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Abstract. The method of Modal Strain Energy (MSE) enables predictions of modal loss factors for vibrating systems from finite
element analyses without evaluation of a complex-valued frequency response or a complex-valued frequency. While the method
is simple, some error results; especially if the dissipative material has the high loss factor characteristic of materials added to
increase system damping. Several methods for reducing this error through modifications to MSE have been suggested. In this
work, the exact loss factor for a simple mechanical system is found. The method of Modal Strain Energy (MSE) is then used to
find the loss factor for that prototype system and errors are evaluated in terms of system parameters. Comparisons are also made
to predictions with several modifications to MSE. A modification due to Rongong is found to provide significant improvement.
The use of this modification together with MSE is shown to lead to lower and upper bounds for the system loss factor. As the
prototype system is shown to be mechanically equivalent to constrained layer damping configurations, the findings are applicable
to the analysis and design of optimized sandwich beams, plates, and damping tapes. Results are given for beams and plates with
constrained layer treatments.
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Nomenclature

a, b Lateral dimensions of rectangular plate
D, h, Y Defined quantities: Eqs (24)–(26).
E Young’s modulus
EEFF Adjusted value of Young’s modulus
G Shear modulus of damping layer
g∗ Complex valued dimensionless shear parameter
�{ } Imaginary part of complex valued expression
k Stiffness of component
K Stiffness of system
Knm Eigenvalue of simply supported plate
L Length of beam
M Mass of system
m, n Mode numbers of rectangular plate
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�{ } Real part of complex valued expression
t, tB , tC Thickness: shear layer, substrate, constraining layer
U Strain energy
α Defined quantity: Eq. (9).
η Material loss factor
ηS System loss factor (exact)
ηMSE ,
ηAV MSE .
ηSIMPLE ,
ηRONG

Approximations of true system loss factor

υ Poisson’s ratio
ω Natural frequency

Super and subscripts
∗ Denotes complex quantity
R Denotes real part of complex valued parameter
I Denotes imaginary part of complex valued parameter
i Denotes property of ‘ith” element

1. Introduction

The response of a structural system with dissipation may be predicted from a finite element analysis if the
dissipative elements are represented by complex-valued moduli. By evaluating the response to harmonic input at
a large number of frequencies, the modal loss factors for each mode of interest may then be determined from the
computed frequency response function. Alternatively, the modal loss factors for each mode may be found from the
ratio of the imaginary to real parts of the squares of the complex-valued frequencies that arise from the homogeneous
solution. The method of Modal Strain Energy (MSE) [1], developed to provide a simpler and faster alternative,
has proven to be satisfactory in many cases and has the further advantage of being applicable with finite element
packages lacking the capacity to utilize a complex-valued modulus.

The origin of the method of Modal Strain Energy lies in an observation by Ungar and Kerwin [2] that the loss
factor of a system of viscoelastic springs in parallel and/or in series may be determined from the weighted fractions
of the loss factors of the individual components, with the weighting factors being the ratio of strain energy in each
component to the sum of the maximum strain energies over all components. Johnson and Kienholz [1] then applied
this concept to the use of finite element analysis for the determination of damping in structures containing dissipative
elements. The methodology, now widely used, is generally known as the method of Modal Strain Energy (MSE).
The modal loss factor for any mode of a system containing dissipative and non-dissipative portions is taken to be

ηS =
Energy Dissipated/Cycle
2π Peak Energy Stored

=
1
2π

∑
Diss

2πηiUi∑
Diss

Ui +
∑

Non-Diss
Ui

=

∑
Diss

ηiUi∑
Diss

Ui +
∑

Non-Diss
Ui

(1)

whereηi are the material loss factors for each dissipative component, Ui are the stored energies for each element in a
specific mode of vibration, andηS is the system loss factor for that mode. Each dissipative component is represented
by an appropriate value of Poisson’s ratio and a complex-valued Young’s modulus, i.e.,

E∗ = ER + jEI = ER(1 + jη) (2)

in which the imaginary part is proportional to the rate of energy dissipation and the real part is the customary Young’s
or storage modulus. The ratio of moduli is the loss factor,η, which proves to be tangent of the angle by which
stress and strain are out of phase. Typically, the storage modulus of a material having high dissipative ability is
strongly frequency-dependent, necessitating a preliminary estimate of the frequency of each mode of interest, and
possible iteration(s) using updated values of the storage modulus. If the dissipation is dominated by one constituent
of the system, and if the material loss factor of that constituent is the same in all elements (implying, in the case of
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a viscoelastic material, a uniform temperature, further simplification results and the system loss factor becomes the
product of the material loss factor and a ratio of energies.

