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Abstract. We propose a two-step strategy for the design of passive controllers for the simultaneous confinement and suppression
of vibrations (SCSV) in mechanical structures. Once the sensitive and insensitive elements of these structures are identified, the
first design step synthesizes an active control law, which is referred to as the reference control law (RCL), for the SCSV. We
show that the problem of SCSV can be formulated as an LQR-optimal control problem through which the maximum amplitudes,
associated with the control input and the displacements of the sensitive and insensitive parts, can be regulated. In the second
design step, a transformation technique that yields an equivalent passive controller is used. Such a technique uses the square root
of sum of squares method to approximate an equivalent passive controller while maximizing the effects of springs and dampers
characterizing passive elements that are added to the original structure. The viability of the proposed control design is illustrated
using a three-DOF mechanical system subject to an excitation. It is assumed that all of the masses are sensitive to the excitation,
and thus the vibratory energy must be confined in the added passive elements (insensitive parts). We show that the vibration
amplitudes associated with the sensitive masses are attenuated at fast rate at the expense of slowing down the convergence of the
passive elements to their steady states. It is also demonstrated that a combination of the RCL and the equivalent passive control
strategy leads to similar structural performance.
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1. Introduction

In engineering applications, vibrations are likely to excite unwanted resonances in flexible structures. In particular,
if these structures have low material damping, the vibratory motion can persist for a long time before it dies out,
and thus problems in structural performance may arise. Therefore, it may be of interest to reduce the vibrations in
the more sensitive parts of the structure while transferring the vibrational energy to the less sensitive parts. These
structures include space satellites equipped with sensitive communications antennas and flexible robot manipulators
with sensitive payload masses. The common practice is to place force and torque actuators with appropriate
time-varying magnitudes at the span of the structure. These actuators must provide sufficient damping for energy
dissipation. The rate of vibration reduction in all parts of the structure is approximately the same; that is, it would
take the same time to bring to rest both of the sensitive parts and those that are irrelevant to certain performance
specifications. In some cases, it is desirable to suppress the vibrations at a faster rate at those sensitive regions or
stations.

Recently, considerable effort has been dedicated to devise effective control designs for flexible structures. There
are some researchers, such as Snyder et al. [15] and Bendiksen [1], who addressed the notion of vibration localization
(Anderson localization) in flexible structures. Snyder et al. [15] used a one-dimensional system of masses with
nearest-neighbor interactions and periodic boundary conditions to study mode decay and ergodicity in nonlinear
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disordered systems. Their results indicate that the rates of mode decay at early times increase when impurities are
added. However, for long times this rate decreases with increasing impurity mass and impurity concentrations.

Bendiksen [1] studied the localization phenomenon in engineering structures that include periodic or nearly
periodic multi-span beams and trusses, large space structures, and almost periodic structures with circular symmetry,
such as bladed disks in turbomachines. He discussed both analytical and numerical methods for analyzing and
predicting localization in finite- and infinite-dimensional systems. He showed that localization results from damage
in bladed disks of turbomachines. Castanier et al. [3] employed the Lyapunov exponents of the system wave-transfer
matrix to analyze localization in multi-coupled, in particular mono-coupled,disordered periodic linear systems. They
concluded that the Lyapunov exponents predict the decay rate of two wave types in the absence of energy leakage
from one wave type to another. Castanier et al. [2] and Langley [11] discussed localization by damping in periodic
and nearly periodic structures. They investigated the effect of damping on the response and noted an increased
vibration localization (or concentration near the excitation point) arising from the attenuation factor. Shahruz [21]
examined the occurrence of vibration localization in mistuned periodic structures and proposed a passive method to
eliminate such localization.

