
Research Article
Intelligent Diagnosis Method for Centrifugal Pump System
Using Vibration Signal and Support Vector Machine

Hongtao Xue,1 Zhongxing Li,1 Huaqing Wang,2 and Peng Chen3

1 School of Automotive and Traffic Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
2 Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang, Beijing 100029, China
3 Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan

Correspondence should be addressed to Huaqing Wang; wanghq buct@hotmail.com and Peng Chen; chen@bio.mie-u.ac.jp

Received 27 May 2014; Revised 28 August 2014; Accepted 28 August 2014; Published 4 November 2014

Academic Editor: Didier Rémond
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This paper proposed an intelligent diagnosis method for a centrifugal pump system using statistic filter, support vector machine
(SVM), possibility theory, and Dempster-Shafer theory (DST) on the basis of the vibration signals, to diagnose frequent faults
in the centrifugal pump at an early stage, such as cavitation, impeller unbalance, and shaft misalignment. Firstly, statistic filter is
used to extract the feature signals of pump faults from the measured vibration signals across an optimum frequency region, and
nondimensional symptom parameters (NSPs) are defined to represent the feature signals for distinguishing fault types. Secondly,
the optimal classification hyperplane for distinguishing two states is obtained by SVM and NSPs, and its function is defined as
synthetic symptom parameter (SSP) in order to increase the diagnosis’ sensitivity. Finally, the possibility functions of the SSP are
used to construct a sequential fuzzy diagnosis for fault detection and fault-type identification by possibility theory and DST. The
proposed method has been applied to detect the faults of the centrifugal pump, and the efficiency of the method has been verified
using practical examples.

1. Introduction

Pumps come in several types such as centrifugal, turbo, pro-
peller, and positive displacement. Irrigation pumping plants
are usually of the centrifugal type [1]. A centrifugal pump
plays an important role in industries. However, faults of
pump can cause a high rate of energy loss associated with
performance degradation, even the breakdown of a whole
system, and then lead to substantial economic losses. There-
fore, condition diagnosis of the pump system at an early stage
is very important.

Different approaches have been used for fault detection of
centrifugal pumps. Studies in [2–4] adopted indirect param-
eters or interrelated parameters to identify the faults but did
not consider the features of a vibration signature. However,
it is gradually being understood that vibration signature is
the most revealing information reflecting the condition of
rotating machinery [5–7]. Vibration signals were employed
for fault detection and condition monitoring in [8–21], so it

is important that fault signal should be sensitively extracted
from the measured signal when fault occurs. However, it is
difficult since fault signal is so weak that it is often buried
in strong noise, especially at an early stage. Studies in [8–
14] presented that wavelet analysis could detect effectively
condition change. However, different wavelet basis functions
were adopted. Moreover, the features of vibration signals
were captured in different frequency areas [14]. Therefore,
the line between the application of wavelet analysis and the
construction of an automatic system is drawn.

For noise cancelling, namely, extracting fault signal,many
methods have been proposed. For example, band-pass filter
[22], adaptive filter [23], Wiener filter [24] and Kalman filter
[25], and so forth. However in the field of machinery diagno-
sis, these methods cannot always be applied to failure signal
extraction, due to the following adverse conditions. Firstly, in
the case of the band-pass filter, the wide band noise cannot
be cancelled. Secondly, when applying the adaptive filter for
noise cancelling, the reference noise must be simultaneously
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measured with the signal. Simultaneous measurement of the
reference noise is not easily realized in most cases of fault
diagnosis. Finally, the noise cannot be effectively removed
by the Wiener filter and Kalman filter if noise and signal do
not follow the normal distribution. In order to overcome the
problems above, we used the statistic filter to extract the fault
signal from the vibration signal measured in the abnormal
state of a machine.

Fault diagnosis can hardly do without intelligent systems
such as neural networks (NN) and support vector machine
(SVM). Studies in [14–16] have been carried out to investigate
the use of NN for detecting fault and identifying fault types.
However, the conventional NN cannot reflect the possibility
of ambiguous diagnosis problems and will never converge
when the first layer symptom parameters have the same val-
ues in different states [26]. Studies in [17–20] have employed
SVMs to perform fault diagnosis, and the capability of
SVMswhich can efficiently perform a nonlinear classification
with kernel function has been confirmed. However, it is
difficult to determine the parameters for a given value of
the regularization and kernel parameters and to choose an
appropriate kernel function.

For the above reasons, in order to process the uncertain
relationship between symptom parameters (SPs) and ma-
chinery conditions, improve the efficiency and accuracy of
fault diagnosis at an early stage, and achieve an automatic
system from measured signals, the authors propose an intel-
ligent diagnosis for a pump system using support vector
machine (SVM), possibility theory, and Dempster-Shafer
theory (DST) on the basis of the vibration signals, to detect
faults and identify fault types at an early stage, as is shown in
the flowchart in Figure 1. The statistic filter is used to detect
and extract the failure signals of pump faults across optimum
frequency regions, and the failure signals extracted are
reflected by nondimensional symptom parameters (NSPs). In
order to increase the diagnosis’ sensitivity, a synthetic symp-
tom parameter (SSP) is defined with the function of the opti-
mal classification hyperplane obtained using SVM. Then the
possibility distributions of the SSPs are used to detect faults
and identify fault types by possibility theory andDST. Finally,
the proposedmethod is evaluated using practical examples of
centrifugal pump, which shows a good performance.

