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The free vibration of beams, subjected to a constant axial load and end moment and various boundary conditions, is examined.
Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the differential equations governing coupled
flexural-torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic beam, undergoing
linear harmonic vibration, are first reviewed.The existing formulations are then briefly discussed and a conventional finite element
method (FEM) is developed. Exploiting the MATLAB-based code, the resulting linear Eigenvalue problem is then solved to
determine the Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric bending-torsion
coupling. Various classical boundary conditions are considered and the FEM frequency results are validated against those obtained
from a commercial software (ANSYS) and the data available in the literature. Tensile axial force is found to increase natural
frequencies, indicating beam stiffening. However, when a force and an endmoment are acting in combination, themoment reduces
the stiffness of the beam and the stiffness of the beam is found to be more sensitive to the changes in the magnitude of the axial
force compared to the moment. A buckling analysis of the beam is also carried out to determine the critical buckling end moment
and axial compressive force.

1. Introduction

Beams are important and versatile structural elements as
many civil, mechanical, and aerospace structures are com-
monly modeled as preloaded beams or beam assemblies
[1]. In the past, many researchers have investigated the
vibration and stability of various beam structures subjected
to diverse loading and boundary conditions. As a result, the
governing differential equations of motion for various beam
configurations have been already developed. Therefore, from
past literatures, it is known that the tensile and compressive
axial loads affect the flexural stiffness of beams and increase
or decrease the uncoupled bending frequencies and critical
buckling loads of such elements. Apart from the above, vari-
ous coupled vibrational behaviors of beam structures, caused
by different geometric [2–10] and material couplings [11–
20], have also been thoroughly studied and their associated
findings have been well established. The coupled vibrations
and stability of axially loaded, or centrifugally stiffened, beam

elements have also been investigated [21–31]. However, the
literature on the effects of combined axial load and end
moment and the couplings resulting from the endmoment on
the stability and vibration characteristics of beams are scarce
[32–38].

Hashemi and Richard [2] used the frequency dependent
dynamic finite element (DFE) method, a hybrid method
developed in [3] that combines the accuracy of analytical
methods to the versatility of numerical methods, to conduct
a vibration analysis of beams that are geometrically coupled
in bending and torsion. An exact method has been used
to determine the flexural-torsional vibration characteristics
of a uniform beam with single cross-sectional symmetry by
Dokumaci [4]. The classical finite element method (FEM)
was used by Mei [5] to study the coupled vibration of thin
walled beams with an open section. This study included the
effects of warping stiffness. The flexural-torsional vibration
of a uniform beam was studied by Tanaka and Bercin [6] by
determining the exact solution of the governing differential

Hindawi Publishing Corporation
Shock and Vibration
Volume 2014, Article ID 153532, 11 pages
http://dx.doi.org/10.1155/2014/153532



2 Shock and Vibration

equations. An analytical dynamic stiffness matrix (DSM)
solutionwas formulated by Banerjee [7] for coupled bending-
torsion beam elements. Banerjee et al. [8] also developed an
exact DSM to investigate the vibration of an Euler-Bernoulli
thin walled beam and exploited the Wittrick and Williams
[9] root finding algorithm to extract the Eigensolutions. Once
again, Banerjee and Su [10] used the DSM to conduct a free
transverse and lateral vibration analysis of a beam coupled
with torsion.

Hashemi and Roach [11] also formulated a DFE solu-
tion for the free vibration of an extension-torsion cou-
pled composite beam. A quasi-exact DFE formulation for
the free vibration analysis of a three layered sandwich
beam, consisting of a thick, soft, low strength and density
core and two-face layers made of high strength material,
was developed by Hashemi and Adique [12]. Borneman
and Hashemi [13] developed a DFE for the free vibration
analysis of bending-torsion coupled laminated composite
wing beams. Bannerjee and his coworkers have used the
frequency-dependent DSMmethod for the vibration analysis
of isotropic [14], sandwich [15–17], and composite [18] beams.
Borneman et al. [19] also used theDSMmethod to investigate
the vibrational characteristics of a doubly coupled (material
and geometric) defective composite beam. Furthermore, a
DSM formulation was presented by Hallauer and Liu [20]
to determine the vibrational characteristics and generalized
masses of an aircraft wingmodelled as a series of three simple
beams.