While the use of MSE is found to reduce significantly the computational effort through the elimination of the
complex-valued numbers, in applications where the dissipative elements have a high material loss factor (η of order
unity), the method of MSE has been found to over-predict the modal loss factors. Several modifications to MSE
have been suggested, such as the use of MSE with the Young’s modulus of the dissipative elements taken as the
absolute value of the complex-valued modulus used to represent the dissipative component (AVMSE) [3], and a
further improvement on that method by Rongong [4].

Elementary mechanical models consisting of spring-mass-damper systems are the fundamental units of the analysis
of vibratory systems. As the finite element method may be viewed as the representation of a large assembly of
such units, these systems are logical prototypes for use in evaluating the effectiveness of numerical methods in the
determination of the dynamic response of mechanical systems. Rongong [4] used a two-degree-of-freedom spring-
mass system having one dissipative element with unit loss factor to demonstrate that his suggested improvement to
MSE led to better agreement with exact values over a range of a stiffness ratio.

Morgenthaler [3] used the response of a three-degree-of-freedomspring-mass system with one dissipative element
(with 0 < η < 1.6) as a basis for comparing the predictions from MSE and AVMSE with the exact solution. For
a single set of stiffness ratios, the prediction of the system loss factor for the fundamental mode with AVMSE
was found to provide improvement over that found by the use of the traditional MSE. However, McDaniel and
Ginsberg [5] considered a two-degree-of-freedom spring mass system with one dissipative element (with 0< η <
1) to compare the predictions of MSE and AVMSE with the exact solution for a range of stiffness ratio, and found
that the use of AVMSE with a two-degree-of-freedom system led to improved predictions for the second mode, but
to larger errors for the first.

In addition to discretization errors inherent to any FEA analysis, as well as the computational challenge presented
by a frequency-dependent modulus, the use of MSE introduces a third source of potential error, that being the
treatment of the dissipatative material as elastic in the determination of the stored energies to be substituted into
Eq. (1). The present work will focus on this issue. We will take the complex-valued modulus used to represent the
damping material as a given constant and focus attention on a simple system for which an exact solution is easily
obtained. Thus, any differences found between system loss factors obtained with different methods may be taken
to be a consequence of the influence of the imaginary part of the modulus on the division of energy among the
components of the system. The prototype system chosen for the analysis consists of two elastic and one dissipative
spring element withη = 1. System loss factors as found by various approximate methods are compared with exact
values over ranges of the two stiffness ratios resulting after normalizing by the stiffness of one of the elastic elements.

The application of MSE to the evaluation of constrained layer damping treatments and sandwich beams and plates
presents a particular challenge when materials with high loss factors are used. Although such materials typically
have inherently low moduli, the application in thin layers creates a high effective stiffness that has a significant
influence on the distribution of energy within the structure, thereby impacting the accuracy of the method of MSE.
It will be shown that, in the case of simply-supported ends, sandwich beams with dissipative cores and beams with
constrained layer treatments (damping tapes) are mechanically equivalent to the chosen prototype four parameter
mechanical system. Predicted loss factors found through various modifications of MSE will be compared to those
obtained from the complex valued response as found by finite element methods and also to exact solutions for system
parameters characteristic of beams optimized for maximum damping.

2. An elementary model of a dissipative system

The four parameter system of Fig. 1 is taken as a prototype. Springsk 1 andk3 are elastic and springk2 = k∗

(of complex material modulusE ∗) is dissipative. This system is equivalent to the standard linear anelastic solid [6]
with the viscous component replaced by a structural damping element, i.e., an element represented by a complex-
valued modulus. The resulting system, now having a complex-valued stiffness,K ∗, when attached to a mass, forms
the single degree of freedom system chosen by Marsh and Hale [7] as being characteristic of damped beam-like
structures.
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k1 (A1 E1, L1) k2 (A2 E2*, L2) 

K3 (A3  E3, L3),

Fig. 1. A four parameter prototype system.

The stiffness of each element is related to a modulus, length, and area throughk i = AiEi/Li. Thus, if a spring
is made of a material with represented by a complex-valued modulus,E ∗ = ER(1 + jη), the stiffnessk∗ has a
complex value,k∗ = kR(1 + jη), with the same loss factor, where the symbolη (without subscript) represents
a material loss factor and the subscript ‘R’ denotes the real part of a complex quantity The representation of the
assembly with a complex-valued stiffness is easily obtained by the viscoelastic correspondence principle [8], i.e.,
first treating all springs as elastic,k∗ ⇒ k2, finding the real-valued system stiffness, and then settingk2 ⇒ k∗, to
yield a complex-valued system stiffness:

K∗ =
1

1/k1 + 1/k∗
+ k3 = KR(1 + jηS) (3)

The system loss factor,ηS , is given by the ratio of imaginary and real parts of the system stiffness and can be
expressed in terms of the material loss factor,η, and the two stiffness ratios,kR/k1 andk3/kR.