2. Experimental Centrifugal Pump System for
Condition Diagnosis

Figure 2 shows the testing bed consisting of a pump, a motor,
and a close-loop water piping system. The SF-JRO series
motor is employed to drive the pump through a coupling,
and the rotating speed can be controlled via control panel.
The experimental pump is a centrifugal pump described as
follows: HONDA Pump, Type: HAS (Volute Pump Horizon-
tal Type), Head: 40, Output: 3.7 kW, and Capacity: 7.5m3/h.
The capacity of the tank is based on the maximum flow rate
which can also be controlled by the valve control system. Five
accelerometers are adopted to acquire the vibration signals
with a sampling frequency of 50 kHz. One is mounted on
the pump housing, two in the piping direction and vertical

Measure vibration signals in each state

Obtain optimal classification hyperplane by SVM and NSPs

Calculate NSPs in each state

Calculate SSP and construct possibility distributions of SSP

Diagnose using possibility theory and DST

Extract feature signals by statistic filter

Figure 1: Flowchart of intelligent diagnosis.

Figure 2: Photograph of the experiment centrifugal pump system.

direction of the pump inlet, respectively, the rest in the piping
direction and horizontal direction of the pump outlet, as
shown in Figure 3.

Cavitation phenomenon is one of the sources of instabil-
ity in a centrifugal pump. Bubbles collapse abruptly leading
to damage of the pump and generation of crackling sound
and vibration [27]. Other faults, such as impeller unbalance
and shaftmisalignment between themotor and the pump, are
discriminated easily, but often occur in pump system. These
faults can cause serious machine accidents and bring great
production losses. Therefore, these states with normal state
will be discussed to examine whether incipient faults of a
pump were able to be detected using the proposed method
in a later section.When the pump speed was at 3500 rpm and
the valves in the suction and discharge lines were fully open,
the pumpwas in the best situation of operation.The condition
was seen as normal state. Then the conditions of the speed
and the valve in the discharge line remained unchanged; the
valve in the suction line was slowly turned down until little
bubbles appeared. At present the condition was the cavitation



Shock and Vibration 3

Accelerometer

Figure 3: The location of sensors.

state with the mild abnormal degree. Sequentially, the valve
in suction line was turned down; the amounts of bubbles
were used to decide the cavitation state with the medium and
severe abnormal degree. In the case of impeller unbalance due
to impeller damage, the damage areas from three impellers
were 25mm2, 100mm2, and 225mm2, respectively. Then the
states that used three impellers were defined as impeller
unbalance with the mild, medium, and severe abnormal
degree. Similarly, the states that the pump side of the shaft
was installed to deviate 0.1mm, 0.5mm, and 1.0mm beyond
its specified limit were defined as shaft misalignment with
different abnormal degrees.

3. Feature Extraction Using Statistic Filter

3.1. Statistic Filter. Statistic filter is a filter which takes in a
packet and decides whether to accept or reject it on the basis
of the statistical approach [28]. In the field ofmachinery diag-
nosis, studies in [29] have investigated that the filter based
on means of statistical tests of spectrums was convenient and
effective for extracting pure failure signals.Here, statistic filter
based ondistinction index (DI) of spectrums betweennormal
signal andmeasured signal is proposed, as shown in Figure 4.

Measured normal signal and diagnosis signal can be
divided into𝑁 parts. Spectrum analysis is performed on each
part which generates one spectrum content. Going through
all signal parts, the spectrum content𝐹
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In order to determine whether there is significant differ-
ence between the spectrums 𝐹
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According to the nature of the normal distribution, the
probability of 𝑧 = 𝑥

2
− 𝑥
1
(𝑥
2
≥ 𝑥
1
) is also 𝑝; then the

probability of 𝑧 is 2𝑝. However, 𝑧 shows the overlapping part
of normal and diagnosis states; the distinction probability of
normal state or diagnosis state is 1 − 2𝑝; then the distinction
rate (DR) is defined as follows:

DR = 1 − 2𝑝. (2e)

In [30–32], DI has been used to judge the sensitivity
of a symptom parameter (SP), and it also has been proved
that the larger the value of the DI, the higher the DR value
will be and then the higher the sensitivity of the SP will be.
Moreover, when the DI value is more than 1.28, the DR value
is more than 0.9, but the probability of 𝑧 is less than 0.1.
In statistics, significance levels, such as 0.1, 0.05, or 0.01, are
used, depending on the field of study. Here, 0.1 level is used
to determine whether there is a difference between 𝐹
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), as shown
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Estimated fault spectrum
(when fault occurs)