Hashemi and his coauthors [21] developed a DFE formu-
lation to analyse the free vibration of centrifugally stiffened
(rotating) beams. Furthermore, Hashemi and Richard [22]
formed aDFE solution for the free vibration analysis of axially
loaded bending-torsion coupled beams. An axially loaded
isotropic Timoshenko beam coupled in bending and torsion
was studied by Banerjee and Williams [23]. Leung [24]
developed an exact DSM of a thin walled beam. Once again,
an analytical solution was formulated by Banerjee and Fisher
[25] to model a uniform, axially loaded, cantilevered beam
with flexural-torsional coupling as a result of noncoincident
shear and mass centers. The effects of warping have been
neglected in this study. Jun et al. [26] examined the coupled
flexural-torsional vibration of an axially loaded thin walled
beam with monosymmetrical cross sections by including
effects of warping. The effect of axial load has also been
previously studied by Murthy and Neogy [27] for clamped
and pinned boundary conditions, as well as by Gellert and
Gluck [28] for cantilevered boundary conditions. Bokaian
[29] determined the natural frequencies of a uniform single
span beam subjected to a constant tensile axial load for vari-
ous boundary conditions. The same author also investigated
the vibrational characteristics of a uniform single span beam
for ten different end conditions when a constant compressive
axial load is applied [30]. Shaker [31] conducted a modal
analysis to determine the effect of axial load on the mode
shapes and natural frequencies of beams.

It has been established byChen andAtsuta [39] that trans-
verse bending and torsion is coupled by static end moments
and that flexural-torsional buckling is comprised of this
transverse flexure and axial torsion. Analytical investigations

on the influence of axial loads and end moments on the
vibration of beams have been previously reported by Joshi
and Suryanarayan for a simply supported case [32] and other
boundary conditions [33]. Joshi and Suryanarayan [34] also
studied analytically the flexural-torsional instability of thin
walled beams subjected to axial loads and end moments.
The same authors examined the coupled bending-torsion
vibration of a deep rectangular beam that is initially stressed
as a result of the application of moments that vary along the
span [35]. Pavlović and Kozić [36] developed a closed form
analytical solution to investigate the effects of end moments
on a simply supported thin walled beam. Furthermore,
Pavlović et al. [37] also formulated the analytical solutions to
study a simply supported thin walled beam subjected to the
combined action of an axial force and end moment.

The reliability and accuracy of such modal analysis
results depend on the method implemented. A variety of
approaches for the analysis of these structures have been
proposed and implemented in the past, including analytical,
semianalytical, and numerical methods. Amongst these, the
classical FEM method, where beam element matrices are
evaluated from assumed fixed (namely, polynomial) shape
functions, has beenwidely used by investigators.This practice
results in approximate equations in the form of mass and
static stiffness matrices. A deviation from the conventional
FEM formulation would pay dividends if improved accuracy
of results can be obtained by using shape functions other
than polynomials. This is the case when the homogeneous
solution of the pertinent differential equation is available
for the development of each of the element matrices. For
static analysis, the use of the homogeneous solution of the
differential equation yields the exact stiffness matrix and load
vector for a beam element [40]. The use of other alternative
shape functions in dynamic FEM formulations has also been
explored.

The dynamic stiffness matrix (DSM) method offers a
better alternative particularly when higher frequencies and
better accuracies of results are required. It relies on a
single frequency-dependent matrix which has both mass
and stiffness properties. The use of a DSM in vibration
analysis is well established [14–18]. Obviously, the method
gives more accurate results because it exploits the exact
member theory. The matrix is obtained by directly solving
the governing differential equation. Other methods have also
been explored and reported which are more or less similar
to those explained previously. Some of them were developed
to treat a particular configuration and group of mechanical
systems.

A thorough investigation of the existing conventional
FEM and alternative DSM methods in beam vibrations has
led to the development of the DFE approach [3]. DFE bridges
the gap between the standard FEM and the exact DSM
methods by advantageously exploiting the generality of FEM
and the very precise frequency calculations provided byDSM
approach. From this point of view, the method retains the
physical aspect of analytical or semianalytical approaches and
the power of a numerical method. It has been shown that
DFE is an efficient tool for handling periodical structures or
systems composed of several identical substructures [3].
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All methods stated in the above-mentioned references
have their inherent advantages and shortcomings. There
exists a class of problems for which an exact solution can
be obtained. Nevertheless, in most cases, finding a general
exact solution for the normal modes and frequencies of
the system would be cumbersome, if not impossible, and
would involve complicated mathematical procedures. Thus,
recourse would bemade to one of approximate solutions such
as the Rayleigh-Ritz method [41, 42] or Galerkin’s method
[40].