ηS =
η

[1 + kR

k1
(1 + η2)] + k3

kR

{(
1 + kR

k1

)2

+
(
η kR

k1

)2
} (4)

If a massM is added to the right hand side of the system of Fig. 1, the natural frequency (ω n) may be found from
the homogeneous solution. With a complex-valued stiffness, the natural frequency is complex, with the imaginary
part giving the rate of decay of oscillation. In a forced motion, resonance occurs at the coincidence of excitation
frequency with the real part,

�{ω} =

√
|K∗|
M

cos[(arctan ηS)/2] (5)

3. Modal Strain Energy

For the system of Fig. 1, the only dissipative element is element 2. Elements 1 and 3 are taken as non-dissipative.
In the traditional application of MSE, the real parts of complex-valued modulus of the dissipative elements are used
as a real modulus in the evaluation of system energies. Whenk ∗ is taken ask2, these energies are easily found for
the system of Fig. 1. The loss factor is then found from Eq. (1) to be

ηMSE =
η

1 + k2
k1

+ k3
k2

(1 + k2
k1

)2
(6)

Also,

ωMSE =

√
KEFF

M
=

√
1
M

[
k3 +

1
1/k2 + 1/k1

]
(7)

The loss factor as obtained by MSE can then be compared with the true value. We find that the error resulting from
the use of modal strain energy to be related to the material loss factor and the stiffness ratios through:
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The error is seen to be positive for any combination of parameters appearing in the system of Fig. 1, confirming the
well known empirical observation that the method of MSE will over-predict thesystem loss factor. It is also seen that
the error increases with the square of thematerial loss factor and goes to zero asS = kR/k1 ⇒ 0 for any choice of
η andk3/kR. However, a low system loss factor does not assure an accurate evaluation by MSE. If the ratiok 3/kR

is large, the system loss factor of Eq. (4) is necessarily low. But the error, from Eq. (8) withη of order unity and
largek3, is between 25% and 100% for any stiffness ratioS = kR/k1 > 0.8.

One might then ask if there is any simple relationship that might be used to select an effective stiffness of the form
k2 = f(kR, η) for use in MSE such that equality is achieved in the determination of loss factors by Eqs (4) and (6).
This does not appear to be possible. It may be shown, however, that in the limit as eitherk 1 or k3 ⇒ 0 the use of an
effective stiffnessk2 = kR(1 + η2) in MSE does lead to the correct loss factors.

4. Modifications to method of Modal Strain Energy

4.1. Absolute Value Modal Strain Energy (AVMSE)

It has been suggested [3] that the method of Modal Strain Energy (MSE) be applied with the finite element
calculations performed by using the magnitude of the complex-valued modulus of the dissipative elements as the
real values of modulus in the finite element analysis. Application of this methodology (AVMSE) to the system of
Fig. 1 leads to the loss factor and frequencies of Eqs (6) and (7), with the real stiffnessk 2 replaced byαkR, where

α =
√

1 + η2 (9)

The resulting estimate of the system loss factor is

ηAV MSE =
η
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and the new estimate of the natural frequency is

ωAV MSE =

√
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M
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1
M

[
k3 +

1
1/αkR + 1/k1

]
(11)

Since the factor,α, appears in both the numerator and denominator of the denominator of the expression for the
loss factor, and is always greater than one, it can be expected that the use of AVMSE will lead to higher system
loss factors than traditional MSE in some cases, and lower in others, depending on the other system parameters.
However, the frequency obtained with AVMSE will always be higher than that found with MSE.

As before, the error in the resulting loss factor may be evaluated by comparing Eq. (10) with Eq. (4). The fractional
difference is:
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(12)

Evaluations of the limiting cases of smallk1/kR, largek1/kR, smallk3/kR, and largek3/kR show that the error
goes to zero only whenη ⇒ 0.

Errors resulting from the determination of the system loss factor by AVMSE are compared in Fig. 2 with the errors
resulting from the use of traditional MSE (Eq. (8)) for the case ofη = 1, i.e. α =

√
2, and various values of stiffness

ratiosk ≡ k1/k3 andS = kR/k1. Errors with AVMSE are seen to range from nearly 20% to about 40% for the
range considered, and to be greater than the errors resulting from the use of modal strain energy unless the stiffness
ratio,S = kR/k1 is greater than (approximately) 0.5.
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MSE vs. AVMSE: η = 1; Various k = k1/k3
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Fig. 2. Comparison of error: MSE vs. AVMSE modification.