Statistical comparison between spectrums
of normal signal and diagnosis signal

Estimated noise spectrum

The signal measured for diagnosis

Normal signal
measured in advance

IFFT

Estimated fault time signal

Distinction index
of spectrum

Figure 4: The principle of statistic filter based on distinction index (DI) of spectrums.
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in Figure 5(A1), is 1.87; then 𝐹
𝑑
(𝑓
1
) is left. However, the DI

value between 𝐹
𝑛
(𝑓
2
) and 𝐹

𝑑
(𝑓
2
), as shown in Figure 5(A2),

is 0.79; then 𝐹
𝑑
(𝑓
2
) is removed from original spectrum.Thus,

a filtered 𝐹
𝑑
(𝑓
𝑘
) can be obtained, which is controlled by DI. A

simple example is introduced to explain a statistic filter based
on distinction index (DI) of spectrum, as shown in Figure 6.
Here black squares are the spectrum values of normal signal
and black dots are the spectrum values of diagnosis signal.
In these points, the DI values of spectrums between normal

and diagnosis signals at 𝑓
2
, 𝑓
4
, 𝑓
6
, 𝑓
8
, . . . , 𝑓

𝑀
are smaller than

1.28; theDI values at𝑓
1
, 𝑓
3
, 𝑓
5
, 𝑓
7
, . . . aremore than 1.28.Thus,

the filtered diagnosis spectrums which are indicated by black
triangle are estimated as the fault components in frequency
domain, and the fault signal in time domain can be obtained
by using inverse fast Fourier transform (IFFT).

Moreover, we have tried other values of DI to extract the
faults signal by statistic filter for the condition diagnosis of the
centrifugal pump system, and the optimum value is still 1.28.
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Table 1: DI values and standard deviation of DI values of 3 NSPs between two states from the signals estimated by statistic filter.

Two states In mild step In medium step In severe step DI’s standard deviation
𝑃
1

𝑃
2

𝑃
3

𝑃
1

𝑃
2

𝑃
3

𝑃
1

𝑃
2

𝑃
3

𝑃
1

𝑃
2

𝑃
3

Normal state and abnormal state 0.54 0.61 0.73 0.83 0.79 0.92 1.29 1.16 1.31 0.38 0.28 0.30
Cavitation and impeller unbalance 0.61 0.55 0.80 0.82 0.65 0.88 1.27 1.04 0.94 0.34 0.26 0.07
Cavitation and shaft misalignment 0.58 0.64 0.72 0.76 0.90 0.87 1.03 0.98 1.26 0.23 0.18 0.28
Impeller unbalance and shaft misalignment 0.68 0.77 0.79 0.93 0.84 1.03 1.11 1.09 1.17 0.22 0.17 0.19

Table 2: DI values and standard deviation of DI values of 3 NSPs between two states from original signals.

Two states In mild step In medium step In severe step DI’s standard deviation
𝑃
1

𝑃
2

𝑃
3
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𝑃
2

𝑃
3

𝑃
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𝑃
2

𝑃
3

𝑃
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𝑃
2

𝑃
3

Normal state and abnormal state 0.35 0.39 0.44 0.56 0.65 0.60 0.82 0.77 0.91 0.24 0.19 0.24
Cavitation and impeller unbalance 0.33 0.20 0.53 0.45 0.41 0.59 0.88 0.75 0.72 0.29 0.28 0.10
Cavitation and shaft misalignment 0.27 0.38 0.34 0.44 0.68 0.41 0.69 0.56 0.95 0.21 0.15 0.33
Impeller unbalance and shaft misalignment 0.42 0.45 0.41 0.60 0.59 0.51 0.73 0.61 0.83 0.16 0.09 0.22

0f1f2
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Figure 6: Explanation of statistic filter based on distinction index
(DI) of spectrums.

3.2. Analysis of Experimental Signals Using Statistic Filter. To
make the signals comparable regardless of differences inmag-
nitude, the signals of each state are normalized by the follow-
ing formula:

𝑥
𝑖
=
𝑥
󸀠

𝑖
− 𝜇
󸀠

𝜎󸀠
, (3)

where 𝑥󸀠
𝑖
(𝑖 = 1, 2, . . . , 𝑁) are the original signal series, 𝜇󸀠

and 𝜎󸀠 are the mean and standard deviation of 𝑥󸀠
𝑖
, and 𝑥

𝑖
(𝑖 =

1, 2, . . . , 𝑁) are the normalization signal series.
In present work, the normalized signal of each state has

been divided into 128 parts, respectively. Then statistic filter
based on distinction index of spectrum is performed to
obtain the estimated signals under different states. Figure 7
shows the estimated signal in time domain of shaft misalign-
ment when the failure is sever. It is obvious that information
representing shaft misalignment has been extracted.

4. Nondimensional Symptom Parameters for
Intelligent Diagnosis

For intelligent diagnosis, symptom parameters (SPs) are
required and can sensitively detect the occurrence of fault and
distinguish the fault types. A large set of symptomparameters
has been defined in the pattern recognition field [31]. Here,

the nondimensional symptom parameters (NSPs) in time
domain, commonly used for the fault diagnosis of plant
machinery, are considered.

When given the digital data 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑁) of the

vibration signal, where 𝑁 is the number of the signal, the 3
NSPs in the time domain are defined as follows:

𝑃
1
=
𝜎

|𝑥|

𝑃
2
=
∑
𝑁

𝑖=1
(𝑥
𝑖
− 𝑥)
3
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𝑃
3
=
∑
𝑁

𝑖=1
(𝑥
𝑖
− 𝑥)
4

𝑁 ⋅ 𝜎4
,

(4)

where 𝑥 and 𝜎 are the mean value and standard deviation
of the vibration signal 𝑥

𝑖
. |𝑥
𝑖
| is the absolute value of the

vibration signal 𝑥
𝑖
and |𝑥| is the mean value of |𝑥

𝑖
|.