The conventional finite element method (FEM), which
uses the Galerkin method of weighted residuals [40], is
widely accepted and used for structural analysis. The FEM
is adaptable to many complex systems, including those with
material and geometric variations, for example, nonuniform
geometry. However, it seems that a FEM-based thorough
investigation of the geometrically coupled flexural-torsional
vibration of beams, simultaneously subjected to both axial
force and end moment, and the coupling effects caused by
end moments have not been reported in the open litera-
ture. Therefore, in what follows, a classical FEM solution
of the above problem is presented and the static buckling
stability and the coupled free vibrations of preloaded thin
(Euler-Bernoulli) beams, subjected to various classical end
conditions (with ends free to warp), are investigated. The
axial load and end moment are varied and their effects on
the beam stiffness and natural frequencies are examined.
It is worth noting that, in addition to the conventional
beam stiffness and mass matrices [38, 40], the presented
formulation is characterized by a geometric stiffness matrix,
which includes uncoupled and coupled components. The
uncoupled component, in turn, is formed by two parts, one
associatedwith the flexure of axially loaded beams [38, 43, 44]
and another relative to the torsion. However, to the best of
authors’ knowledge, the coupling geometric stiffness matrix
resulting from the end moment has not been reported in the
literature. The presented FEM formulation is applicable to
the members composed of closed sections (e.g., rectangular
or square hollow sections), where the torsional rigidity (𝐺𝐽)

is very large compared with the warping rigidity (𝐸Γ), with
ends free to warp, that is, state of uniform torsion, where
the twist rate is constant along the span. The presented FEM
formulation, however, can also be extended to thin walled
beams with open cross sections, where torsion-related warp-
ing effects cannot be neglected.

2. Theory

Consider a linearly elastic, homogeneous, isotropic beam
subjected to an end moment, 𝑀, and an axial load, 𝑃,
undergoing linear vibrations. Euler-Bernoulli bending and
St. Venant torsion beam theories are used to derive the
governing differential equations of motion and a classical
finite element solution is developed. The end moments act
about the 𝑧-axis (lagwise); however, bending in the 𝑥-𝑦
plane (lagwise) is not considered and bending occurs in the
𝑥-𝑧 plane (flapwise). Thus, the end moments acting in the
lagwise direction introduce torsion to the system and create
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Figure 1: Beam with axial load and end moment applied at 𝑥 = 0

and 𝑥 = 𝐿.

flexural-torsional coupling. Figure 1 illustrates the geometry
of the studied system, where 𝐿, ℎ, and 𝑡 stand for the beam’s
length, width, and height, respectively.

The two governing differential equations of the beam are
as follows:

𝐸𝐼𝑤
󸀠󸀠󸀠󸀠

+ 𝑃𝑤
󸀠󸀠
+ 𝑀𝜃

󸀠󸀠
− 𝜌𝐴𝑤̈ = 0, (1)

𝐺𝐽𝜃
󸀠󸀠
+

𝑃𝐼
𝑃

𝐴
𝜃
󸀠󸀠
+ 𝑀𝑤

󸀠󸀠
− 𝜌𝐼
𝑃

̈𝜃 = 0, (2)

where 𝑤 stands for the transverse flexural displacement and
𝜃 represents the torsional displacement. The derivatives with
respect to the length of the beam and time are denoted by a
prime (󸀠) and a dot (⋅), respectively. In (1) and (2), the applied
moment and force are shown as 𝑀 and 𝑃, respectively.
The cross-sectional area of the beam is denoted by 𝐴. The
mass density is represented by 𝜌 and 𝐼

𝑃
stands for the polar

moment of inertia of the beam. The beam’s torsional rigidity
(𝐺𝐽) is assumed to be very large compared with its warping
rigidity (𝐸Γ), and ends are free to warp, that is, state of
uniform torsion. As can be observed from (1) and (2), the
system is coupled by the end moments,𝑀.

In order to eliminate the time dependency in (1) and (2),
simple harmonic vibration is considered and the following
transformations are used to describe the transverse and
torsional displacements:

𝑤 (𝑥, 𝑡) = 𝑊̂ sin (𝜔𝑡) , (3)

𝜃 (𝑥, 𝑡) = 𝜃 sin (𝜔𝑡) , (4)

where 𝜔 is the circular frequency and 𝑡 is the time. 𝑊̂ and
𝜃 are the transverse and torsional displacement amplitudes,
respectively.Upon substituting (3) and (4), (1) and (2) become

𝐸𝐼𝑊̂
󸀠󸀠󸀠󸀠

+ 𝑃𝑊̂
󸀠󸀠
+ 𝑀
𝑧𝑧
𝜃
󸀠󸀠
+ 𝜌𝐴𝜔

2
𝑊̂ = 0, (5)

𝐺𝐽𝜃
󸀠󸀠
+ 𝑃𝐼
𝑃
𝜃
󸀠󸀠
+ 𝑀
𝑧𝑧
𝑊̂
󸀠󸀠
+ 𝜌𝐼
𝑃
𝐴𝜔
2
𝜃 = 0. (6)
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The Galerkin method of weighted residuals [40] is employed
to develop the integral form of the above equations, where the
“hat” signs have been dropped for the sake of simplicity:

