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Abstract. A three-dimensional elasticity-based continuum model is developed for describing the free vibrational characteristics
of an important class of isotropic, homogeneous, and completely free structural bodies (i.e., finite cylinders, solid spheres, and
rectangular parallelepipeds) containing an arbitrarily located simple inhomogeneity in form of a spherical or cylindrical defect.
The solution method uses Ritz minimization procedure with triplicate series of orthogonal Chebyshev polynomials as the trial
functions to approximate the displacement components in the associated elastic domains, and eventually arrive at the governing
eigenvalue equations. An extensive review of the literature spanning over the past three decades is also given herein regarding the
free vibration analysis of elastic structures using Ritz approach. Accuracy of the implemented approach is established through
proper convergence studies, while the validity of results is demonstrated with the aid of a commercial FEM software, and whenever
possible, by comparison with other published data. Numerical results are provided and discussed for the first few clusters of
eigen-frequencies corresponding to various mode categories in a wide range of cavity eccentricities. Also, the corresponding
3D mode shapes are graphically illustrated for selected eccentricities. The numerical results disclose the vital influence of inner
cavity eccentricity on the vibrational characteristics of the voided elastic structures. In particular, the activation of degenerate
frequency splitting and incidence of internal/external mode crossings are confirmed and discussed. Most of the results reported
herein are believed to be new to the existing literature and may serve as benchmark data for future developments in computational
techniques.
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1. Introduction

The rapid advancement in contemporary industries towards high precision in engineering applications calls for
more accurate predictions of the dynamic behavior of mechanical systems. Accordingly, as computers and analytical
procedures become more efficient, the three dimensional vibrationanalysisof structural elements of various shapes
based on the small-strain linear elasticity theory has received increasing attention in the recent decades. Such study-
does not rely on any hypotheses involving the kinematics of deformation and providesaccurate realistic resultswhich
cannot otherwise be predicted by approximate theories. Unfortunately, exact three-dimensional elastodynamic solu-
tions are accessible only for simple (canonical) geometries and boundary conditions (e.g., solid or hollow spheres [1]
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and cylinders [2]). Consequently, many approximate methods such as the finite element method [3], the boundary
element method [4], and the Ritz method [5-7] have been developed over the years. Among these methods, the
Ritz continuum approachhas been demonstrated effective and shows special advantages such as high accuracy, small
computational cost, and easy coding. It has evolved steadily over the years with the development of more efficient
and accurate global admissible functions. Its capability to accommodate a wider spectrum of elastic domain con-
figurations, boundary constraints and loading conditions has also improved and further enhanced its applications in
many interesting engineering situations. The following three paragraphs contain brief overviews on the three major
variants of Ritz solution procedure which respectively use simple algebraic polynomials (firstly used by Leissa and
coworkers [8—10]), generated orthogonal polynomials (firstly used by Liew and coworkers [11-14]), and Chebyshev
polynomials (firstly used by Zhou and coworkers [15—18]) as admissible functions to study free vibrations of elastic
bodies of various shapes based on the three dimensional linear elasticity theory.

Simple algebraic polynomials were used as admissible functions in the 3D Ritz method in conjunction with the
three dimensional linear elasticity theoryto study free vibrationsof homogeneous isotropicrectangular cantilevered
parallelepipeds [19], twisted parallelepipeds [20], a truncated quadrangular pyramid with a clamped base [21], solids
of fairly general shape (a truncated triangular prism, a truncated cone, a rectangular parallelepiped with a rectangular
cut-out and a fin-shaped solid) [22], cantilevered skew plates [23], solids of revolution [24], thick-walled closed
spherical bodies of revolution [25], cantilevered solid isotropic cylinders [8], completely free hollow cylinders [9],
free circular and annular plates [10], thick spherical shell segments of varying thickness [26], solids of revolution
(circular disks, conical/cylindrical/spherical shells) [27], thick nonlinearly tapered annular and circular plates [28],
solid cones with and without an axial circular cylindrical hole [29], solid and hollow hemi-ellipsoids of revolution
with and without an axial circular cylindrical hole [30], solid paraboloids and complete paraboloidal shells of
revolution with variable wall thickness [31], and just recently, cylindrical elastic solids and thick circular plates and
cylinders with V-notches and sharp radial cracks [32].

Generated orthogonal polynomials were also used as trial functions in the 3D Ritz method to study three-
dimensional free vibrations of homogeneous isotropic circular and annular plates with various boundary condi-
tions [11,12], thick rectangular plates with arbitrary combinations of boundary constraints [33], skewed trapezoidal
plates of different planforms [34], elliptic bars with various end constraints [13], hollow cantilevered cylinders with
an arbitrary cross section [35], solid and hollow cylinders of arbitrary cross section with different end conditions [14],
thick and open cylindrical shells [36], and more recently, rectangular plates of arbitrary thickness and boundary
conditions [37].