Then the estimated signals obtained in Section 3 using
statistic filter are performed to calculate 3 NSPs. In this paper,
3 typical faults have been investigatedwith different abnormal
degrees in experiment, and then these fault states with the
same abnormal degree are called abnormal state with the
same abnormal degree for purposes of discussion. Thus, 3
NSPs of these fault states with the same abnormal degree are
united to 3 NSPs of abnormal state with the same abnormal
degree. Therefore, the DI values of 3 NSPs between any two
states in the same abnormal degree are calculated, as shown
in Table 1. Moreover, original signals are also done with the
same work and DI values of which are shown in Table 2.

It is obvious that the DI values of 3 NSPs from the signals
estimated by statistic filter are larger than from original
signals. However, the DI values of these SPs are yet low,
especially, at an incipient stage of a fault. Thus the choice of
an effective SP will expend time and effort, and the differenti-
ation degree of the SP may or may not be high. In this study,
a newmethod in which some SPs integrate an effective SP for
diagnosis by introducingweight coefficient is proposed.Here,
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Figure 7: Estimated signal of shaft misalignment in sever step using statistic filter based on distinction index of spectrum.

3NSPs are used to integrate an effective SP, and this integrated
SP is called “synthetic symptom parameter (SSP).”

5. Application of SVM for Synthetic
Symptom Parameter

5.1. Support Vector Machine (SVM). SVM is a relatively new
computational learningmethod based on the statistical learn-
ing theory, and the basic idea is to create an optimal classifica-
tion hyperplane between the two classes and ensure that the
distance between the boundary and the nearest data point in
each class ismaximized [33]. SVMcan efficiently performnot
only a linear classification but also a nonlinear classification
using kernel function. In general, a classification hyperplane
can be expressed as follows:

𝜔 ⋅ 𝑥 + 𝑏 = 0, (5)

where 𝑥 is the sample vector, 𝜔 is a vector that represented
the weight coefficients of 𝑥, and 𝑏 is a classification threshold.

Recently, almost all of practical applications of SVMshave
employed different kernel functions, such as polynomial ker-
nel and radial basis function (RBF) kernel, to achieve linear
classifications in high-dimensional feature spaces. However,
as said in introduction section, it is difficult to determine the
parameters for a given value of the regularization and kernel
parameters and to choose an appropriate kernel function. But
soft margin SVM was proposed to increase the enchantment
of SVM [34]. Soft margin SVM is a modified maximum

x1

x2

x3

Figure 8: The optimal classification hyperplane for identifying two
states using soft margin SVM.

margin idea that permits minimum error and relaxes the
condition for the optimal classification hyperplane. In order
to explain the soft margin SVM, an example is shown
in Figure 8 with 3-dimensional situation. The white circles
represent state 1 and the black points represent state 2. 𝑥

1
, 𝑥
2
,

and 𝑥
3
represent 3-dimensional sample vector. The colorized

plane is the optimal classification hyperplane.
Soft margin SVM not only constructs the optimal clas-

sification hyperplane when nonlinear data is separated, but
also has a strong generalization capacity when only a small
amount of training samples are available.

In order to distinguish states of machinery as precisely as
possible, the excellent symptom parameters must be defined
for the automatic diagnosis. The symptom parameters must
be able to sensitively reflect the characteristics of states.
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However, there is not an acceptable method for extracting
symptom parameters from signals measured in each state
[35, 36]. The larger the number of states there is, the more
difficult the extraction of symptom parameters is. In many
cases, this has been done merely by trial and error.The above
process not only is time-consuming and labor intensive, but
also cannot always ensure that excellent symptomparameters
will be found.

In order to resolve this problem, we propose the new
method be called “sequential diagnosis using synthetic symp-
tom parameters generated by soft margin SVM.” By this
method, the optimum synthetic symptom parameters for dis-
tinguishing all states can be sequentially and quickly searched
out. Because the synthetic symptom parameters generated by
the soft margin SVM can only be used to distinguish tow
states, we will sequentially and precisely diagnose states as
shown Figure 11.

5.2. Synthetic Symptom Parameter. The paper proposes soft
margin SVM to achieve the optimization of integrating
primitive SPs in the field of condition diagnosis. The optimal
classification hyperplane is shown in (5), where 𝜔 is the
optimal vector of the weight coefficients and determines
the diagnostic sensitivity of the SSP. Then SSP is defined as
follows:

SSP = 𝜔 ⋅ [𝑃1 𝑃2 ⋅ ⋅ ⋅ 𝑃𝑛]
󸀠

+ 𝑏. (6)

In order to enhance the sensitivity of extracted features to
failures, especially at the incipient stage of a fault, 3 NSPs of
each state are input SVMs to train the classifiers. For example,
in the first step, the diagnosis goal is to detect whether there
is fault, so these two classes are normal and abnormal states.
In a normal state, 3 NSPs 𝑥