𝑊
𝑓
= ∫
𝐿

0

𝛿𝑊(𝐸𝐼𝑊
󸀠󸀠󸀠󸀠

+ 𝑃𝑊
󸀠󸀠
+ 𝑀
𝑧𝑧
𝜃
󸀠󸀠
+ 𝜌𝐴𝜔

2
𝑊)𝑑𝑥 = 0,

(7)

𝑊
𝑡
= ∫
𝐿

0

𝛿𝜃 (𝐺𝐽𝜃
󸀠󸀠
+

𝑃𝐼
𝑃

𝐴
𝜃
󸀠󸀠
+ 𝑀
𝑧𝑧
𝑊
󸀠󸀠
+ 𝜌𝐼
𝑃
𝜔
2
𝜃) 𝑑𝑥 = 0,

(8)

where 𝛿𝑊 and 𝛿𝜃 (i.e., weighting functions) represent the
transverse and torsional virtual displacements, respectively.
Performing integration by parts on (7) and (8) leads to the
weak integral form of the governing equations, written as

𝑊
𝑓
= ∫
𝐿

0

(𝐸𝐼𝑊
󸀠󸀠
𝛿𝑊
󸀠󸀠
− 𝑃𝑊

󸀠
𝛿𝑊
󸀠
+ 𝑀𝜃

󸀠
𝛿𝑊
󸀠

+𝜌𝐴𝜔
2
𝑊𝛿𝑊)𝑑𝑥 +

�������������
[(𝐸𝐼𝑊

󸀠󸀠󸀠
+ 𝑃𝑊

󸀠
+ 𝑀𝜃

󸀠
) 𝛿𝑊]

𝐿

0

−�������
[(𝐸𝐼𝑊

󸀠󸀠
)𝛿𝑊
󸀠
]
𝐿

0
= 0,

(9)

𝑊
𝑡
= ∫
𝐿

0

(𝐺𝐽𝜃
󸀠
𝛿𝜃
󸀠
+

𝑃𝐼
𝑃

𝐴
𝜃
󸀠
𝛿𝜃
󸀠
+ 𝑀𝑊

󸀠
𝛿𝜃
󸀠
− 𝜌𝐼
𝑃
𝜔
2
𝜃𝛿𝜃) 𝑑𝑥

−
�������������
[(𝐺𝐽𝜃

󸀠
+

𝑃𝐼
𝑃

𝐴
𝜃
󸀠
+ 𝑀𝑊

󸀠
)𝛿𝜃]
𝐿

0

= 0.

(10)

Expressions (9) and (10) also satisfy the principle of virtual
work:

𝑊 = 𝑊INT − 𝑊EXT = 0, (11)

where

𝑊EXT = 0, (12)

and thus

𝑊INT = 𝑊
𝑓
+ 𝑊
𝑡
. (13)

The total virtual work, internal virtual work, and external
virtual work are denoted by𝑊,𝑊INT, and𝑊EXT, respectively.
The resulting shear force 𝑆(𝑥), bending moment 𝑀(𝑥), and
torsional torque 𝑇(𝑥), defined as

𝑀(𝑥) = −𝐸𝐼𝑊
󸀠󸀠
, (14)

𝑆 (𝑥) = 𝐸𝐼𝑊
󸀠󸀠󸀠

+ 𝑀𝜃
󸀠
+ 𝑃𝑊

󸀠
, (15)

𝑇 (𝑥) = 𝐺𝐽𝜃
󸀠
+

𝑃𝐼
𝑃

𝐴
𝜃
󸀠
+ 𝑀𝑊

󸀠
, (16)

are zero at the free end and the displacements are set to zero
at the fixed boundaries. As a result, the bracketed boundary
terms in expressions (9) and (10) vanish for all boundary
conditions. The system is then discretized using elements

1 2

𝜃j+1

𝜃j

Wj,W
󳰀
j

NE + 1NEWj+1,W
󳰀
j+1

Figure 2: System discretized using elements with 3 degrees of
freedom per node.

with 2 nodes and three DOF per node as shown in Figure 2
such that

𝑊 = 𝑊INT =

No. of Elements
∑
𝑘=1

𝑊
𝑘

=

No. of Elements
∑
𝑘=1

𝑊
𝑘

𝑓
+ 𝑊
𝑘

𝑡
.