High accuracy, stable numerical computation, and rapid convergence have recently been observed through adop-
tion of Chebyshev polynomials as global admissible functions in the 3D Ritz method based on the three-dimensional
elasticity theory. In particular, Zhou and coworkers employed the Chebyshev-Ritz procedure to study three di-
mensional free vibration characteristics of arbitrary thick rectangular plates with various uniform boundary condi-
tions [38], a torus with a circular cross section [39], circular and annular plates with any boundary conditions [40],
solid and hollow circular cylinders [18], rectangular thick plates resting on elastic Pasternak foundations [41], gen-
eralized super-elliptical plates [42], cantilevered thick skew plates [43], and just recently, circular toroidal sectors
with circular cross-section [5].

When structural abnormalities like manufacturing tolerances, geometric variations, and material inhomogeneities
are present or an eccentric void, inclusion, or cut-out is brought in, some of the degenerate natural frequencies which
are coincident in the perfectly symmetric case divide into distinct values, mode shapes become distorted, and beating
among intimately spaced vibration modesmay be produced [1,2,44]. To circumvent this situation, the vibration
characteristics of the axisymmetric structures with asymmetric features should be investigated carefully. Several
authors have analyzed the impact of different types of geometric asymmetries or imperfections on the vibrational
behavior of nominally axi-symmetric structures. Specifically, quantitative assessment of the frequency splitting and
modal shape deformation in non-uniform rings and shells, as well as eccentric discs, plates, cylinders, and spheres
has been performed. Among them, Yu and Mote [45] studied the effects of radial slots of circular plates with rotating
load and provided a rule for natural frequency splitting in circular plates with equally spaced identical radial slots.
Chen and Zhou [46] illustrated the low-frequency mode shapes of a small disc with eccentric holes based on the
boundary element approach. Shen and Mote [47] presented the sufficient conditions governing mode splitting in a
two-dimensional,degenerate, mechanical system whose eigen-solutions satisfy the Helmholtz equation in square and
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Fig. 1. Problem geometries. (a) finite cylinder with an internal spherical cavity. (b) solid parallelepiped with an internal cylindrical cavity. (c)
solid parallelepiped with an internal spherical cavity. (d) finite cylinder with an internal cylindrical cavity. (e) solid sphere with an internal
spherical cavity.

circulardomains with cracks. Tseng and Wickert [48] studied the vibration of an eccentrically clamped annular plate
and pointed out splitting of the degenerate natural frequencies. Parker and Mote [49-51] used perturbation analysis
to investigate the eigen-solutions for plate vibration and the wave equation on annular domains with boundary shape
or stiffness variations, and discussed the phenomenon of natural frequency splitting. Kim et al. [44] presented a
natural frequency splitting rule for general rotationally periodic structures and investigated the effects of imperfection
on both repeated and split natural frequency modes. Chang and Wickert [52] studied the vibration of rotationally
periodic structures and obtained a natural frequency splitting rule and a mode contamination rule for axisymmetric
structures with identical, evenly spaced asymmetries. Hasheminejad and Mirzaei [1,2] employed the appropriate
translational addition theorems to find exact 3D elasticity solutions for free vibrations of eccentric circular cylinders
and eccentric spheres.

The above review clearly indicates that the effects of wall thickness non-uniformity or internal hole/cutout
eccentricity on vibrational characteristics of various thin-walled structures have been thoroughly investigated. Also,
except in Refs. [1,2] where the exact three-dimensional elastodynamic solutions are provided for eccentric hollow
spheres and cylinders, rigorous analytic, semi-analytic, or numerical studieson free vibrations ofunrestrained elastic
bodiesof canonical shape (e.g., spheres, cylinders, parallelepipeds)containing an eccentric internal cavity appears
tobe almost nonexistent orvery sparse. Accordingly, the main purpose of the current work is to employ the
Chebyshev-Ritz solution procedure in conjunction with the three-dimensional linear elasticity theory to fill this gap
(see Fig. 1). It is noteworthy that due to the excellent properties of Chebyshev polynomials in numerical operations,
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the adopted method is well known to predict more frequencies and modes with higher convergence rate, better
numerical stability, and improved accuracy in comparison with other types of admissible functions such as simple
algebraic polynomials, particularly in the 3-D vibration analysis of an elastic bodies where numerical instability may
occur with a great number of terms of admissible functions [38,41,53]. This fact was underlined by Zhou et al. [40]
where they demonstrated that by using Chebyshev polynomials instead of simple polynomials as the admissible
functions, the immunity against ill-conditioned behavior in computing eigenfrequencies of completely free solid and
annular thick circular plates can be greatly enhanced. The presented 3D solutionscanform a helpful guide for design
engineers in evaluating the influence of changingthe cavity eccentricity on the spectral response of suchstructural
componentsin various technological applications [53-59]. It can specifically accompany experimental procedures
for identification/characterization of internal structural non-uniformities [60-66]. Lastly, the computed complete
spectrum of eigen-frequencies and mode shapes can reveal the physical characteristics of the problem and also serve
as the benchmark for assessment of other numerical or asymptotic solutions.