𝑖
= {𝑃
1𝑖
, 𝑃
2𝑖
, 𝑃
3𝑖
} (𝑖 = 1, 2, . . . , 𝐼)

are extracted to associate with labels 𝑦
𝑖
= 1, (𝑖 = 1, 2, . . . , 𝐼)

and to recombine the training data (𝑥
𝑖
, 𝑦
𝑖
) (𝑖 = 1, 2, . . . , 𝐼) for

a normal state. Similarly, the training data of abnormal state
(𝑥
𝑗
, 𝑦
𝑗
) (𝑗 = 1, 2, . . . , 𝐽) are obtained to associate with labels

𝑦
𝑗
= −1, (𝑗 = 1, 2, . . . , 𝐽). Here, 𝐼 and 𝐽 are the class number

of 3 NSPs from normal and abnormal states.When these data
are input into SVMs to train for the optimal classification
hyperplane, shown as Figure 8, weight coefficient𝜔 = {𝜔

1
, 𝜔
2
,

𝜔
3
} and classification threshold 𝑏 are obtained, and then

the SSPs are obtained, shown in Table 3. Then new SSPs
between two faults are calculated based on the estimated
signals, and the DI values of new SSPs are also calculated as
shown in Table 4.TheDI values of SSPs are larger than the DI
values of 3 NSPs. In addition, the viewpoints about training
performance are as follows.

(1) Soft margin SVM is a modified maximum margin
idea that permits minimum error and relaxes the
condition for the optimal classification hyperplane.
Therefore, it is not important to give the training per-
formance.

(2) Training data are input into soft margin SVM only
to build the optimal classification hyperplane. In this
paper, the goal is only to define synthetic symptom
parameter (SSP).

Table 3: Synthetic symptom parameters (SSPs) between two states.

Two states Synthetic symptom parameter (SSP)
Normal state and
abnormal state SSP

1
= −3.587𝑃

1
+ 6.109𝑃

2
− 2.234𝑃

3
+ 10.006

Cavitation and
impeller unbalance SSP

2
= 0.164𝑃

1
+ 0.897𝑃

2
− 3.220𝑃

3
− 0.107

Cavitation and
shaft misalignment SSP

3
= −0.593𝑃

1
+ 0.031𝑃

2
+ 1.071𝑃

3
+ 1.934

Impeller unbalance
and shaft
misalignment

SSP
4
= 1.462𝑃

1
− 2.843𝑃

2
− 4.566𝑃

3
+ 2.006

Table 4: DI values of new SSPs in the same abnormal degree from
the estimated signals.

Two states In mild
step

In medium
step

In severe
step

Normal state and abnormal
state 1.28 1.57 1.72

Cavitation and impeller
unbalance 1.09 1.26 1.54

Cavitation and shaft
misalignment 0.98 1.29 1.47

Impeller unbalance and shaft
misalignment 1.17 1.38 1.56

6. Sequential Fuzzy Diagnosis
Using Possibility Theory and
Dempster-Shafer Theory

6.1. Possibility Theory. Possibility theory is a mathematical
theory for dealing with certain types of uncertainty and an
alternative to probability theory. Professor Zadeh first intro-
duced possibility theory in 1978 as an extension of his theory
of fuzzy sets and fuzzy logic [37]. Dubois and Prade further
contributed to its development [38]. Recently, possibility
theory has been used for fault diagnosis [14, 39, 40]. In [14,
39, 40], possibility theory was applied to condition diagnosis
in rotating machinery under varying rotating speeds to
process the uncertain relationship between the symptoms
and fault types. In the paper, for increasing the diagnosis’
sensitivity and improving the identification of ambiguous
state, possibility theory is used to construct the system of
sequential fuzzy diagnosis.

For fuzzy inference, the membership function of a SP is
necessary [14, 39, 40], which can be obtained fromprobability
density functions of the SP using possibility theory. In this
paper, synthetic symptom parameter (SSP) is selected as the
features for fault identification, and it is verified that a SSP
follows the Weibull distribution. Then probability density
functions of a SSP (𝑓(𝑥)) can be changed to possibility
function (𝑝(𝑥)) by the following formulae:

𝑝 (𝑥
𝑖
) =

𝑁

∑

𝑘=1

min {𝜆
𝑖
, 𝜆
𝑘
} , (𝑖, 𝑘 = 1, 2, . . . , 𝑁) . (7)
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𝜆
𝑖
and 𝜆

𝑘
can be calculated as follows:

𝜆
𝑖
= ∫

𝑥𝑖

𝑥𝑖−1

𝑚

𝜂
⋅ (
𝑥 − 𝑥
0

𝜂
)

𝑚−1

exp{−
(𝑥 − 𝑥

0
)
𝑚

𝜂
}𝑑𝑥,

𝑥
𝑖
= 𝑥 +

6𝑖 − 3𝑁

𝑁
⋅ 𝜎

𝜆
𝑘
= ∫

𝑥𝑘

𝑥𝑘−1

𝑚

𝜂
⋅ (
𝑥 − 𝑥
0

𝜂
)

𝑚−1

exp{−
(𝑥 − 𝑥

0
)
𝑚

𝜂
}𝑑𝑥,

𝑥
𝑘
= 𝑥 +

6𝑘 − 3𝑁

𝑁
⋅ 𝜎,

(8)

where 𝑁 is the division number of the domain of the SSP,
namely, [𝑥 − 3𝜎, 𝑥 + 3𝜎], 𝑥 and 𝜎 are the mean and the
standard deviation of the SSP, respectively.𝑚, 𝜂, and𝑥

0
are the

parameters of the shape, scale, and location. Figure 9 shows
an illustration of the possibility function and the probability
density function.