Yigit and Choura [23] and Choura and Yigit [6,7] developed a strategy for active control of vibrations by
confinement. Their strategy consists of assigning the eigenstructure (both eigenvalues and eigenvectors) of flexible
structures for the purpose of simultaneous confinement and suppression of vibrations where the modal matrix plays
a key role in the energy redistribution. Such strategy guarantees both vibration confinement and structural stability.
Ouled Chtiba et al. [13] discussed hybrid control of seismically excited structures by vibration confinement. Their
control strategy consists of adding bracing elements as the passive and insensitive elements of the structure. Then
active controllers are applied to the structure to transfer the vibrational energy from the floors to the bracing elements.

It has been reported that active controllers are not reliable for the mitigation of vibrations in most mechanical and
civil engineering structures, because electrically-operated controllers are subject to current failure. Alternatively,
several researchers proposed strategies for vibration suppression by adding passive elements, such as masses, springs
and dampers, to the structure [10,22]. Choura et al. [8] developed a strategy for passive vibration confinement of
a two-degree-of-freedom oscillator. Ribakov et al. [8], Reinhorn et al. [16,17], and Gluck et al. [10] synthesized
optimal control laws using LQR. These laws are adopted for the design of linear passive viscous devices according
to their deformation and velocity. Gluck et al. [10] demonstrated that the response of a structure dominated by
a single mode of vibration and equipped with optimally designed supplemental viscous dampers is similar to that
of an actively controlled structure. They claimed that passivity is an important property of dynamic systems, and
hence a passive system can be robustly stabilized by any strictly passive controller, despite unmodeled dynamics and
parametric uncertainties.

In this study, we show that the problem of vibration confinement can be formulated as an LQR-optimal control
problem. This strategy is an alternative to that of Choura [5] for vibration confinement in prespecified regions of
the structure along with regulation of its states and the control input. Choi et al. [4] showed that the LQR design
regulator is more robust than eigenstructure assignment. We adopt this strategy to design linear passive controllers.
The emphasis is on designing a control strategy that adds passive devices (linear springs and dampers) for confining
and suppressing simultaneously the vibrational energy in flexible structures. To this end, we first design an optimal
controller using a set of actuators to satisfy desired confinement and suppression specifications. Then, we construct
an equivalent passive controller, which produces a similar performance.

2. Problem formulation and objective

Consider then-dimensional discretized model of flexible structures

Mẍ + Cẋ + Kx = Bsu (t) + Esw (t) (1)

wherex, ẋ andẍ are, respectively, then × 1 displacement, velocity, and acceleration vectors;M is a symmetric
positive definite mass matrix;C is the internal damping matrix;K is a symmetric positive stiffness matrix;u (t) is
ann× 1 vector of actuator-supplied inputs;Bs is then×m matrix locating the actuators; andEs is then× 1 vector
associated with the disturbance inputw (t). Letn sensors generate the output given byDx, whereD is a nonsingular
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square matrix of appropriate dimension. Without loss of generality, letD be the identity matrix of appropriate
dimension. The objectives of this paper are twofold: (1) synthesize an active control lawu (t) for confining and
suppressing simultaneously the vibrational energy in flexible structures and regulating both of the states and inputs,
and (2) find a set of passive elements that replaces the active controller and produces a similar structural performance.

3. Strategy of vibration confinement and suppression

At this stage, we consider the design of ann-dimensional optimal feedback controlu (t) for the vibration
confinement and suppression in the flexible structure described in Eq. (1). More control emphasis will be devoted
to the sensitive elements in the sense that their convergence to the desired steady state is attained a fast rate.
Consequently, the proposed control strategy not only confines and suppresses the vibrations but also regulates the
input and state signals in contrast with control by confinement of vibration strategies. The proposed strategy converts
the original vibratory modes into a set of modes that allows the vibrational energy to be confined in prescribed regions
of the structural domain. We show that this strategy can be established by formulating the problem of vibration
confinement as an LQR problem.