(17)

Nodal DOFs are lateral displacement 𝑤, rotation (i.e., slope)
𝑤󸀠, and torsional displacement 𝜃. The classical finite ele-
ment formulation is developed using cubic Hermite type
polynomial approximations for bending displacement (18)
and linear approximations for torsional displacements (19)
introduced in the weak integral form of the governing
equations such that, for a two-node, three-degree-of-freedom
per node element,

𝑤 (𝑥) = ⟨1 𝑥 𝑥
2 𝑥3⟩{𝐶

1
} , (18)

𝜃 (𝑥) = ⟨1 𝑥⟩{𝐶
2
} . (19)

In (18) and (19) above 𝐶
1
and 𝐶

2
are columns vectors of

unknown constant coefficients.The vectors of nodal displace-
ment for bending and torsion are shown below:

{𝑊
𝑛
} =

{{{

{{{

{

𝑊
1

𝑊󸀠
1

𝑊
2

𝑊󸀠
2

}}}

}}}

}

=
[
[
[

[

1 0 0 0

0 1 0 0

1 𝑙 𝑙
2 𝑙3

0 1 2𝑙 3𝑙2

]
]
]

]

{𝐶
1
} = [𝑃

𝑛,𝑤
]{𝐶
1
} , (20)

{𝜃
𝑛
} = {

𝜃
1

𝜃
2

} = [
1 0

1 𝑙
] {𝐶
2
} = [𝑃

𝑛,𝑡
] {𝐶
2
} . (21)

Thus,

𝑊(𝑥) = ⟨1 𝑥 𝑥2 𝑥3⟩ [𝑃
𝑛,𝑤

]
−1

{𝑊
𝑛
} = ⟨𝑁 (𝑥)⟩ {𝑊

𝑛
} ,

(22)

𝜃 (𝑥) = ⟨1 𝑥⟩ [𝑃
𝑛,𝑡
]
−1

{𝜃
𝑛
} = ⟨𝐿 (𝑥)⟩{𝜃

𝑛
} , (23)

where ⟨𝑁(𝑥)⟩ and ⟨𝐿(𝑥)⟩ are both row vectors comprising
cubic and linear shape functions for bending and torsion,
respectively. The cubic shape functions 𝑁

1
, 𝑁
2
, 𝑁
3
, and 𝑁

4

are

𝑁
1
(𝑥) =

2𝑥
3

𝑙3
−

3𝑥
2

𝑙2
+ 1, 𝑁

2
(𝑥) =

𝑥
3

𝑙2
−

2𝑥
2

𝑙
+ 𝑥,

𝑁
3
(𝑥) =

−2𝑥3

𝑙3
+

3𝑥2

𝑙2
, 𝑁

4
(𝑥) =

𝑥3

𝑙2
−

𝑥2

𝑙
.

(24)

The linear shape functions 𝐿
1
and 𝐿

2
are defined as

𝐿
1
(𝑥) = 1 −

𝑥

𝑙
, 𝐿

2
(𝑥) =

𝑥

𝑙
. (25)

This discretizing process leads to the element stiffness and
mass and coupling matrices which when assembled together
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within the FEM code written inMATLABwould result in the
linear Eigenvalue problem shown in

⟨𝛿𝑊
𝑛
⟩ (𝐾 − 𝜔

2
𝑀) {𝑊

𝑛
} = 0,

det (𝐾 − 𝜔
2
𝑀) = 0,

(26)

where 𝐾 stands for the global stiffness matrix, which is a
collection of all the element stiffness matrices. The global
mass matrix is symbolized by 𝑀.

Matrix (27a) shown below is the element mass matrix,
[𝑚]
𝑘, and matrices (27b) through (27f) are the uncoupled,

coupled, and geometric element stiffness matrices. When
matrices (27b) through (27f) are assembled together, the final
element stiffness matrix would result.This is shown asmatrix
(27g). Consider

[𝑚]
𝑘
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

156𝑚𝑙

420

22𝑚𝑙2

420
0

54𝑚𝑙

420

−13𝑚𝑙2

420
0

4𝑚𝑙
3

420
0

13𝑚𝑙
2

420

−3𝑚𝑙3

420
0

𝜌𝐼
𝑃
𝑙

3
0 0

𝜌𝐼
𝑃
𝑙

6
156𝑚𝑙

420

−22𝑚𝑙2

420
0

Sym.
4𝑚𝑙3

420
0

𝜌𝐼
𝑃
𝑙

3

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(27a)

where 𝑙 stands for the element length and 𝑚 represents
the element mass per unit length. The element uncoupled
bending stiffness matrix, [𝑘

𝐵
], is shown below:

[𝑘
𝐵
] =

[
[
[
[
[
[
[
[
[
[

[

12𝐸𝐼

𝑙3
6𝐸𝐼

𝑙2
−12𝐸𝐼

𝑙3
6𝐸𝐼

𝑙2

4𝐸𝐼

𝑙

−6𝐸𝐼

𝑙2
2𝐸𝐼

𝑙

Sym.
12𝐸𝐼

𝑙3
−6𝐸𝐼

𝑙2

4𝐸𝐼

𝑙

]
]
]
]
]
]
]
]
]
]