To identify machinery condition, the membership func-
tion is constructed based on the possibility function of the
SSP for diagnosis using possibility theory. Figure 10 shows
the matching examples of possibility function. The common
area, between the possibility functions (𝑝

𝑖
(𝑥), 𝑝
𝑗
(𝑥)) ofmodel

states 𝑖, 𝑗 and the possibility function (𝑝
𝑡
(𝑥)) of diagnostic

state 𝑡, is calculated by the following formula:

𝑆
𝑘
= ∫

𝑥𝑡+3𝜎𝑡

𝑥𝑡−3𝜎𝑡

𝜓
𝑘 (𝑥) 𝑑𝑥,

𝜓
𝑘 (𝑥) = min {𝑝

𝑘 (𝑥) , 𝑝𝑡 (𝑥)} ,

(𝑘 = 𝑖, 𝑗) ,

(9)

where 𝑥
𝑡
and 𝜎

𝑡
are the mean and the standard deviation

of the SSP in diagnostic state. Moreover, the unknown state
except state 𝑖 and state 𝑗 is also model state UN, its possibility
function (𝑝UN(𝑥)) is calculated by the following formula
(10). And the common area between 𝑝UN(𝑥) and 𝑝

𝑡
(𝑥) is

calculated by the following formula (11). Consider

𝑝UN (𝑥) = max {1 − [𝑝
𝑖
(𝑥) + 𝑝

𝑗
(𝑥)] , 0} , (10)

𝑆UN = ∫
𝑥𝑡+3𝜎𝑡

𝑥𝑡−3𝜎𝑡

𝜓UN (𝑥) 𝑑𝑥,

𝜓UN (𝑥) = min {𝑝UN (𝑥) , 𝑝𝑡 (𝑥)} .

(11)

Therefore, the probability that should be diagnosed with
model states 𝑖, 𝑗, and UN, respectively, can be calculated by
the following formulas. Then it is judged that the diagnostic
state is the model state with the largest possibility. Consider

𝜔
𝑘
=
1

𝜀
⋅

𝑆
𝑘

∫𝑝
𝑘
(𝑥) 𝑑𝑥

, (𝑘 = 𝑖, 𝑗,UN)

𝜀 =
𝑆
𝑖

∫𝑝
𝑖
(𝑥) 𝑑𝑥

+

𝑆
𝑗

∫𝑝
𝑗
(𝑥) 𝑑𝑥

+
𝑆UN

∫𝑝UN (𝑥) 𝑑𝑥
.

(12)
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Figure 9: Probability density function (𝑓(𝑥)) and possibility func-
tion (𝑝(𝑥)).
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Si

pUN(x)

SUN

Figure 10: Matching example of possibility functions between
model states and diagnostic state.

6.2. Sequential Condition Diagnosis Approach. Symptom
parameters (SPS) can represent the features of vibration
signals. However they are always sensitive to one or several
failure types, so it is very difficult to find one or more SPs
that simultaneously identify all states, but in contrast it is
easy that one or some SPs are found to identify two states.
Then a sequential diagnosis method, addressing the multiple
failure type identification, as shown in Figure 11, is proposed
for condition diagnosis of a centrifugal pump.

The first step of the diagnostic system is simple diagnosis.
Its performance is to detect whether there is fault, and then
normal state (𝑁) and abnormal state (𝐴) are model states. In
order to generalize the capability of condition diagnosis, all
SSP
1
s of each abnormal state with three abnormal degrees

(mild, medium, and severe) are combined to establish the
model possibility function. Since there are only three typical
faults of the pump in this paper, the unknown state except
normal state and abnormal state is also a model state. If the
possibility grades of normal state (𝑁), abnormal state (𝐴),
and the unknown state (UN) are expressed as 𝜔(𝑁), 𝜔(𝐴),
and 𝜔(UN), respectively, and 𝜔(𝑁) is the largest; then the
state is diagnosed as “normal state (𝑁),” ending with the
stop of the diagnosis system. Otherwise, there is fault; the
diagnostic system will come into the next step of precise
diagnosis.

Precise diagnosis is performed to identify the fault types.
Since there are three types of faults in the experiment, three
patterns are piled up in the precise diagnosis phase. In each
pattern, two fault types are selected as diagnosis target,
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Measure vibration signal and extract feature signal

Simple diagnosis
in the first step

Normal (N)?
Abnormal (A)?

Normal stateN

A

Calculate NSPs and obtain optimal classification hyperplane by SVM and NSPs

Calculate SSP and construct possibility distributions of SSP

Precision diagnosis
in the second step

Cavitation (C)?
Shaft misalignment (M)?
Unknown state (UN)?