In state-space form, Eq. (1) can be rewritten as

Ẋ = AX + Bu (t) + Ew (t) (2)

where

X =
[
x
ẋ

]
, Ẋ =

[
ẋ
ẍ

]
, A =

[
0 I

−M−1K −M−1C

]
, B =

[
0
M−1Bs

]
andE =

[
0
M−1Es

]
It is commonly known that pole-assignment techniques do not consider external disturbances. Thus, in the absence

of disturbances, Eq. (2) becomes

Ẋ = AX + Bu(t) (3)

The design of an observer-based LQR controller involves the determination of optimal control inputs that minimize
a quadratic performance function, which reflects the penalty on the states and control energy. The problem of optimal
control is given by

J =
1
2

∫ ∞

0

(
XT SX + uT Ru

)
dt (4a)

subject to

Ẋ = AX + Bu(t) (4b)

whereS � 0 andR > 0 are, respectively, weighting matrices whose major role is the confinement of the vibrational
energy in selected regions of the spatial domain. In particular, the choice of their diagonal elements determines the
way in which the vibrational energy is reallocated in the system domain. The force vector is defined by

u(t) = −[G H ]X = −LX = −(Gx + Hẋ) (5)

where:

L = R−1BP (6)

is the gain matrix obtained from the minimization of the performance index Eq. (4a) andP is the solution of the
matrix Riccati equation

PA + AT P − PBR−1BT P + S = 0 (7)

Now, the objective is to exploit the optimal solution for the problem of vibration confinement and suppression.
To this end, we consider the following linear transformation:

X = Uη =
[
Q 0
0 Q

]
η (8)
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whereQ is the confinement matrix defined by Choura [5] and Choura et al. [7]. To guarantee lower energy levels
in the sensitive parts, the elements of the rows inQ associated with the sensitive parts should be lower than those
associated with the insensitive elements. Substituting Eq. (8) into Eq. (3) yields

η̇ = Aηη + Bηu (t) (9)

whereAη = U−1AU andBη = U−1B. The optimal control problem can be restated as

Jη =
1
2

∫ ∞

0

(
ηT Sηη + uT Ru

)
dt (10a)

subject to

η̇ = Aηη + Bηu (t) (10b)

whereSη is the weighting matrix associated with the new variableη. The following theorem states the condition
under which the performance indicesJη andJ are equivalent:

Theorem 1. Given the performance indexJ associated with the physical system described by Eq. (4) and the
performance index associated with the modal dynamics described by Eq. (10)J η andJ are equivalent if and only if

S =
(
U−1

)T
SηU−1.

Proof: Consider a flexible structure whose dynamics are described by Eq. (1). Using the linear transformation

x = Qψ (11)

we rewrite Eq. (1) as

ψ̈ + Q−1M−1CQψ̇ + Q−1M−1KQψ = Q−1M−1Bsu (t) + Q−1M−1Esw (t) (12)

Let the state space vector be defined as follows:

ηT =
[
ψT ψ̇T

]
(13)

Without the external excitation, substituting Eq. (13) into Eq. (12) yields Eq. (9).
We define the Hamiltonian matrices associated, respectively, with the physical and transformed systems as

H =
[

A −BR−1BT

−S −AT

]
Hη =

[
Aη −BηR

−1BT
η

−Sη −AT
η

]
(14)

Let Λ be the 4n-diagonal matrix whose elements are the eigenvalues of matrixH η andY be the4n × 4n matrix
whose columns are the eigenvectors of matrixHη, then

HηY = Y Λ (15)

We decomposeY so thatY T =
[
Y T

1 Y T
2

]
and rewrite Eq. (15) as[

Aη −BηR
−1BT

η

−Sη −AT
η

] [
Y1

Y2

]
=
[
Y1

Y2

]
Λ (16)

{
U−1AUY1 − U−1BR−1BT

(
U−1

)T
Y2 = Y1Λ

−SηY1 − UT AT
(
U−1

)T
Y2 = Y2Λ

(17)

{
AUY1 − BR−1BT

(
U−1

)T
Y2 = UY1Λ

− (U−1
)T

SηU−1UY1 − AT
(
U−1

)T
Y2 =

(
U−1

)T
Y2Λ

(18)