]

. (27b)

The final element stiffness matrix is modified due to the
presence of the end moment and axial load which con-
tributes the [𝑘]geometric matrix, [𝑘]torsion matrix, bending-
torsion coupling stiffness matrix, [𝑘

𝐵𝑇
]
𝑐
, and the torsion-

bending coupling stiffness matrix, [𝑘
𝑇𝐵

]
𝑐
. These are added to

the bending stiffness matrix, [𝑘
𝐵
], above, to form the final

element stiffness matrix, [𝑘]
𝑘. The geometric and torsion

stiffness matrices contributed by the axial load 𝑃 are shown
below:

[𝑘]geometric = 𝑃

[
[
[
[
[
[
[
[
[
[
[
[

[

6

5𝑙

1

10

−6

5𝑙

1

10

2𝑙

15

−1

10

−𝑙

30

Sym.
6

5𝑙

−1

10

2𝑙

15

]
]
]
]
]
]
]
]
]
]
]
]

]

, (27c)

[𝑘]torsion = (
𝐺𝐽

𝑙
+

𝑃𝐼
𝑃

𝐴𝑙
) [

1 −1

−1 1
] . (27d)

The bending-torsion and torsion-bending coupling stiffness
matrices introduced by the end moment𝑀 are as follows:

[𝑘
𝐵𝑇

]
𝑐
=

𝑀

𝑙
[

1 0 −1 0

−1 0 1 0
] , (27e)

[𝑘
𝑇𝐵

]
𝑐
=

𝑀

𝑙

[
[
[

[

1 −1

0 0

−1 1

0 0

]
]
]

]

. (27f)

Therefore, the final element stiffness matrix, which is a
collection of the five submatrices, takes the following form:

[𝑘]
𝑘
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

12𝐸𝐼
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−
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+
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Sym.
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. (27g)
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Table 1: FEM results versus exact data for the first three natural frequencies at 𝑃 = 0 and𝑀 = 0.

Boundary condition
Natural frequencies (Hz) at P = 0 andM = 0

Mode 1 Mode 2 Mode 3
Exact [38] FEM (40 elements) Exact [38] FEM (40 elements) Exact [38] FEM (40 elements)

C-F 2.556 2.556 15.995 15.995 44.858 44.858
C-C 16.266 16.266 44.858 44.858 87.970 87.970
P-P 7.175 7.175 28.718 28.718 64.633 64.633
P-C 11.209 11.209 36.351 36.351 75.611 75.611

The solution to the linear Eigenvalue problem in (26) is
achieved by determining the Eigenvalues and Eigenvectors
using a FEM code developed in MATLAB. Various classical
boundary conditions are also applied within the MATLAB
code. Thus, the natural frequencies and mode shapes of the
beam are evaluated.

It is worth noting that if the beam’s warping rigidity (𝐸Γ)

is large compared with its torsional rigidity (𝐺𝐽), then torsion
equation (2) changes to a 4th-order differential equation, sim-
ilar in form to the bending equation (1).While the above FEM
formulation is developed for the state of uniform torsion, in
that case, following the above-presented procedure and using
cubic interpolation functions similar to (24) instead of linear
ones (25), to express torsional displacements, the presented
formulation can be extended to also include the warping
effects. The development of such formulation, however, is
beyond the scope of this paper.

3. Numerical Results

In this section, the validity and practical applicability of
the presented FEM procedure are demonstrated through
consideration of various examples. A generic beam made of
structural steel, subjected to different combinations of axial
load, end moment, and end conditions, is first investigated.
In a second case study, the comparison is made between
the FEM frequency results and limited experimental data
available in the open literature.

At first, let us consider a beam made of structural steel
(𝐸 = 200GPa and 𝜌 = 7800 kg/m3), with a length of 8m,
width of 0.4m, and depth of 0.2m. The first stage of the
numerical tests was to validate the developed FEM code.
Due to the lack of analytical results for the preloaded cases,
the accuracy of the natural frequency values from the code
was established by comparing with the analytical data for
an unloaded beam. Table 1 includes the results for the first
three natural frequencies for various boundary conditions
(with ends free to warp) using the exact method [38] and
a 40-element FEM mesh. As it can be observed, the results
produced by the exact and the FEMmethods are identical and
as such the FEM code generates accurate results.