2. Formulation
2.1. Basic field equations

Consider the group of linear, macroscopically homogeneous, isotropic, and traction-free canonically shaped elastic
bodies depicted in Fig. 1, as described below: Fig. la (finite cylinder with an eccentric spherical cavity), Fig. 1b
(rectangular parallelepiped with an eccentric cylindrical cavity), Fig. 1c (rectangular parallelepiped with an eccentric
spherical cavity), Fig. 1d (finite cylinder with an eccentric cylindrical cavity),and Fig. le (solid sphere with an
eccentric spherical cavity). The problem geometry in each case is initially described in terms of the pair of Cartesian
coordinates, (x,y, z) and (z*, y*, z*), the origins of which are positioned at the centers of the elastic body and the
eccentric cavity, respectively. Also, the corresponding displacement components at a generic point within the body
are denoted by u, v and w in the x, y and z directions, respectively. The analysis procedure is based on the exact,
small-strain, three-dimensional linear elasticity theory. The elastic strain energy, V/, and the kinetic energy, 7', of
each elastic body undergoing a small amplitude vibration are given by the volume integrals

T= g ///(u2+1'}2+u')2)d:vdydz,
1
V= 5 045 Eij dwdydz,

where p is the solid material density, and (1, ¥, w) denote the components of the velocity vector, and o;; and ¢;; are
the stress and strain tensors, respectively. Also, the generalized Hooke’s law is written as

ey

0ij = Adijexk +2Geiy, @)
— vE _ B
= Tra——20 ¥ = 2+
modulus, and v is Poisson’s ratio. By direct substitution of Eq. (2) into Eq. (1), the potential energy is written in the
form

E v 1
= —A —Ay+A
\% 30+ 0) ///(121/ 1+2 2+ 3)dxdydz, 3)

where Ay = (€40 +eyy+e.2)%, Ao = (e}, +e2,+er.), Az = (g3, +¢e5,+e2,), inwhich the strain components
for small deformations in the Cartesian coordinates are written as

where §;; is the Kronecker delta symbol, ()\ ) are Lame constants, £/ is Young’s
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Table 1
The convergence rates of the first three natural frequencies ofthe considered class of traction-free elastic bodies for selected geometric
parameters
Spherical cavity Cylindrical cavity Spherical cavity Hollow cylinder ~ Hollow sphere
in cylinder in Parallelepiped in Parallelepiped
(a/b=0.5,L/b=1) (a/b=0.5,c/b=1,L/b=3) (a/b=0.5,c/b=1, L/b=1) (a/b=0.5,L/b=1) (a/b=0.5)
Q1 N=10 1.54390 0.45373 1.41223 0.97019 1.93281
N=15 1.54382 0.45365 1.41215 0.97011 1.93277
N=20 1.54378 0.45362 1.41213 0.97009 1.93272
Exact — — — — 1.93264
Q2 N=10 1.71735 0.45374 1.41224 0.97020 1.93283
N=15 1.71727 0.45365 1.41216 0.97012 1.93278
N=20 1.71724 0.45363 1.41213 0.97009 1.93273
Exact — — — — 1.93264
Q3 N=10 1.71737 0.47894 1.63993 1.04529 1.93289
N=15 1.71729 0.47889 1.63985 1.04521 1.93279
N=20 1.71724 0.47886 1.63982 1.04519 1.93274
Exact — — — — 1.93264

For free vibration analysis, simple harmonic motion is generally assumed. Accordingly, the displacement components
may be expressed as
fot L w(a,y, 2 ) = Wa,y, 2)el !, 5)

u(z,y,z,t) = U(x,y,z)e “" v(x,y, 2,t) = V(z,y, 2)e

where w denotes the natural frequency, i = v/—1, and (U, V, W) are displacement amplitude functions, which may
advantageously be represented by triplicate series of Chebyshev polynomial trial functions for traction-free elastic
bodies in the form [5]