{
AZ1 − BR−1BT Z2 = Z1Λ
− (U−1

)T
SηU

−1Z1 − AT Z2 = Z2Λ
(19)

whereZ1 = UY1 andZ2 =
(
U−1

)T
Y2. Equation (19) can be rewritten in the following matrix form:
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[
A −BR−1BT

− (U−1
)T

SηU−1 −AT

] [
Z1

Z2

]
=
[
Z1

Z2

]
Λ (20)

It follows from Eq. (20) and the Hamiltonian associated with the physical system that

S =
(
U−1

)T
SηU−1 (21)

For instance, if the weighting matrixSη is chosen to be the identity matrix, then the weighting matrixS becomes

S =
(
U−1

)T
U−1 =

[(
Q−1

)T
Q−1 0

0
(
Q−1

)T
Q−1

]

Although it is not analytically proven, we found that the elements of the rows and columns ofS associated with the
sensitive parts of the structure are larger than those associated with the remaining parts. This is in agreement with the
classical design of optimal controllers by LQR in which the magnitudes associated with the displacements, velocities,
and control inputs can be regulated by proper selection of their respective diagonal elements inS. Therefore, Eq. (21)
yields

Sη = UT SU (22)

The choice of the weighting matricesS andR is a trade-off between control performance (S large) and low input
energy (R large) [9,19]. They claim that increasing bothS andR by the same factor leaves the optimal solution
invariant. Their initial guess is to choose bothS andR to be diagonal; that is,

S = diag
(
S1 S2 · · · S2n

)
(23)

R = diag
(
R1 R2 · · · Rn

)
(24)

where theSi andRi are positive entries defined by√
Si =

1
|xi|max (25)

and √
Ri =

1
|ui|max i = 1, 2, . . . , 2n (26)

The quantities|xi|max and|ui|max denote the maximum absolute acceptable deviation values of thei th components
of the state and control vectors. Both quantities are considered to be the bounds on the states and control inputs. To
guarantee the confinement of vibrations, the quantities|x i|max (i = 1, 2, . . . , 2n) associated with the sensitive parts
must be small resulting in large values ofSi.

The aforementioned strategy for selectingR and S serves as a design tool for the active control of flexible
structures. In such a design, which is considered to be the reference design, performance specifications linked to
stability, state and input bounds, and confinement are assumed to be satisfied. In case only passive elements are
allowed, we seek an equivalent passive design that uses linear springs and dampers, which leads to a performance
similar to that of the active controller. This is will be the subject of the next section.

4. Design of equivalent passive controllers

Passive devices produce forces that are proportional to displacement (linear springs), velocity (linear dampers),
and/or acceleration (masses). The passive devices employed in this study are limited to linear springs and dampers.
Motivated by the work of Gluck et al. [10], we propose the use of the square root of sum of squares (SRSS) method
for the design of a passive controller equivalent to the active controller developed in the preceding section. To this
end, let the control force vector Eq. (5) be written explicitly as

u = −Gx − Hẋ
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or 


u1

u2

...
un




= −




g11 g12 . . . g1n

g21 g22 . . . g2n

...
...

...
...

gn1 gn2 . . . gnn






x1

x2

...
xn




−




h11 h12 . . . h1n

h21 h22 . . . h2n

...
...

...
...

hn1 hn2 . . . hnn






ẋ1

ẋ2

...
ẋn




(27)

According to the feedback structure shown in Eq. (27), one can devise a set of interconnected springs and dampers
that replaces the active controllers characterized by the feedback gains. The replacement becomes possible only if
the feedback matrices are symmetric and tri-diagonal [10]. Therefore, the use of passive elements leads to a new
force vector given by

u∗(t) = −Kpx(t) − Cpẋ(t) (28)

or 


u∗
1

u∗
2

...
u∗

n




= −




k11 k12 · · · k1n

k12 k22 · · · k2n

...
...

