provided that the
peak displacement,J1, does not exceed a prescribed positive numberD, i.e.,

J2(u0) = min
u

{J2(u)|J1(u) � D}. (55)

In terms of the analysis of the limiting capabilities of the prevention of impact-induced head injuries by means
of impact isolation coatings, Problem 2 corresponds to the maximum reduction of the expected severity of the head
injury in the case where the maximum thickness allowed for the coating is restricted.

Problem 2 is dual to Problem 1 in the sense that knowing the solution of Problem 1 as a function ofH , one can
obtain the solution of Problem 2. (The values ofv0 and∆ are fixed the same for both problems.) For the optimal
controls of Problems 1 and 2 we assign the indicesH andD, respectively, to indicate the dependence of these
controls on the maximum value allowed for the constrained criterion, i.e., instead ofu 0 andu0 we will write uH

0 and
u0

D. Letf(H) denote the minimum deceleration distance in Problem 1 as a function of the maximum value allowed
for the HIC, i.e.,f(H) = J1(uH

0 ). From the solution of Problem 1 it follows that the functionf(H) is defined for
all positiveH , is continuous, and monotonically decreases from+∞ to 0 asH increases from0 to +∞. Hence, this
function has the inversef−1(D), which is defined on the half-line0 < D < ∞, is continuous, and monotonically
decreases from+∞ to 0. In this case, as shown, for example, in [1] or [2], the solutions of Problems 1 and 2 are
related by

u0
D(t) = u

f−1(D)
0 , J2(u0

D) = f−1(D). (56)
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6. Alternative control laws

In this section, we consider two “reasonable” deceleration laws – the constant force deceleration law and the
power law of braking – and compare the values of the criterionJ 1 of Eq. (8) provided by these control laws with the
absolute minimum provided by the optimal control.

6.1. Constant force deceleration

This deceleration law is defined by

u =
{−w, if 0 � t � t∗ = w−1

0, if t > t∗ , (57)

wherew is the positive constant to be determined so as to minimize the functionalJ 1 under the constraintJ2 � 1.
One can say that this minimization gives the solution of Problem 1 in the one-parameter (with the parameterw) class
of functions of Eq. (57).

When subjected to the control of Eq. (57), the object (a particle) uniformly decelerates from the initial velocity
v0 = 1 to a complete stop at the time instantt∗ = w−1 and then remains in the positionx = x(t∗) = 1/(2w). Thus,

J1 = x(t∗) = 1/(2w). (58)

Substitute Eq. (57) into the expression of Eq. (9) for the functionalJ 2 to obtain

J2 =
{

w5/2∆, if ∆ � w−1

w3/2, if ∆ > w−1 . (59)

The minimization of the functionJ1 of Eq. (58) under the constraintJ2 � 1, whereJ2 is defined by the expressions
of Eq. (59), yields

w =
{

∆−2/5, if ∆ � 1
1, if ∆ > 1

(60)

and, accordingly,

J1 =
{

∆2/5/2, if ∆ � 1
1/2, if ∆ > 1

. (61)

6.2. Power-law deceleration force

This law has the form

u =


−A

tβ
, if 0 � t � t∗ =

(
1 − β

A

) 1
1−β

0, if t > t∗
, (62)

whereA andβ are parameters,A > 0 andβ < 1 (for β � 1 the function of Eq. (62) has a non-integrable singularity
at the pointt = 0). When subjected to the control of Eq. (62), the object decelerates from the initial velocityv 0 = 1
to a complete stop at the time instantt∗ in the position

J1 = x(t∗) =
(1 − β)

2−β
1−β

A
1

1−β (2 − β)
. (63)

The parametersA andβ are to be found so as to minimize the quantity ofJ 1 of Eq. (63) under the constraintJ2 � 1.
Substituting the control of Eq. (62) into the right-hand side of Eq. (9) and calculating the maximum of the

expression in the curly brackets with respect tot1 andt2 (0 � t2 − t1 � ∆), we obtain
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J2 =




(
A

1 − β

)2.5

∆1−2.5β , if ∆ �
(

1−β
A

) 1
1−β

(
A

1 − β

) 1.5
1−β

, if ∆ >
(

1−β
A

) 1
1−β

, (64)

for

β � 2/5. (65)

It can be shown thatJ2 = ∞ for β > 2/5.
We wish to find the minimum of the functionJ1 of Eq. (63) with respect toA andβ under the constraintsA � 0,