I J K
U(w,y,z) = ZZAz]sz<$)FJ<y)Fk<Z)7
i=1 j=1 k=1
L M N
Vie,y,2) =Y > > BiFi(@)Fi(y) Fi(2), (©6)
i=1 j=1 k=1

P Q H
W(w,y,z) = Z Z Z CkaFz(w)FJ(y)Fk<Z)v

where the integers [ through H are truncation constants, (Al-jk, Bijk, Cijk) are unknown coefficients, and the
Chebyshev polynomials are generally defined in terms of cosine functions as F;(§) = [cos(j — 1) arccos(§)](j =
1,2,3,...) [5]. Here, it should be noted that each of the displacement amplitude functions (U, V, W) is generally
written in the form of a triplicate series of Chebyshev polynomials multiplied by a boundary function which
ensures that the displacement components satisfy the essential geometric boundary conditions. Keeping in mind
the unconstrained (stress-free) boundary conditions on the cavity surface and also on the outer surface of the elastic
body, these boundary functions are naturally assumed to be unity (e.g., see Table 1 in Ref. [53]).

The Ritz procedure requires a minimization of the Lagrangian functional II = T},,,x — Vinax, Where Ty, is the
maximum kinetic energy and V.« is the maximum strain energy, written as

2

Tinax = p% /// [U2($»yaz) +V3(x,y,2) + W2(:E,y,z)] dr dydz,
E v 1 @)

max — —7T Y, I Y, T Y, ,

Vime 2(1+v) ///[1% 1(2,y,2) + 5T2(2,y,2) + Ts(2,y, 2) | drdy dz

where the A;(z,y, z,t) = T;(z, v, z)ei“’ (4 = 1,2, 3) assumption has been employed. Substitution of Chebyshev

expansions (6) into the above two equations, going through the volume integrations over the entire physical domain
for each elastic body as outlined in the Appendix (see Fig. 1), and subsequent minimization of the functional II
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with respect to the unknown coefficients (i.e., B?\gk = aggk = 82{; = O) , leads to the following general linear
eigenvalue problem for each elastic body
A
[K—-w’M] |B| =0, (8)
C

where the column vectors A, B and C, contain the unknown coefficients, and are given as
A={A111, A11a, ..., Avii Aro, Avsa, o Avoies oo Avgn, Avga, - Ak Airts Airgas - A H
B={B111, B2, ..., Bun; Bi21, Bi22, ..., Bian; .. .; Bin, Binve, - - Bivns - - - Boa, B,
ceey BLMN}T,
C={Ci11,C112,--.,C111;Ci21,Ci22, . . ., Cr2p1; . . .; C101, C192, - - -, C1Qm; - - -3 Cp1, CPQ2, - - - Crou } . -

Also, K and M are stiffness and mass matrices resulting from minimization of the maximum strain and kinetic
energies, respectively. Here, it should be noted that since the Chebyshev polynomial function series described by
expansions (6) form a mathematically complete set of functions, the results obtained from the Ritz minimization
process will converge monotonically from above to the exact frequencies as the number of terms in each series
tends to infinity [10]. Also, non-trivial solutions of the eigen-system (8) can be obtained by setting the determinant
of the coefficient matrix equal to zero (i.e., |K — w2M] = 0). The roots of the determinant are the squares of
the eigen-values or eigen-frequencies, which are the upper bounds on the exact frequency values. The associated
eigen-functions or the mode shapes, are determined by subsequent back-substitution of the individual eigenvalues
into the set of algebraic Eq. (8), and solving for the ratios of unknown coefficients through implementation of
numerical methods such as the QR algorithm. In the next section, we consider a number of numerical examples in
order to illustrate the nature and general behavior of solution.

3. Numerical results

As is well known, the Ritz method can provide accurate solutions. However, its efficiency depends greatly on
the choice of admissible functions. The natural frequencies obtained by the Ritz method converge as upper bounds
to the exact values. These upper bound estimates converge to the exact value by increasing the number of terms of
admissible functions in the computation and hence solution of any accuracy can be obtained in theory. However, a
practical limit to the number of terms used always exists because of the limited speed, the capacity and the numerical
accuracy of computers. In the 3D vibration analysis of an elastic body in particular, numerical instability may occur
with a great number of terms of admissible functions, especially when triplicate series are used. Therefore, the
validity of a numerical method often hinges on the convergence rate, the numerical stability and the accuracy of the
method.