. . .
...

k1n
k2n

· · · k
nn






x1

x2

...
xn




−




c11 c12 · · · c1n

c12 c22 · · · c2n

...
...

. . .
...

c1n
c2n

· · · c
nn






ẋ1

ẋ2

...
ẋn




(29)

The spring and damping constantskij andcij (i, j = 1, 2, . . . , 2n) in Eq. (29) can be approximated using the
elements of the matricesG andH given in Eq. (27). Next, we outline a scheme for determining a passive control
strategy that is equivalent to a given active control structure. Consider the following transformation:

x (t) = Td (t) and v (t) = T T u (t) (30)

whereT is a transformation matrix. Using the above transformation, we rewrite Eq. (30) as

v(t) = −Gdd(t) − Hdḋ(t) (31)

where

Gd = T TGT and Hd = T THT (32)

Using the same transformation in Eq. (28) yields

v∗ (t) = −Kdd (t) − Cdḋ (t) (33)

where

Kd = T TKpT = diag(ki) and Cd = T TCpT = diag(ci) (34)

andki andci are supplemental stiffness and damping coefficients associated with thei th additional passive device.
To determine the individual components of the matricesK d andCd in Eq. (34), we consider the least squares

approach. It is assumed that the stiffness and damping matricesKd andCd can be determined independently, and
thus the least squares method can be applied separately to approximate each matrix. Using Eqs (32) and (34) and
applying the least squares approximation to the difference between Eqs (31) and (33) yields

d

dḋk



∫ t

0

∑
j

[
hkj ḋj (τ) − ckḋk (τ)

]2
dτ


 = 0 (35)

d

ddk



∫ t

0

∑
j

[gkjdj (τ) − kkdk (τ)]2 dτ


 = 0 (36)

wheret is time for the event considered. The components of the matricesK d andCd can be derived from Eqs (35)
and (36). They are given by
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ck =
∫ t

0

∑
j

hkj ḋj (τ) dτ/

∫ t

0

ḋk (τ) dτ (37)

kk =
∫ t

0

∑
j

gkjdj (τ) dτ/

∫ t

0

dk (τ) dτ (38)

Assume that at timet, the displacement and velocity can be obtained from a modal spectrum approach using the
SRSS superposition

dji =

[∑
i

(ΦjiPiSdi)
2

]1/2

(39)

ḋji =

[∑
i

(ΦjiPiSvi)
2

]1/2

(40)

wheredji and ḋji are the displacement and velocity associated with modei at degree of freedomj, Φ ij is the
differential mass normalized shapes,Pi is the participation factor, andSdi andSvi are, respectively, the spectral
displacement and velocity of modei. Therefore, approximations of the stiffness and damping constants can be
determined from

kk =

∑
j

gkj

[∑
i

(ΦjiPiSdi)
2

]1/2

[∑
i

(ΦkiPiSdi)
2

]1/2
(41)

ck =

∑
j

hkj

[∑
i

(ΦjiPiSvi)
2

]1/2

[∑
i

(ΦkiPiSvi)
2

]1/2
(42)

In the above approximations, referred to as Full-Mode Approach (FMA), the stiffness and damping are assumed
to be independent.

Using the above approximation (FMA), Gluck et al. [10] showed that a second approximation of the damping and
stiffness coefficients of supplemental devices in a structure with one dominant mode can be determined from

ck =

(∑
j

hkjΦjm

)

Φkm
(43)

kk =

(∑
j

gkjΦjm

)

Φkm
(44)

Such an approximation is referred to as single-mode approach (SMA).
Furthermore, a third approximation, referred to as single-mode-single-degree approach (SMSDA), can be derived

from the SMA by considering a single-gain factor; that is, the one corresponding to degree-of-freedomk. Thus, the
coefficients of the stiffness and damping can be approximated by

kk = gkk (45)
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ck = hkk (46)

This simplified formulation can be obtained directly from Eq. (31) by truncating all of the off-diagonal terms in
the matricesGd andHd.