4.2. Rongong’s modification

If one seeks to use MSE with an effective stiffnessk2 (obtained by replacingE with a real-valued effective
modulusEEFF ) it is appropriate to consider the consequences in the evaluation of the dissipated and strain energies.
The resulting strain energy in the dissipative element 2 of Fig. 1, when written in terms of the concomitant effective
strains is

U2 =
∫

V ol

EEFF
ε2EFF

2
dvol (13)

In the application of MSE, the dissipated energy is taken as

D2 = 2πηU2 = 2πη
∫

V ol

EEFF
ε2EFF

2
dvol (14)

But a more appropriate value for the dissipated energy would be that found from the loss modulus, or imaginary
part,EI ,= ηER of the complex-valued modulus of the dissipative material [9]. The dissipated energy is then

D2 = π
∫

V ol

EIε
2
EFFdvol = 2π

EI

ER

ER

EEFF

∫
V ol

EEFF
ε2EFF

2
dvol = 2πη

ER

EEFF
U2 (15)

Thus, the energy dissipated should be reduced (for use in MSE) by the ratioER/EEFF = kR/k2. This may be
achieved either by replacing the material loss factor for each dissipative element,η i, in Eq. (1) by an effective loss
factor,

ηEFF = η
ER

EEFF
(16)

or by replacingU2 in the same equation by an effective energy, computed from the energy found by Eq. (13) as

Û =
ER

EEFF
U2 (17)

Rongong [4] took the second approach and modified the method of MSE by using the magnitude of the complex-
valued modulus as the effective modulus in MSE as was done in AVMSE. The equivalent in the prototype system is
that:

k2 = αkR = kR

√
1 + η2 (18)

But when the effective energy of Eq. (17) is then used in Eq. (1), the system loss factor is modified to

ηRONG =
ηÛ2

U1 + Û2 + U3

=
ηU2/α

U1 + U2/α+ U3
(19)
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MSE vs. R: η =1; Various k=k1/k3
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Fig. 3. Comparison of error: MSE vs. Rongong’s modification.

For the system of Fig. 1, the loss factor obtained by using Eq. (18) with Eq. (19) then becomes

ηRONG =
η

1 + α2kR

k1
+ k3

kR
(1 + αkR

k1
)2

(20)

The error resulting from the use of Eq. (20) may be compared withη S , the exact value from Eq. (4). The fractional
difference is

ηS − ηRONG

ηS
= −k3

k1

2(α− 1)

1 + αkR

k1
+ k3

kR

(
1 + αkR

k1

)2 (21)

The error, which is always negative, goes to zero asη ⇒ 0 for k3/k1 ⇒ 0, for kR/k1 ⇒ 0, or forkR/k1 ⇒ ∞. For
small values ofk1/k3 andη = 1, the maximum error remains at about 14%.

The fractional errors resulting from the use of Eq. (20) may be compared with the exact value and the error
resulting from traditional MSE, Eq. (8). A comparison forη = 1 (α =

√
2) and various stiffness ratiosk = k1/k3

andS = kR/k1 is given in Fig. 3.
For small values of the stiffness ratiokR/k1 the unmodified MSE again provides superior predictions, but even in

this case the errors resulting from the use of the Rongong modification are modest.
An estimate of frequency may also be found. Since the squared frequency is proportional to stored energy, a

frequency consistent with Rongong’s estimation of the loss factor may be found by reducing the frequency resulting
from the use of AVMSE by the ratio of stored energies, i.e.

ωR = ωAV MSE

√
U1 + U2/α+ U3

U1 + U2 + U3
(22)

= ωAV MSE

[
k1
α2k2

+
{

1 +
k3
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αk2

)2
}]1/2

/[
k1
αk2

+
{

1 +
k3
k1

(1 +
k1
αk2

)2
}]1/2

4.3. A simple correction

The necessary correction to the dissipated energy, Eq. (15), could also have been made through adjusting the loss
factor, as in Eq. (16). In this case, we find a simple correction to the method of MSE. The resulting loss factor would
be simply:

ηSIMPLE =
ηU2/α

U1 + U2 + U3
=
ηAV MSE

α
(23)

The frequency consistent with this approximation is the same as that found by AVMSE.
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a. Typical Sandwich Beam Configuration  b. Typical Damping Tape Application 
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Fig. 4. Loss factors predicted with modification to Modal Strain Energy (a. Typical sandwich beam configuration) (b. Typical damping tape
application).