Chebyshev polynomial series is a set of complete and orthogonal series in the interval [—1,1]. This ensures that
the triple series is also a complete and orthogonal set in the region. Moreover, excellent properties of Chebyshev
polynomial series in the approximation of functions have been well known. Therefore, more rapid convergence
and better stability in numerical operation than other polynomial series such as the simple algebraic polynomials
and the generated orthogonal polynomials can be expected. Table 1 gives the convergence rate of the first three
normalized natural frequencies (2 = bw+/p/u) for selected dimensionless geometric parameters for all sub-
problems displayed in Fig. 1, in the absence of cavity eccentricity. It is clear that the convergence rate is very
rapid in all cases. Also, by increasing the number of Chebyshev polynomial functions, the frequency parameters
monotonously decrease and approach the exact values from above with minimal computational difficulties (e.g.,
see the last column in Table 1 in which the exact values are taken from Ref. [1]). Also, by adopting truncation
constantsof = J =K =L =M = N = P = @ = H =20, the adequate convergence of all calculated natural
frequencies to at least three-digit exactitude can be assured. Here it should be noted that, for the sake of simplicity,
equal numbers of the Chebyshev polynomial terms were used for the displacement components in their respective
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Fig. 2. Variation of the first three frequency clusters with eccentricity parameter for the finite cylinder with an internal spherical cavity, along
with the first four three-dimensional mode shapes for selected eccentricity parameters.

coordinate directions. Nevertheless, in many cases, using unequal numbers of series terms may be more efficient.
Lastly, the convergence patterns for the eccentric sub-problems were found to be very similar to those presented in
Table 1 (results are not tabulated for briefness).

A Mathematica code [67] was constructed for numerical treatment of the eigen-system (8) for each sub-problem,
i.e., to calculate the resonance frequencies and to determine the unknown coefficients (mode shapes) as a function
of the inner cavity eccentricity. The convergence of numerical solutions was systematically checked in a simple
trial and error manner, by increasing the truncation constant (i.e., including higher number of terms) while looking
for steadiness or stability in the numerical value of the solutions, as explained above (see Table 1). Figures 2
through 6 display the variation of the first few clusters of dimensionless natural frequencies, {2, with the eccentricity
parameter (0 < & = e, /b < 0.9; e, = e, = 0) for the sub-problems displayed in Fig. 1 with the following selected
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Fig. 3. Variation of the first three frequency clusters with eccentricity parameter for the solid parallelepiped with an internal cylindrical cavity,

along with the first four three-dimensional mode shapes for selected eccentricity parameters.

dimensionless geometric parameters; Fig. 2: L/b =1, a/b = 0.5; Fig. 3: L/b =3, a/b = 0.5, ¢/b = 1; Fig. 4:
a/b =05, ¢/b =1, L/b=1; Fig.5: L/b =1, a/b = 0.5; Fig. 6: a/b = 0.5. The first four 3D deformed
mode shapes are also shown in each figure for selected eccentricity parameters (¢ = 0, 0.4, 0.8). Moreover, the
calculated dimensionless frequencies are compared with the corresponding values computed using the finite element
code ABAQUS [68]. It is clear that excellent agreements are obtained for all eccentricities in each sub-problem. In
these validations, normally about 20,000 twenty-noded brick elements (C3D20R) were used to model each eccentric
elastic body. Also shown are the excellent agreements found with the only available exact results in the open
literature [1], which corresponds to the free vibration characteristics of the eccentric elastic sphere (Fig. 1e). The

most important observations are summarized as follows.

Higher

order
>

modes
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Fig. 4. Variation of the first three frequency clusters with eccentricity parameter for the solid parallelepiped with an internal spherical cavity,
along with the first four three-dimensional mode shapes for selected eccentricity parameters.

The modal spectrums of elastic solids exhibit very unique characteristics. In the absence of eccentricity (€ = 0),
due to the presence of geometric symmetries, perfectly repeated fully degenerate (multiplet) frequencies are observed.
For example, one may consider the first frequency cluster (i.e., cluster I) associated with the spheroidal modes for
the concentric elastic sphere (i.e., see the first column of Fig. 6; also see [1]), for which there is a total of five fully
degenerate frequencies (note that only the first four mode shapes corresponding to sub-clusters Ia,b,c,d are displayed,
due to the space limit). Similarly, multiple degeneracies are observed for clusters II and III in Fig. 2, cluster I in
Fig. 3, clusters II and III in Fig. 4, clusters I and II in Fig. 5, and clusters I and II in Fig. 6. Also, a more careful
examination of mode shapes presented in the first column of each figure demonstrates that, due to problem symmetry,
certain mode shapes associated with the degenerate frequency clusters occur in pairs (i.e., they are exactly the same,
but merely rotated). In particular, the degenerate mode pairs Ila,b and Illa,b are observed in Fig. 2, modes Ia,b in
Fig. 3, modes Ia,b, IIa,b and Illa,b in Fig. 4, modesla,b and Ila,b in Fig. 5, and modes Ia,b, Ic.d, Ila,b, and Ilc,d in
Fig. 6.
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Fig. 5. Variation of the first two frequency clusters with eccentricity parameter for the finite cylinder with an internal cylindrical cavity, along
with the first four three-dimensional mode shapes for selected eccentricity parameters.