The proposed approaches (FMA, SMA and SMSDA) can be used to determine an approximate set of passive
elements which if added to the uncontrolled structure yields simultaneous confinement and suppression of vibrations
in addition to the regulation of the state and input bounds. It should be pointed out that FMA yields less error
between the structural performances resulting from the use of active and passive control strategies. However, if the
structure dimension is large, FMA may require an extensive computation time. In this case, one may use either SMA
or SMSDA to reduce the computation time at the expense of increasing the performance error. This issue will be
addressed in more detail in the next illustrative example.

5. Illustrative example

To show the viability of the proposed strategy, we consider the 3DOF oscillator shown Fig. 1. All masses of this
oscillator are assumed to be sensitive to vibrations resulting from a base excitation characterized by an acceleration
ẅ (t). Since the original oscillator is composed of sensitive parts only, we propose to add inter-mass passive elements
that are characterized by inertia, damping, and stiffness. The following configurations are proposed:

1. Configuration 1: one passive element between the first mass and the wall (Fig. 1a).
2. Configuration 2: one passive element between the first mass and the wall and one between the first and second

masses (Fig. 1b).
3. Configuration 3: one passive element between the first mass and the wall, one between the first and second

masses, and a third one between the second and third masses (Fig. 1c).

The added elements are considered to be the insensitive parts of the system at which the vibration energy is to be
confined. The masses, stiffnesses, and damping coefficients of the elements of the oscillator are:m i = 1000 kg,
ki = 980 kN/m andci = 1.407 kN sec/m (i = 1, 2, 3). The mass, stiffness, and damping for all of the passive
elements are:mp = 100 kg, k′

p = k′′
p = 200 kN/m andc′p = c′′p = 0.4 kN sec/m.

Here, we study the performance of the mechanical system subject to an external excitation at the base caused by
the 1940 El Centro earthquake scaled to a PGA of 0.112 g. The time response of the uncontrolled system (without
passive elements) is shown in Figs 2(a–c) and the base acceleration is displayed in Fig. 2(d). It is clear that the
excitation produces large deformations of the oscillator masses. This justifies the need for controllers to reduce
vibrations of the sensitive masses.

We first design an active control for each of the aforementionedconfigurations to confine and suppress the vibratory
motion. Every active control strategy uses an appropriate number of force actuators to meet the requirements of
confinement and amplitude bounds. Then, we apply the FMA, SMA and SMSDA approaches to determine sets of
passive devices (springs and dampers) that replace the active controllers.

The performance of the mechanical system (configuration 1-a) in response to four active forces applied to all
masses and the passive element is displayed in Figs 3(a–d) and 4(a–d). It is clear that the vibrations are confined
in the added passive element, thereby allowing significant reduction of the vibration amplitudes of the sensitive
masses. Tables 1 and 2 summarize the different control parameters and performance indices associated with both
of the controlled and uncontrolled responses. In addition, Table 2 demonstrates the performance of the structure
for two different forms of the weighting matrixQ associated with configuration 1. This clearly shows that such
weighting has noticeable effect on the vibrational amplitudes and the size of the passive elements. Figure 5 displays
the proposed locations of an equivalent set of supplemental passive elements for the purpose of vibration confinement
and suppression. Maintaining the active control design the same for all, the use of the FMA, SMA and SMSDA
approaches lead to the simulated responses shown in Figs 6(a–d), 7(a–d) and 8(a–d). This set of figures indicates
that the FMA approach yields a more accurate replacement of the forces with the added passive elements (compare
Figs 3 and 6). The other approaches, although there are performance errors as compared with the active control, lead
to simultaneous confinement and suppression of vibrations. Table 3 gives the performances resulting from the use of
the FMA, SMA and SMSDA approaches as compared with that of the actively controlled system. The supplemental
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Fig. 1. (a) Three DOF oscillator with one passive element (configuration 1); (b) Three DOF oscillator with two passive elements (configuration
2); (c) Three DOF oscillator with three passive elements (configuration 3).

stiffness and damping matricesKd andCd associated with the three approaches are displayed in Table 4. Note that
the use of FMA leads to lower values of stiffness and damping coefficients. This constitutes an advantage in the sense
that adding passive elements with low stiffness and damping coefficients is more appealing as far as implementation
is concerned.