4.4. Comparisons

It will be shown in a later section that a stiffness ratio ofk = k1/k3 = 3.52 is representative of a sandwich
configuration with thin core, and thatk = 0.36 is representative of a damping tape configuration. Figure 4 shows
the exact value of the system loss factor as given by Eq. (4) and the value found by the traditional application of
MSE, Eq. (6) for these values of stiffness and a material loss factor ofη = 1. Also shown are values obtained
through several modifications. Results obtained with Rongong’s modification, Eq. (20), are coded MSE-R; results
obtained by using the absolute value of the complex-valued modulus in MSE, Eq. (10), are labeled MSE-AV; and
results obtained by simply dividing the AVMSE result by the parameterα, Eq. (23), are coded Simple.

Although occurring at different values of the stiffness ratio,S, it is of interest to note that MSE and AVMSE
both predict the same maximum values of the system loss factor, and that this remains true for significantly different
values of the stiffness ratio,k. The value predicted by both, however, is significantly higher than the true value.
MSE is seen to provide decidedly superior predictions for systems with low values of stiffnessS = kR/k1, while the
absolute value modification is seen to provide improved results for systems with high values ofS. It would appear
that this dependence on stiffness accounts for the apparent contradictions seen in the comparisons made in [3,5].
While MSE and AVMSE are seen to lead to overestimates of the loss factor, the use of Rongong’s modification or
the simpler modification to AVSME, appear to lead to under-predictions.

An interesting and important attribute of the various modifications to the method of MSE is the correctness to
which the configuration for maximum damping is identified. From Fig. 4 we may note that each of the modifications
considered appears to predict the same required value ofS = kR/k1 as does the exact solution, whereas the
traditional method of MSE leads to a higher value.

The errors resulting from the use of several modifications to the method of MSE are compared in Fig. 5. Shown in
each case is the difference between the predicted value and the true value, Eq. (4), expressed as a percent of the true
value. All curves are labeled as in Fig. 4. The unaltered MSE is seen to provide the best predictions for values of
stiffnessS < 0.1 for configurations typical of sandwich plates or for values of stiffnessS < 0.45 for configurations
typical of damping tapes. Note that all comparisons given here are for the case of a material loss factor (η) of unity.

Because MSE provides an underestimate of the stored energy, it also gives rise to underestimates of natural
frequencies. Similarly, the overestimate of stored energy associated with AVMSE leads to overestimates of fre-
quencies. Errors in frequency for various stiffness ratios may be evaluated by comparing the predictions of Eqs (7),
(11), and (22) with the exact values as given by Eq. (5). Some consideration of such frequency estimates are given
elsewhere [10]. An empirical relationship of the formk2 = kRf(η, kR/k1) has been found [11] to give quite
satisfactory estimates of frequency and, when used as the stiffness of the dissipative element in MSE, quite good
estimates of loss factors.
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 a. Typical Sandwich Beam Configuration     b. Typical Damping Tape Application 
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Fig. 5. Errors with modifications to MSE (approximate-true/true) (a. Typical sandwich beam configuration) (b. Typical damping tape application).
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Fig. 6. The constrained layer configuration.

Because the errors are small, the optimal configuration is correctly identified, and the estimates of damping are
always conservative; the modification to MSE suggested by Rongong appears to have the greatest merit. However, it
is to be noted that the use of MSE together with the Rongong approximation appears to provide a quick and reliable
means of obtaining upper and lower bounds on system loss factors.

5. Beams and plates with constrained layer damping

While extensions to such multi-dimensional structures as rings, and shells are found in the literature, we consider
here only beams and thin plates with damping enhancement through the use of a thin dissipative layer undergoing
shear deformation. The constraining layer shown in Fig. 6 may be comparable to the thickness of the beam or plate,
or much thinner, as in a damping tape application.

We accept here the customary assumptions and concomitant limitations, namely that: longitudinal inertia is
negligible, shear deformations in the beam and constraining layer are negligible, the thickness of the shear layer
remains constant, strain energies due to extensions in the shear layer are negligible, shear strain is uniform through
the thickness of the shear layer, and all bonds are perfect.

In the very special case of the simply-supported beam of lengthL, fully covered on one side with a constraining
layer and vibrating in the nth mode, a complex-valued stiffness may be identified from the analysis of the constrained
layer damping treatment as given by Ross et al. [12]. Let:

D = (EBt
3
B + ECt

3
C)/12 (24)
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h = 1 + (tB + tC)/2t (25)

Y =
(th)2

D

(
1

EBtB
+

1
ECtC

)−1

(26)

g∗ =
G∗

t

(
1

EBtB
+

1
ECtC

)(
L

nπ

)2

≡ gR(1 + jη) (27)

The complex bending stiffness is found to be

D∗ = D
[
1 + Y

g∗

1 + g∗

]
(28)

In the above,EB , EC , tB, tC are the moduli and thickness of beam and constraining layer, respectively. The thickness
and complex-valued modulus of the shear layer aret andG ∗ = GR(1+ jη). When used as a damping addition (i.e.,
damping tape) the constraining layer stiffness is typically much less than that of the beam (ECtC � EBtB), while
for the symmetric sandwich beamECtC ≡ EBtB. The system loss factor is then found from the ratio of imaginary
and real parts of the effective system stiffness to be