As eccentricity is introduced, characteristically different effects on natural frequencies are observed, depending
on the problem geometry and mode number. In particular, none of the frequency clusters remain fully degenerate,
and the imposed asymmetry causes some or all of the repeated vibration modes to split into modes with distinct
natural frequencies. More specifically, it is observed that clusters (II, III) are two-fold degenerate and split into
sub-clusters (Ila,b; IIla,b) in Fig. 2, cluster I is two-fold degenerate and split into sub-clusters Ia,b in Fig. 3, clusters
(I, III) are two-fold degenerate and split into sub-clusters (Ia,b; IIIa,b) while cluster II is three-fold degenerate and
splits into two-fold degenerate sub-clusters I1a,b in addition to an isolated sub-cluster Ilc in Fig. 4, clusters (I, II) are
two-fold degenerate and split into sub-clusters (Ia,b; I1a,b) in Fig. 5, clusters (I, II) are five-fold degenerate and each
split into two distinct two-fold degenerate sub-clusters (Ia,b; Ic,d; ITa,b; Ilc,d) in addition to isolated sub-clusters (Ie;
Ile) in Fig. 6. Here it is interesting to note that in case of the eccentric sphere (Fig. le; Fig. 6), four distinct pairs
of sub-clusters are observed to remain two-fold degenerate (i.e., sub-clusters Ia,b; Ic,d; Ila,b; Ilc,d). This can be
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Fig. 6. Variation of the first two frequency clusters with eccentricity parameter for the solid sphere with an internal spherical cavity, along with
the first four three-dimensional mode shapes for selected eccentricity parameters.

linked to preservation of some symmetry even in presence of eccentricity. Also, one should note that, as mentioned
earlier, such degenerate mode pairs are exactly the same, but are merely rotated. The latter observations are to some
extend valid for the eccentric cube problem (Fig. 1c) for which the cluster IIa,b remain two-fold degenerate, and
their associated modes occur in pairs, regardless of cavity eccentricity (see Fig. 4).

Now, it is clear from the various frequency-eccentricity subplots that besides splitting of eigen-frequencies, the
crossovers of different branches (i.e., “mode crossing” [1,2]) occur. At the crossover point, two or more modes
may share the same resonance frequency. In particular, one can clearly observe: external crossovers between
sub-clusters IIla and IIb as well as between sub-clusters IIla and Ila in Fig. 2, external crossovers between cluster 11
and sub-cluster Ib as well as between cluster II and sub-cluster Ia in addition to cluster III and several higher order
sub-clusters in Fig. 3, external crossovers between sub-clusters IIla and IIc as well as between sun-clusters IIla and
IIa,b in Fig. 4, internal crossover between sub-clusters Ile and Ilc,d in Fig. 6. At these crossovers, corresponding
to specific eccentricities, the previously split eigen-frequencies become degenerate. This implies that beyond the
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crossover eccentricity, the stiffness of structure in one vibration mode will interchange place with another (i.e.,
the phenomenon of “mode switching” [69,70] may occur as the cavity eccentricity varies across the cross-over
points). Another interesting observation is that the frequency spectrum curves associated with the breathing mode
in each case remains single-valued in the entire range of eccentricity. This can readily be observed with respect to
sub-cluster I'V displayed in Fig. 3 associated with the parallelepiped with an eccentric cylindrical cavity (see Fig. 1b).
Here it should be noted that, as the frequency clusters associated with the breathing mode for the remaining four
sub-problems (Figs 1a,c,d,e) arise at relatively high frequencies, they do not appear in the presented subplots (Figs 2,
4,5, 6). In other words, there is a single non-degenerate frequency associated with the breathing mode regardless of
cavity eccentricity.