To show the effectiveness of reducing the demand on the supplemental stiffness and damping matricesK d andCd,
we consider the use of the FMA, SMA and SMSDA approaches for oscillator configurations 2 and 3 (see Figs 1-b and
1-c). Table 5 summarizes the resulting stiffness and damping matricesK d andCd. In addition, Table 6 displays the
performances resulting from the use of the FMA, SMA and SMSDA approaches, associated with both configurations
as compared with that of the actively control systems.
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xr3 = x3 − x2; (d) Base acceleration.

0 10 20 30 40 50
-4

-2

0

2

4
x 10

-4 (a)

0 10 20 30 40 50
-4

-2

0

2

4
x 10

-4 (b)

0 10 20 30 40 50
-4

-2

0

2

4
x 10

-4 (c)

0 10 20 30 40 50
-4

-2

0

2

4
x 10

-4 (d)

Time (sec) 

Time (sec) Ti me (sec) 

2r
x (m) 

bx (m) 
1r

x (m)

3r
x (m) 

Time (sec) 

Fig. 3. Relative displacements associated with the LQR-controlled response. (a) Passive elementxr1 = xp; (b) First massxr2 = x1; (c) Second
massxr3 = x2 − x1; (d) Third massxr4 = x3 − x2.

We note that Choura [5] showed that control efforts, which confine and suppress the vibratory motion and use
magnitudes equal to those applied in classical control strategies such as the pole allocation method, yield improved
structural performance. Of course, lowering the magnitudes of these control efforts is feasible with possible
performance degradation. This degradation can be small or high depending on how much the magnitudes are
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Table 1
Weighting and confinement matrices

Q R

Configuration 1-a


1 1 1 1

0.01 0.01 0.01 −0.01
0.01 0.01 −0.01 0.01
0.01 −0.01 0.01 −0.01


 diag(1 10−8 10−8 10−8)

Configuration 1-b


1 1 1 1

0.05 0.05 0.05 −0.05
0.05 0.05 −0.05 0.05
0.05 −0.05 0.05 −0.05


 diag(1 10−8 10−8 10−8)

Configuration 2




1 1 1 1 1
0.01 0.01 0.01 0.01 −0.01
1 1 1 −1 1

0.01 0.01 −0.01 0.01 −0.01
0.01 −0.01 0.01 −0.01 0.01


 diag(1 10−8 1 10−8 10−8)

Configuration 3




1 1 1 1 1 1
0.01 0.01 0.01 0.01 0.01 −0.01
1 1 1 1 −1 1

0.01 0.01 0.01 −0.01 0.01 −0.01
1 1 −1 1 −1 1

0.01 −0.01 0.01 −0.01 0.01 −0.01


 diag(1 10−8 1 10−8 1 10−8)
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Fig. 4. Force simulations of active LQR-controlled structure by confinement. (a) Passive elementur1 = up; (b) First massur2 = u1; (c)
Second massur3 = u2 − u1; (d) Third massur4 = u3 − u2.

lowered. With regard to the passive approach, the reduction of the mass/stiffness of the added elements is of great
importance. It should be noted that the mass/stiffness of these elements can be determined once the active controller
is specified via knowledge of the matricesQ andR. For the illustrative example at hand, it was verified that reducing
the mass/stiffness can be attained by lowering the magnitudes ofQ andR.
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Table 2
Different parameters and performance indices of the controlled and uncontrolled systems