ηS =
�{D∗}
�{D∗} =

ηY gR
1 + (2 + Y )gR + (1 + Y )(1 + η2)g2R

(29)

A method for determining the loss factor for beams of very general boundary conditions has been developed by
Rao [13], but a numerical solution is required and results have been obtained only for selected values of parameters.
Abdulhadi [14] developed the equations of motion for the three layer plate. It has been shown [15] that, in the case
of the a x bplate simply supported on all edges, with constraining layer of the same Poisson’s ratio,υ, and free
edges, that the resulting loss factor is that given above if the squared eigenvalue for the beam in Eq. (27) is simply
replaced by(

L

nπ

)2

=
1

1 − υ2

1
K2

nm

=
1

1 − υ2

{( a
nπ

)2

+
(
b

mπ

)2
}

(30)

Approximations for other boundary conditions may be obtained by replacing the eigenvalue, Knm, by that of the
plate [15] or beam [16] of interest. In the case of beams,υ is set to zero.

Plunkett and Lee [17] have shown that the maximization of the loss factor for a constrained layer treatment requires
a specific combination of parameters. That combination may be identified by differentiating the expression for the
loss factor, Eq. (29) with respect togR and setting the result to zero. The maximum loss factor is found to occur for

(1 + Y )(1 + η2)g2R = (1 + Y )|g∗|2 = 1 (31)

6. Equivalence of prototype and constrained layer systems

Manipulation of Eq. (28) gives for the constrained layer on a beam that

D∗ = D
[
1 +

Y g∗

1 + g∗

]
= D +

1
1/(DY ) + 1/(DY g∗)

(32)

and a comparison with the complex-valued stiffness of the prototype system, Eq. (3), shows that the functional forms
are identical. Thus, the constrained layer treatment is mechanically equivalent to the system depicted in Fig. 1 and
the parameters of the constrained layer treatment, Eqs (24)–(28), may be related to the effective spring constants
k1, k

∗, kR, andk3. The result is that the constrained layer treatment in the case of pinned ends may be precisely
represented by the prototype system with stiffness parameters

k3 = D=
1
12

{EBt
3
B + EC t

3
C} (33)
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k1 = DY = (th)2
(

1
ECtC

+
1

EBtB

)−1

(34)

k∗ = DY g∗ = th2G∗L2/π2 (35)

Using these, the modifications to the method of MSE as were considered above may be applied directly to the
analysis of constrained layer treatments.

The parameterk3 is recognized as the effective stiffness of two parallel, but uncoupled beams. The quantity
k1 = DY may be recognized from Eq. (28) as the increase in system stiffness that results if the two beams are fully
coupled by a stiff shear layer, i.e. withg∗ ⇒ ∞. This occurs if the shear layer thickness is taken to zero and the
perfect bond is maintained. The remaining term,k ∗, is not easily provided with a physical interpretation, other than
to note that it is the only contribution of shear layer modulus to the system stiffness and that the loss factor in the
representation ofk∗ is the loss factor of the shear layer material.

The stiffness ratios of Eq. (4) may be evaluated from Eqs (33)–(35). For the symmetric sandwich,t C = tB , and:

k1
k3

= Y =
(th)2

D

(
1

EBtB
+

1
ECtC

)−1

=
(th)2EBtB/2
2(EBt3B)/12

= 3
[
1 +

t

tB

]2

(36)

or approximately 3 ift/tB � 1. For a beam much thicker than either constraining layer or shear layer

k1
k3

= Y =
(th)2

D

(
1

EBtB
+

1
ECtC

)−1

∼= (tb/2)2ECtC
EBt3B/12

= 3
ECtC
EBtB

(37)

which goes to zero astC/tB ⇒ 0.
In either case, the stiffness ratiok∗/k1 proves to be the complex shear parameter

kR

k1
(1 + jη) =

k∗

k1
=
DY g∗

DY
= gR(1 + jη) (38)

and the condition for maximum damping as given by Eq. (31) is

|g∗|MAX =
1√

(1 + Y )
(39)

For the special case of the symmetric simply supported sandwich beam or plate of core of thicknesst � t B,
maximum damping requires|g∗|MAX

∼= 1/2. For the case oftB 
 tC andtB 
 t, maximum damping requires
|g∗|MAX

∼= 1. For any configuration the combination of parameters required for maximum damping is given by:[
GR

t(1 − υ2)

(
1

EBtB
+

1
ECtC

) {( a
nπ

)2

+ (
b

mπ
)2

}]
MAX

≡ gR|MAX =
1√

(1 + Y )(1 + η2)
(40)

In the case of the simply supported beam,b = 0, υ = 0 anda = L. For tC = tB = 12t, k1/k3 = Y = 3.52
and maximum damping occurs, forη = 1, at kR/k1 = gR|MAX = 0.332. For tC = t = tB/12 andEC = EB ,
k1/k3 = Y = 0.36 and maximum damping (forη = 1) occurs atkR/k1 = gR|MAX = 0.606. These are seen to
be the location of the maximum values of system loss factors in Fig. 4, which were specifically computed for these
parameters.