4. Conclusions

A Chebyshev-Ritz numerical procedure based on the 3D elasticity theory is employed in this work to extract
the full vibration spectrum of natural frequencies along with selected3D deformed mode shapes for a class of
traction-free bonded elastic solids of canonical morphology (i.e., finite cylinders, solid spheres, and rectangular
parallelepipeds) weakened by presence of an eccentric spherical or cylindrical cavity. The most important observa-
tions are summarized as follows. For the elastic bodies with a perfectly concentric cavity, due to the presence of
geometric symmetries, either single-valued or completely repeated fully degenerate eigen-frequencies are obtained.
As eccentricity is introduced, characteristically different effects on natural frequencies are observed, depending on
the problem geometry and mode type. In particular, the majority of initially observed degeneracies are lifted, and
the imposed asymmetry causes some or all of the repeated vibration modes to split into modes with distinct natural
frequencies. Moreover, the degeneration of remaining pairs of eigen-frequencies for a few particular geometries
(e.g., the eccentric sphere and cube) is linked to preservation of some geometric symmetry even in presence of
cavity eccentricity for those geometries. Also, besides splitting of eigen-frequencies, the internal and/or external
crossovers (mode crossings)are frequently observed between different frequency branches. At these crossover points,
corresponding to specific eccentricities, the previously split eigen-frequencies become degenerate, and two or more
modes share the same resonance frequency. This implies that beyond the crossover eccentricity, the stiffness of
structure in one vibration mode will interchange place with another, and the phenomenon of “mode switching” may
occur as the cavity eccentricity varies across the cross-over points. Lastly, the frequency spectrum curves associated
with the breathing mode for each sub-problem is observed to remain single-valued in the entire range of eccentricity
(i.e., there is a single non-degenerate frequency associated with the breathing mode regardless of cavity eccentricity).

Appendix

The maximum kinetic and potential energy functions Eq. (7) may be written in a more condensed form as

2
Tax = p% ///K(w,y,z)d:v dy dz,

E
Vmax* m ///P(x,y,z)da:dydz

where

1%
1-2v
The origins of the following “un-starred” (Cartesian, Cylindrical, and Spherical) coordinate systems are positioned
at the center of each elastic body: (x,y, z), (r,0, 2), (R, 0, ¢). Similarly the “starred” coordinate systems, set at the

center of each cavity, are denoted by: (z*, y*, z*), (r*, 0%, z*),(R*, 6%, ¢*). The above volume integrals are to be
carried out over the domain bounded by the outer boundary of the elastic body (i.e., with respect to the “un-starred”

1
P(I,y,Z) = Fl(x,y,z)+§F2(x,y,z)+F3(x,y,z),
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coordinate system), and subsequently subtracted from the volume integral carried out over the cavity domain (i.e.,
with respect to the “starred” coordinate system), i.e.,

II] ax max max m dX
Tm ax — T Vmax = V

Where the subscripts “b” and “c” refer to the elastic body and the cavity, respectively. Subsequently, the triple
integrals will be evaluated after proper change of variables between certain coordinate systems relevant to each sub-
problem under consideration. Accordingly, the following standard transformations between the coordinate systems
will be employed in the subsequent formulation:

Cartesian-Cartesian transformation: © = 2* +¢e;, y =y* +ey, 2 =2+ ¢,
Cartesian-Cylindrical transformation: z = r cosf,y = rsinf,z = z
Cartesian-Spherical transformation: x = Rsin¢cosf, y = Rsin¢sinf, z = Rcos ¢.

Also, the proper sequence of change of coordinates implemented, and the associated volume integrals for each
sub-problem (see Fig. 1) are summarized below:

Sub-problem 1: Finite cylinder with an eccentric spherical cavity (Fig. 1a)

Elastic Cylinder: (z,y, z) to (r, 6, 2).
Spherical cavity: (z,y, z) to (z*,y*, 2*), and subsequently, (z*, y*, z*) to (R*, 8*, ¢*).

~—

L 27 b
2
Tnax — e ///K(rcos&,rsin&,z)MdT do dz,
2 a(r,0,z)
L0 0
9 T 2T a 8
T = % ///K(R* sin ¢* cos 0%, R* sin ¢” sin 0" + e,, R* cos ¢* + eZ)%
00 0

\_/

dr df dz,

b
/P(rcos@,rsin&,z)%
0

E |

pmax —
b 2(1+v) /
L

E s
max __
Ve C2(14v) //
0 0

Ow,y,z) O™ y",2")

8(17*, y*’ Z*) a(R*7 9*’ ¢*)

where the Jacobian determinant of the above transformations are given as:
Oays) _, Oayz) _ Oay.2)

/P (R*sin¢” cos 0™, R* sin ¢* sin 0™ + e, R* cos ¢™ + e)
0

dR*d6*d¢",

_ _ P2y
By ) o) oRGe) o
8( *7y* Z*) *2 . * ( 7y Z*) *
—_— Y = 7R Sln9 —_— Y =T .