The FEM mesh size was chosen based on a convergence
test, as is presented in Figure 3. For this, a cantilever beam,
subjected to 1.85MN of tensile force and 9.21MN⋅m of end
moment, was used. With a focus on higher frequencies,
the fifth mode in this case, the FEM convergence was
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Figure 3: FEM convergence analysis; the fifth natural frequency of
preloaded cantilevered beam.

investigated by increasing the numbers of elements from
10 to 1000, as there were no analytical results available for
similar cases. The fifth natural frequency was observed to
remain at 88.243Hz, when 200 or more elements were used.
Thus, for the given configuration, the 88.243Hz value is taken
as the exact reference result for the 5th natural frequency.
However, since it is apparent that a 40-element mesh results
in an error less than 0.01 percent, such a mesh size was
considered as reasonable for further studies. Furthermore, it
is important to note that convergence of the results for the
first four fundamental frequencies was also checked and it
was observed that these results converged to the analytical
result with an even smaller number of elements.

The accuracy of the results produced by the presented
FEM method was also verified using a prestressed modal
analysis conducted using ANSYS-14 commercial software,
where SOLID-187 elements were used. The SOLID-187 ele-
ment is a higher order, 3D, 10-node element, capable of 6
degrees of freedom (3 translations and 3 rotations) per node.

Tables 2, 3, 4, and 5 present the FEM fundamental
frequencies for the beam subjected to different combina-
tions of tensile force and end moment and various bound-
ary conditions, cantilevered (C-F), clamped-clamped (C-C),
pinned-pinned (P-P), and pinned-clamped (P-C), respec-
tively. Table 2 also includes a comparison of the results from
the developed FEM solution with those from the ANSYS
software, which shows a maximum error of 1.3 percent at
𝑃 = 0 and 𝑀 = 9.21MN ⋅ m.These errors may be attributed
to the fact that the ANSYS software incorporates the effects
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Table 2: Fundamental frequencies for cantilever beam subjected to force and end moment.

C-F
End moment

0 (MN⋅m) 6.14 (MN⋅m) 9.21 (MN⋅m)
Fundamental frequency (Hz)

Force (MN) ANSYS FEM code 40 elements ANSYS FEM code 40 elements ANSYS FEM code 40 elements
0 2.555 2.556 2.241 2.234 1.749 1.727
0.62 2.883 2.884 2.620 2.614 2.233 2.216
1.23 3.168 3.169 2.939 2.934 2.614 2.600
1.85 3.421 3.422 3.217 3.213 2.934 2.922

Table 3: Fundamental frequencies for clamped-clamped boundary
condition (C-C), when force and end moment are applied; a 40-
element FEMmodel is used.

C-C End moment (MN⋅m)
0 6.14 9.21

Force (MN) FEM fundamental frequency (Hz)
0 16.266 16.141 15.984
0.62 16.413 16.290 16.134
1.23 16.559 16.437 16.283
1.85 16.703 16.582 16.430

Table 4: Fundamental frequencies for pinned-pinned boundary
condition (P-P), when force and end moment are applied; a 40-
element FEMmodel is used.

P-P End moment (MN⋅m)
0 6.14 9.21

Force (MN) FEM fundamental frequency (Hz)
0 7.175 6.947 6.651
0.62 7.440 7.220 6.935
1.23 7.695 7.483 7.208
1.85 7.942 7.736 7.471

Table 5: Fundamental frequencies for pinned-clamped boundary
condition (P-C), when force and end moment are applied; a 40-
element FEMmodel is used.

P-C End moment (MN⋅m)
0 6.14 9.21

Force (MN) FEM fundamental frequency (Hz)
0 11.209 11.040 10.824
0.62 11.408 11.242 11.031
1.23 11.604 11.441 11.233
1.85 11.796 11.636 11.432

of shear deformation and rotary inertia into the calculations.
The data tabulated in Tables 2 through 5 are also graphically
presented in Figures 4, 5, 6, and 7. The critical buckling
end moments and compressive forces were also determined
for the cantilevered boundary condition and the results are
shown in Tables 6 and 7, respectively. These tabulated data
are also graphically presented in Figure 8. Finally, Figures 9
and 10 depict the bending and torsional components of the

Table 6: Critical buckling end moment versus compressive force;
cantilevered boundary condition.

Force (MN) Buckling moment (MN⋅m)
−1.85 3.900
−1.23 7.750
−0.62 10.60
0 12.28
0.62 13.76
1.23 15.57
1.85 16.95
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Figure 4: Variation of the fundamental frequency with tensile force
and end moment; cantilevered (C-F) boundary condition.

first five natural modes, for the preloaded (𝑃 = 1.85MN and
𝑀 = 9.21MN ⋅m) cantilevered beam.