7. Comparison of results

Soni and Bogner [18] used Rao’s sixth-order theory results to compute loss factors and frequencies for a 177.8 mm
(7 in.) long, 25.4 mm (1 in.) wide, symmetric sandwich beam of aluminum (E = 69 GPa or 10 Mpsi,υ = 0.3, and
ρ = 2.8 gm/cc) with facing sheets 1.524 mm (0.060 in) thick. The 0.127 mm (0.005 in) thick viscoelastic core had as
other propertiesE = 2.1 MPa or 300 psi,υ = 0.499 orG = 100 psi,η = 1, andρ = 0.97 gm/cc. Their results were
then compared with findings from a finite element computation. Loss factors were extracted from the real part of a
FEA computed frequency and showed excellent agreement with the predictions of the “exact” sixth-order theory.
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As the symmetric sandwich cantilever used in these computations has been used by several other investigators,
it is particularly well characterized and suited for use in comparison with loss factors obtained by MSE and other
approximate methods. Loss factors for the first six modes of the damped sandwich cantilever beam having these
properties were determined with FEA using ANSYS by the method of Modal Strain Energy (MSE); MSE using
the absolute value of the shear layer modulus (AVMSE); MSE with the modification due to Rongong; and with the
simple adjustment obtained from dividing the loss factors obtained with AVMSE by(1 + η) 1/2. Loss factors were
also computed from complex eigenvalues found using a complex-valued modulus in Nastran.

ANSYS 8.1 was used to obtain loss factors and frequencies by MSE. Nastran 2004 was used to obtain loss factors
and frequencies from the complex valued eigenvalues. In both cases the elements used were three-dimensional,
8-noded solid brick elements. Each node had three translational degrees of freedom. These elements are SOLID45
bricks in ANSYS and CHEXA elements in Nastran. In order to provide the same mesh density in both directions for
all aspect ratios, square elements were chosen. This allowed an integer number of elements in both directions for
all aspect ratios (0.5, 1, 2, 3.5, 7, and 14) considered. A frequency convergence study for a 7′′ square cantilevered
plate showed a 42× 42 mesh to be adequate. Thus, square elements of 1/6 inch side length were used in all cases.
Results were then compared for several modes of the 7 inch square cantilever plate with the same mesh and with 1,
2, and 3 elements through each of the three layers. As loss factors agreed to within 0.4% (with 90% of the variation
occurring in going from one to two elements) and the variations in frequency were similar, one element through the
thickness of each layer was accepted as sufficient. The total number of elements varied with aspect ratio, from 378
atAR = 14 to 10584 atAR = 1/2. As one element was taken through the thickness of each layer, the element
aspect ratio in the shear and constraining layers was 33.3, and less than 3 in the substrate. In the case of a free or
simply supported edge, both components of the in-plane displacement were allowed to develop freely. In the case
of a clamped edge, both components were fully restrained.

Loss factors by AVMSE (ηα) were computed using MSE with the modulus of the shear layer taken asG = αGR,
with α = (1+ η)1/2. The loss factors with the Rongong modification then may be shown from Eq. (19) to be simply

ηR

η
=

ηAV MSE/η

α+ (1 − α)ηAV MSE/η
(41)

and those for the simple modification result from Eq. (23).
The results are compared in Fig. 7. Loss factors determined from complex frequencies (FEA) were in satisfactory

agreement with those obtained by Soni and Bogner, and also those obtained by Sun et al. [19] for the same
configuration. Small differences between the FEA and analytic results are presumed to be due to the fact that the
FEA allows more complex deformations than the idealizations of the Ross, Ungar, Kerwin formulation that are
incorporated in the Rao analysis.

The expected consistent over-predictions with MSE are evident. Some improvement is provided by AVMSE at
the lowest mode number, corresponding to long wavelengths and high values ofg R = kR/k1. See Eq. (38) and
Fig. 4(a). But this is achieved at the expense of notable error at the higher mode numbers. The results using both the
modification due to Rongong (MSE-R) and the simple adjustment to AVMSE (MSE-AV) provide quite satisfactory
estimates for this configuration at all mode numbers, as might be expected from the estimates of error shown in
Fig. 5(a). It can be inferred from Fig. 4(a) and confirmed by Fig. 7 that all modifications to MSE considered provide
better predictions of the mode number (i.e. stiffness ratio) at which the maximum system loss factor is achieved. As
was also seen from the computations for the prototype system, the lesser of the MSE and AVMSE provides an upper
bound on the loss factor, while either MSE-R or the simple adjustment (Simple) provides a lower bound.