Sub-problem 2: Solid parallelepiped with an eccentric cylindrical cavity (Fig. 1b)

Elastic parallelepiped: (z,y, z).
Spherical cavity: (x,y, z) to (x*, y*, 2*), and subsequently, (z*, y*, z*) to (r*, 0%, z*).
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L b

2
mdx: 5 ///ny, )dz dy dz,

—L —c—-b

5 L
ot |
—-L

L ¢ b

. E
‘/bma,x — m ///P(:z:,y,z)d:z:dde,

—L —c—b

27 a

//K (r* cos 0" + ey, r* sin 0" + ey, Z*)azc(i,;*:,zz)*) g((i*:z*:;)) dr*df*dz*,
00

L 27 a
. . Ix,y,2) O*,y* z")
VII]a.X J— P * 9* - * 9* , * d *d@*d *.
c 1+V /// (r cost” + ez, r sinl” + ey, 2 )8(x*,y*,z*) 8(r*,9*,z*) s ¥4
—LO0 O

Sub-problem 3: Solid parallelpiped with an eccentric spherical cavity (Fig. Ic)

Elastic parallelepiped: (z,y, z).
Spherical cavity: (z,y, z) to (z*,y*, 2*), and subsequently, (z*, y*, z*) to (R*, 8*, ¢*).

T;nax: ///ny, Ydx dy dz,

_L —c—b
T 27 a

max pr * v * * * K v * * *

T == K (R*sin¢” cos 0" + ey, R* sin¢” sin 0" + ey, R* cos ¢* +e;)
00 0

dz,y,2) Oz, y*,2")
d(z*,y*, z*) O(R*, 0%, ¢*)

L ¢ b
E
max _— P dre dyd
Vi ST +0) /// (z,y,2)dr dydz,
b

—L—c—

dR*d0*do*,

a

E s

e = m / P (R*sin¢* cos* + ez, R*sin ¢* sin0* + e, R* cos ¢™ + e)
0 0

Ox,y,2) O(z",y",z")

6(‘T*7y*’2*) a(R*’9*7¢*)

dR*d0*do*.
Sub-problem 4: Finite cylinder with an eccentric cylindrical cavity (Fig. 1d)

Elastic Cylinder: (x,y, z) to
Spherical cavity: (z,y, z) to (z*,y*, 2*), and subsequently, (z*, y*, z*) to (r*, 0%, z*).

b
/K (rcosf,rsiné, z)%dr dé dz,
0



S.M. Hasheminejad and Y. Mirzaei / Three dimensional vibration analysis of a class of traction-free solid elastic bodies 1355

27 a

L
2 o ox* uy*. z*
Tgnax — pw ///K('f'* COSQ*,T* Sine* +€y’2*)8 (:E»yaz) (x 7y y 2 )dT*dG*dZ*,
L O

2 (x*,y*, 2%) O(r, 0%, 2%)

L 27 b
max E : (:177y7 Z)
‘/b = m ///P(TCOSG,TSID&,Z)WCZT do dZ7
L0 0
[ 77 Dey.2) A y'.2)
: I?y?'z :17*7y*7z*
Vmax — P 0* * 0* * d *de*d *
o 2(1+V // (r*cos@*,r*sinf* + ey, 2 )8(35*,3/*,2*) a0, 07,2 r z
L0 0
Sub-problem 5: Solid sphere with an eccentric spherical cavity (Fig. Ie)
Elastic Cylinder: (z,y, 2) to (R, 0, ¢).
Spherical cavity: (z,y, z) to (z*,y*, 2*), and subsequently, (z*, y*, z*) to (r*, 0%, z*).
T 27 b
T, = ///K Rsin¢cosf, Rsin ¢sinf, RcosqS)ﬁdR db do,
00 0
9 T 2T a a
e = % ///K(R*sinqﬁ* cosf*, R*sin¢” sin0* + e,, R* cosgb*)%
00
A(a*,y*, 2*)
PE Y 2 ) GR*d6* de*
IO
T 27 b P
yymex — 1+u ///P(RsinchosO,Rsin¢sin0,Rcos¢)%dRd9 do,
00
T 27 a

ymax — 1 - ///P(R* sin ¢* cos 0, R* sin ¢* sin §* + e,;, R* cos ¢*)
v)
0 0

dz,y,z) Oz, y",2")

dR*df*do*.
A,y ) DR, 6, gy 1 d07do
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