Consider now the axially loaded, industrial aluminum
beam (𝐸 = 70GPa and 𝜌 = 2700 kg/m3), with a length of
1495mm, and rectangular cross section of 50mm in width
and 10mmin depth, as reported by Laux (2012) [45]. The
first three natural frequencies of the beam, subjected to
different axial loads, are calculated using the presented FEM
formulation and are presented in Table 8, along with ANSYS
results and experimental data reported in [45]. Different
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Figure 6: Variation of the fundamental frequency with tensile force
and end moment; pinned-pinned (P-P) boundary condition.

mesh sizes are used and, as can be seen from the table, for the
first and second natural frequencies, a 5-element coursemesh
and a 40-element fine mesh both lead to almost identical
results. For the 3rd natural frequency, however, there is a
slight difference of 0.5% between the results obtained from
the two meshes. The FEM and ANSYS results are found to
be in excellent agreement with the experimental data, with
a maximum difference of less than 1%. For the case in hand,
however, there is no experimental buckling data available for
comparison (refer to Table 9).
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Figure 7: Variation of the fundamental frequency with tensile force
and end moment; clamped-pinned (C-P) boundary condition.

Table 7: Critical buckling compressive force versus end moment;
cantilevered boundary condition.

Moment (MN⋅m) Buckling force (MN)
0 −2.057
3.07 −1.900
6.14 −1.750
9.21 −0.900

4. Discussion and Conclusion

The bending-torsion vibration and buckling of beams, sub-
jected to axial load and endmoment, were revisited. Neglect-
ing the shear deformation, rotary inertia, andwarping effects,
the differential equations of motion, coupled by the end
moment, were discussed. Exploiting the cubic and linear
interpolation functions for bending and torsional displace-
ments, respectively, together with theGalerkin-typeweighted
residual method, a finite element is developed. Frequency
and stability analyses of two illustrative examples are carried
out and the FEM results are compared with those obtained
from ANSYS software and the data available in the literature.
The presented FEM results showed excellent agreement with
those obtained from ANSYS and experimental data. As
expected, tensile axial load increases the natural frequencies
of the beam, indicating an increase in the stiffness of the
beam for all classical boundary conditions. When only the
end moment is applied, the natural frequencies reduce for
all boundary conditions, indicating a reduction in stiffness
of the beam. If the end moment is held constant and the
tensile load is increased, the natural frequencies increase
indicating an increase in the beam stiffness. Conversely, if the
tensile load is held constant and the endmoment is increased,
the beam stiffness reduces. A compressive axial load has
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Figure 8: Variation of critical buckling compressive force with end moment.

Table 8: Comparison between the experimental and FEM natural frequencies versus axial load, for an aluminum fixed-fixed beam.

Axial load (N) 1st nat. freq. (Hz) 2nd nat. freq. (Hz) 3rd nat. freq. (Hz)
Exp. [45] FEM (5/40) ANSYS (5/40) Exp. [45] FEM (5/40) ANSYS (5/40) Exp. [45] FEM (5/40) ANSYS (5/40)

1962 36.0 36.1 36.1 93.1 94.0/94.0 94.1/94.0 177.0 180.3/179.1 180.5/179.5
4022 40.0 40.1 40.1 98.9 99.8/99.9 99.8/99.8 184.0 187.7/185.8 187.7/186.6
6671 44.5 44.6 44.6 106.6 107.4/107.4 107.4/107.4 193.9 196.5/195.5 196.7/196.1
7750 46.4 46.5 46.5 109.6 110.5/110.5 110.6/110.6 197.6 200.9/199.7 201.2/200.0
9810 49.5 49.6 49.6 114.9 115.7/115.6 115.6/115.5 204.4 207.4/205.8 207.4/206.2
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Figure 9: Bending component of the first five natural modes;
preloaded cantilevered beam.

the opposite effect and the critical buckling moment reduces
with a progressive increase in the compressive load applied.
The coupled vibration of the beam, however, is found to be
predominantly flexural in the first few natural frequencies
(the first three, for the case studied here) and torsion becomes
predominant in a higher natural frequency.

Finally, it is worth noting that the presented FEM is
designed to account for the axial load, end moment, or
combined effects automatically. In contrast, carrying out
a similar analysis using the FEM-based software available
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Figure 10: Torsional components of the first five natural modes;
preloaded cantilevered beam.

(ANSYS, e.g.) needs special attention, as the preloads should
be introduced in the model through a prestressed analysis.
Furthermore, contrary to the analytical formulations, the
presented FEM formulation can also be readily extended
to the dynamic and stability analyses of (non-)uniform
preloaded layered beams and beam structures, to include
the warping effects, neglected in the present study, and to
analyze beam-like structural components exhibiting other
types of coupled behaviour, for example, geometric coupling
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Table 9: Critical buckling force versus end moment; fixed-fixed
aluminum beam.

Moment (N⋅m) Buckling Force (N)
FEM (5/40) ANSYS (40)

0 708/707 698
50 669/669 661
100 551/551 549
150 354/348 346
205 47/46 35

noncoincident elastic and inertial axes, or material couplings
in composite beams.
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