Fault identification

Impeller unbalance (U)?
Shaft misalignment (M)?
Unknown state (UN)?

Cavitation (C)?
Impeller unbalance (U)?
Unknown state (UN)?

Fault occurrence
Cavitation (C)

Shaft misalignment (M)

Combine the possibilities from three patterns by DST

For example, impeller unbalance (U)

Figure 11: Flowchart of sequential diagnosis for a pump system.

and then the unknown state except the two selected states
is also regarded as diagnosis target. Thus, there are three
states in each pattern. For example, in the first pattern, three
model states are cavitation (𝐶), impeller unbalance (𝑈),
and unknown state (UN), and then these possibility grades
of all SSP

2
s are expressed as 𝜔

1
(𝐶), 𝜔

1
(𝑈), and 𝜔

1
(UN),

respectively. In the second pattern, cavitation (𝐶), shaft
misalignment (𝑀), and unknown state (UN) are three model
states, and these possibility grades of all SSP

3
s are expressed

as 𝜔
2
(𝐶), 𝜔

2
(𝑀), and 𝜔

2
(UN), respectively. In the third

pattern, impeller unbalance (𝑈), shaft misalignment (𝑀),
and unknown state (UN) are three model states, and these
possibility grades of all SSP

4
s are expressed as 𝜔

3
(𝑈), 𝜔

3
(𝑀),

and 𝜔
3
(UN), respectively.

When the training data, synthetic symptom parameters
(SSPs) between two states calculated using the proposed
method, are trained to determine the membership function
of fuzzy inference, the system of sequential fuzzy diagnosis
as shown in Figure 11 has been built.

6.3. Fuzzy Inference Using Dempster-Shafer Theory. Demp-
ster-Shafer theory (DST) is an effectivemethod that combines

accumulative evidences [41, 42]. If 𝑁 evidences are used to
identify𝑀 classes (𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑀
), and 𝜔

𝑖
is the possibility

assignment function from the 𝑖th (𝑖 = 1, 2, . . . , 𝑁) evidence,
the combining possibility function 𝜔(𝐴) can be obtained by
DST, given as follows:

𝜔 (𝐴) =
1

𝑘
∑

∩
𝑁

𝑖=1
𝐴𝑖=𝐴

𝑁

∏

𝑖=1

𝜔
𝑖
(𝐴
𝑖
)

𝑘 = ∑

∩
𝑁

𝑖=1
𝐴𝑖 ̸=0

𝑁

∏

𝑖=1

𝜔
𝑖
(𝐴
𝑖
) .

(13)

DST is widely used in the classification to address
the uncertainty problem [43–45]. In the Section 6.2, three
patterns are simultaneously performed in the second step.
Obviously, the inferences are independent in three patterns,
and each pattern offers one evidence for obtaining the final
identification result. Then Dempster-Shafer theory (DST) is
employed to combine the possibility of each fault state. If
the possibility grades of cavitation (𝐶), impeller unbalance
(𝑈), shaftmisalignment (𝑀), and unknown state (UN) in the
second step are 𝜔(𝐶), 𝜔(𝑈), 𝜔(𝑀), and 𝜔(UN), respectively,
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then the possibility grade of each fault state is combined by
DST as follows:

𝜔 (𝐶) =
1

𝑘
⋅ 𝜔
1 (𝐶) 𝜔2 (𝐶) 𝜔3 (UN)

𝜔 (𝑈) =
1

𝑘
⋅ 𝜔
1
(𝑈) 𝜔
2
(UN) 𝜔

3
(𝑈)

𝜔 (𝑀) =
1

𝑘
⋅ 𝜔
1
(UN) 𝜔

2
(𝑀)𝜔

3
(𝑀)

𝜔 (UN) = 1

𝑘
⋅ 𝜔
1
(UN) 𝜔

2
(UN) 𝜔

3
(UN) ,

(14)

where 𝑘 is a normalizing constant, 𝑘 = 𝜔
1
(𝐶)𝜔
2
(𝐶)𝜔
3
(UN) +

𝜔
1
(𝑈)𝜔
2
(UN)𝜔

3
(𝑈) + 𝜔

1
(UN)𝜔

2
(𝑀)𝜔

3
(𝑀) + 𝜔

1
(UN)𝜔

2

(UN)𝜔
3
(UN). If max{𝜔(𝐶), 𝜔(𝑈), 𝜔(𝑀), 𝜔(UN)} = 𝜔(𝐶),

then the diagnosed state is judged as “cavitation (𝐶).” In other
words, the state that the possibility grade is the biggest is the
diagnosed state.

7. Diagnosis and Verification

7.1. Diagnosis by the ProposedMethod. To verify the proposed
diagnostic method, the test data sets are again acquired in
accordancewith three typical faults of a centrifugal pump and
the defect degrees of mild, medium, and severe. Moreover,
each data set is processed using the proposed methods as
input of the diagnosis system. Here, two practical diagnostic
examples are shown in Figures 12 and 13.