β � 2/5, andJ2 � 1, whereJ2 is defined by Eq. (64). First, we will calculate the minimum with respect toA for
fixedβ. SinceJ1 decreases, whereasJ2 increases inA, the desired minimum is attained atJ2 = 1. In accordance
with Eq. (64), we have

A =
{

(1 − β)∆
2.5β−1

2.5 , if ∆ < 1
A = 1 − β, if ∆ � 1

, (66)

J1 =




1 − β

2 − β
∆

1−2.5β
2.5(1−β) , if ∆ < 1

1 − β

2 − β
, if ∆ � 1

. (67)

Minimize then the function of Eq. (67) under the constraint of Eq. (65) to obtain the final solution

J1 =




1
2
∆2/5, if ∆ < e−5/6

−3 ln∆
5

∆
5+8 ln ∆
5 ln ∆ , if e−5/6 � ∆ � e−5/8

3
8
, if ∆ > e−5/8

, (68)

β =




0, if ∆ < e−5/6

5 + 6 ln∆
5 + 3 ln∆

, if e−5/6 � ∆ � e−5/8

2
5
, if ∆ > e−5/8

, (69)

A =




∆−2/5, if ∆ < e−5/6

− 3 ln∆
5 + 3 ln ∆

∆
15+24 ln ∆
5(5+3 ln ∆) , if e−5/6 � ∆ � e−5/8

3
5
, if ∆ > e−5/8

. (70)

From Eqs (62), (69), and (70) it follows that for∆ > e−5/8, the control of Eq. (62) with the optimal parameters
A andβ coincides in form with the control of Eq. (45), which is optimal for∆ � 1. For∆ < e −5/6, the control of
Eq. (62) with the parameters of Eqs (69) and (70) coincides with the constant force control of Eq. (60).

From Eqs (49), (61), and (68) it follows that for small∆, the optimal control of Eq. (44), the constant force control
of Eq. (60), and the control of Eq. (62) with the parameters of Eqs (69) and (70) are asymptotically equivalent, since
these control laws provide the same asymptotic behavior for the performance indexJ 1 as∆ → 0.

Calculate the measure of non-optimality of the control of Eqs (57) and (60) and that of Eqs (62), (69), and (70)
with respect to the functionalJ1, defined by

η(57) =
J

(57)
1 − J1(u0)

J1(u0)
, η(62) =

J
(62)
1 − J1(u0)

J1(u0)
, (71)
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Fig. 8. Non-optimality measure for the constant-force and power-law controls.

whereJ
(57)
1 denotes the function of Eq. (61), corresponding to the control of Eq. (57) with w of Eq. (60),J

(62)
1

denotes the function of Eq. (68), corresponding to the control of Eq. (62) with the parameters of Eqs (69) and (70),
andJ1(u0) denotes the function of Eqs (46) and (47) that determines the minimum deceleration distance of the
object for the optimal control of Eqs (44) and (45).

The definitions of these functions imply that

η(57) = 1/3, η(62) = 0, if ∆ � 1. (72)

The graphs of the functionsη(57)(∆) (solid curve) andη(62)(∆) (dashed line) for∆ < 1 are plotted in Fig. 8.

7. Conclusion

The HIC is an empirical integral functional that evaluates the expected severity of the impact-induced head injury
of a human being as a function of the magnitude of the acceleration of the brain center of mass and the duration of
the impact pulse. In some countries (in particular, in the USA), the HIC is utilized as a standard crashworthiness
criterion for automobiles and as the basic performance index of coatings of sporting and children playgrounds
and impact isolation helmets. Automobile crash tests, as well as testing of playgrounds and helmets in which the
HIC functional is calculated, involve human dummies with accelerometers integrated into the head. An important
engineering problem associated with the improvement of crashworthiness indices of vehicles and sporting equipment
with respect to the HIC is that of the design of impact isolation coatings or paddings (in helmets) which would
provide the required degree of protection from head injuries and be as thin as possible. The limiting performance
analysis of such coatings leads to an optimal control problem in which the functional to be minimized is the distance
of deceleration of the head in contacting the coating, while the HIC functional is constrained. The solution of this
problem allows one to determine the theoretical minimum of the coating thickness, as well as the optimal law of the
head deceleration. In the present paper, an analytical solution of the optimal control problem has been constructed
for a single-degree-of-freedom system that models the normal impact of the head against a surface, provided that the
head is moving translationally. It is shown that the optimal deceleration law involves intervals on which the head
acceleration magnitude is very large and tends to infinity at isolated points. The number of such points increases as
the impact velocity increases and/or the maximum value allowed for HIC decreases.
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