Mass 1 Mass 2 Mass 3 Passive
element

No control Max relative displacement (mm) 13 10 5.8 –
Max acceleration (cm/s2) 305 465 570 –

Active control Max relative displacement (mm) 0.18 0.08 0.07 0.39
(Configuration 1-a) Max acceleration (cm/s2) 108 108 108 158

Max applied force (kN) 3.14 2.22 1.01 4.37 10−6

Active control Max relative displacement (mm) 0.63 0.24 0.09 0.57
(Configuration 1-b) Max acceleration (cm/s2) 108 107 107 154

Max applied force (kN) 2.73 2.23 1.03 5.9 10−6
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Fig. 5. Oscillator with the supplemental springs and dampers.
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Fig. 6. Relative displacement of passive controlled structure by confinement with the FMA approach. (a) Passive elementxr1 = xp; (b) First
massxr2 = x1; (c) Second massxr3 = x2 − x1; (d) Third massxr4 = x3 − x2.

6. Conclusion

A design strategy for the simultaneous confinement and suppression of vibrations in flexible structures by using
passive devices is presented. The proposed design first synthesizes a reference control law using feedback. It is
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Table 3
Configuration 1-performance resulting from the use of the FMA, SMA and SMSDA approaches

Active control FMA SMA SMSDA

Max relative Passive element 0.394 0.382 0.385 0.459
displacement (mm) First mass 0.181 0.083 0.177 0.404

Second mass 0.079 0.024 0.029 0.127
Third mass 0.072 0.025 0.056 0.134

Acceleration max|ẍp| 158.34 158.64 157.72 154.16
(cm/s2) max|ẍ1| 107.74 107.69 107.57 107.80

max|ẍ2| 107.53 107.74 107.61 107.60
max|ẍ3| 107.69 107.81 107.71 107.69

0 10 20 30 40 50
-4

-2

0

2

4
x 10

-4 (a)

0 10 20 30 40 50
-4

-2

0

2

4
x 10

-4 (b)

0 10 20 30 40 50
-4

-2

0

2

4
x 10

-4 (c)

0 10 20 30 40 50
-4

-2

0

2

4
x 10

-4 (d)

Time (sec) 

Time (sec) Time (sec) 

2r
x (m) 

bx (m) 
1r

x (m)

3r
x (m) 

Time (sec) 

Fig. 7. Relative displacement simulations of passive controlled system by confinement with the SMA approach. (a) Passive elementxr1 = xp;
(b) First massxr2 = x1; (c) Second massxr3 = x2 − x1; (d) Third massxr4 = x3 − x2.

demonstrated that the problem of SCSV can be formulated as an LQR-optimal control problem. Such a formulation
allows the regulation of the maximum amplitudes associated with the control input and the displacements of the
sensitive and insensitive parts. A transformation technique that yields an equivalent passive controller is then
proposed. This technique uses the SRSS method to determine an approximate equivalent passive controller that
maximizes the effects of added passive elements. We demonstrated the efficiency of the proposed control design
using a 3DOF mechanical oscillator subject to an external excitation. All of the masses of the oscillator are assumed
to be sensitive to the excitation, and thus the vibratory energy is confined in the added passive elements. It was shown
that the vibration amplitudes associated with the masses of the oscillator are attenuated at fast rate at the expense
of slowing down the convergence of the passive elements to their steady states. Similar structural performances
resulting from the use of the RCL and the equivalent passive control strategy are found for different configurations
of the modified system.

Future research will address the issue of applying the proposed control strategy to real-world flexible structures.
Modifying existing structures by adding passive elements to suppress and confine vibrations would be of great
importance in civil engineering structures. For instance, the proposed strategy can be applied to historical buildings
that suffer serious degradations and cracks.
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Fig. 8. Relative displacement simulations of passive controlled system by confinement with the SMSDA approach. (a) Passive elementxr1 = xp;
(b) First massxr2 = x1; (c) Second massxr3 = x2 − x1; (d) Third massxr4 = x3 − x2.
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