Because the solution for the plate and constraining layer with simply supported edges and no in-plane loads is
equivalent to that of the similarly supported beam system after the substitution of Eq. (30), we may also compare the
predictions resulting from MSE and the modifications with the predictions of the solution that is exact, to within the
classic assumptions of the RUK analysis. Such a comparison is shown in Fig. 8 for a simply supported square plate
of side length 177.8 mm (7 in.) and thickness 1.524 mm (0.060 in) with a thin (0.127 mm or 0.005 in) constraining
layer, both of modulusE = 69 GPa or 10 Mpsi,υ = 0.33, andρ = 0.1 lb/in3 (2.77 gm/cc). The shear layer
properties areGR = 2.1 MPa or 300 psi,υ = 0.499,ρ = 0.035 lb/in3 (0.97 gm/cc), andη = 1. For these parameters,
the coupling coefficient,Y , of Eq. (26) is 0.36.

Agreement between the analytic (extended RUK) solution and the FEA result is seen to be best for modes
having nodal lines in only one direction, i.e., the 1st, 2nd, 4th, 6th and 10th modes, suggesting that the simplifying
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k1/k3= 3.52; GR = 100 psi; η  = 1
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assumptions of the deformation field are most successful for the less complex mode shapes. Results from MSE
and all modifications reflect the same departures form the smooth trend predicted by the extended RUK analysis.
Once again, the use of the absolute value of the modulus with MSE is seen to lead to better predictions for the
lower frequency (long wavelength and high stiffness ratio) modes, and poorer results for the modes with shorter
wavelengths and low stiffness ratios. This is to be expected from Fig. 5(b), the computations for which correspond
to the same value ofY = k1/k3. As also may be inferred from Fig. 5(b), the advantages of the Rongong and simple
modifications to the method of MSE are less advantageous in the case of damping treatments with thin constraining
layers than in the case of sandwich configurations. But once again, the lesser of the MSE and AVMSE (MSE-AV)
is seen to provide an upper bound on the loss factor, while either MSE-R or the simple (Simple) adjustment is seen
to provide a lower bound.

Because the modulus of viscoelastic materials is highly frequency dependent, one must consider that the shear
layer in the results of Figs 7 and 8 consisted of a different viscoelastic material for each mode. A single frequency-
dependent material would not necessarily show the same trends in the change in modal damping with increasing
mode number. However, the comparison of results from different methods for the same mode remains appropriate.

8. Summary and conclusions

The application of the method of Modal Strain Energy has been found to lead to over-predictions of the system
loss factor. By focusing on a single degree-of-freedomsystem for which an exact solution is easily obtained, we have
isolated the error resulting from treating the dissipative component as elastic in the determination of displacements
and energies.
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Expressions for the complex-valued stiffness of the prototype four-parameter system were developed. In the
case of a damping element with a very low stiffness, the traditional application of the MSE method was found to
be appropriate. For systems with higher damping element stiffness, however, the error resulting from the use of
MSE was seen to be come significant unless the material loss factor of the damping element is small (i.e.,� 1).
Several modifications to MSE were considered, and each was found to provide improvements in systems where the
damping element(s) have loss factors of order unity and a high stiffness. Moreover, each of these methodologies was
found to have the advantage of better predicting the configuration for maximum damping and are therefore useful
improvements in the use of the method of MSE for design purposes. While comparisons were made only for the
case where the material loss factor of the damping material had a loss factor of unity, such values are characteristic
of the materials in general use in constrained layer damping treatments.

Of all modifications considered, Rongong’s modification was found to provide the smallest error, particularly
in the case of sandwich configurations. As this method leads to a lower bound on the loss factor, it enables the
development of a conservative design. In this context, it is useful to note that one may use the lesser of the loss
factors predicted by traditional Modal Strain Energy (MSE) and the modification obtained through the use of the
absolute value of the modulus (AVMSE) to obtain an upper bound on the system loss factor.

Comparisons made on the basis of the prototype four-parameter system were confirmed by applying each method-
ology to configurations for which an exact analytic solution is available for extensions to the classical analysis by
Ross, Ungar, and Kerwin. Results for a damped sandwich cantilever beam and for a simply supported square plate
with a thin constraining layer supported the general conclusions drawn from the analysis of the prototype system.
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