In the first example, possibility functions between test
state and model states in the first step are shown in Figure 12.
𝑃
𝑁
(𝑥) and 𝑃

𝐴
(𝑥) express the possibility functions of normal

state and abnormal state (it includes only cavitation, impeller
unbalance, and shaft misalignment in this paper). 𝑃UN(𝑥)
expresses the possibility function of the unknown state
except normal state and abnormal state. 𝑃

𝑡
(𝑥) expresses the

possibility function of the test state. 𝑆
𝑁
, 𝑆
𝐴
, and 𝑆UN express

the common area between 𝑃
𝑡
(𝑥) and 𝑃

𝑁
(𝑥), 𝑃

𝐴
(𝑥), and

𝑃UN(𝑥), respectively. 𝜔(𝑁), 𝜔(𝐴), and 𝜔(UN), the possibility
of normal state, abnormal state, and the unknown state,
respectively, are calculated as 0.8558, 0.0724, and 0.0718.Thus
the diagnosis process stops in the first step, and the outcome
of diagnosis system is normal state. The diagnosis state is
entirely consistent with the original state.

For the second example, the outcome of the first step as
shown in Figure 13(a) is abnormal state, and then the diag-
nostic system comes into the second step of precision diag-
nosis. In the second step, three patterns are simultaneously
performed as shown in Figures 13(b), 13(c), and 13(d). The
diagnosis possibilities are shown in Table 5. Moreover, the
diagnosis system intelligently employs DST to combine the
possibility grade of each fault state. Then 𝜔(𝐶), 𝜔(𝑈), 𝜔(𝑀),
and 𝜔(UN), the possibility of the cavitation (𝐶), impeller
unbalance (𝑈), shaft misalignment (𝑀), and unknown state
(UN), respectively, are calculated as 0.9649, 0.0001, 0.0098,
and 0.0252. So the final outcome is cavitation state. By
comparing the original state, the diagnosis result is correct.

Similarly, 10 test data sets have been performed in the
same procedure, and the diagnosis results are shown in

−3 0 3 6 9
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PN(x)

PA(x)

Pt(x)

SN

SASUN

PUN (x)

Synthetic symptom parameter (x)

Figure 12:The first diagnostic example using the sequential diagno-
sis proposed.

Table 6. The experimental result has shown that all test states
have been diagnosed correctly, but even the faults with mild
defect at the early stage have been detected sensitively and
identified rightly.

7.2. Diagnosis by Fuzzy Neural Network. Fuzzy neural net-
work is often employed to detect fault and identify fault types
[14–16]. This section shows the performance of the diagnosis
system based on fuzzy neural network. In general, there are
two methods of direct diagnosis and sequential diagnosis, as
shown in Figures 14 and 15. Certainly, considering the exper-
iment in the paper, state 𝑖 means normal state, cavitation,
impeller unbalance, or shaft misalignment, sequentially.

To compare the proposed diagnosis with the diagnosis
methods based on fuzzy neural network, the experiment data
described in Section 2 are used to train the diagnosis systems
based on fuzzy neural network as shown in Figures 14 and
15; the measured data described in Section 7 are used to
test. The diagnosis results are shown in Table 7. The direct
diagnosis based on fuzzy neural network could hardly detect
the faults with mild degree, and 2 test data sets with medium
degree have been also identified mistakenly. For sequential
diagnosis, 6 test data sets with medium and severe degrees
have been diagnosed correctly, but the performance that the
faults withmild degreewill be detected and identified is weak.

8. Conclusions

To effectively detect faults and correctly identify fault types
for plant machinery at an early stage, an intelligent diagnosis
method using statistic filter, SVM, possibility theory, and
DST on the basis of the vibration signals was proposed for a
centrifugal pump system, and the effectiveness was demon-
strated experimentally. The superiority of the method pro-
posed in this paper can be explained in the following points.

(1) Statistic filter is a method of signal processing that
failure signal is extracted by statistical tests of spec-
trums between normal signal and fault signal. The
application of statistic filter is very effective, even if
at an early stage, statistic filter can extract effectively
pure feature signal.
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Figure 13: The second diagnostic example using the sequential diagnosis proposed.

Table 5: The second diagnostic possibilities using the sequential diagnosis proposed.

Each step or pattern Possibility of model state
Model state 1 Model state 2 Model state 3

In the first step 𝜔(𝑁) = 0.3200 𝜔(𝐴) = 0.6134 𝜔(UN) = 0.0666
In the second step

First pattern 𝜔(𝐶) = 0.7486 𝜔(𝑈) = 0.1399 𝜔(UN) = 0.1115
Second pattern 𝜔(𝐶) = 0.7909 𝜔(𝑀) = 0.0703 𝜔(UN) = 0.1389
Third pattern 𝜔(𝑈) = 0.0013 𝜔(𝑀) = 0.4328 𝜔(UN) = 0.5659

Table 6: The diagnostic results of various states with the defect degrees by the proposed method.

Test state Defect degree Simple diagnosis (first step) Precision diagnosis (second step) Judge state
𝜔(𝑁) 𝜔(𝐴) 𝜔(UN) 𝜔(𝐶) 𝜔(𝑈) 𝜔(𝑀) 𝜔(UN)

Normal (𝑁) 0.8558 0.0724 0.0718 𝑁

Cavitation (𝐶)
Mild 0.3529 0.6038 0.0433 0.7382 0.0579 0.1763 0.0276 𝐶

Medium 0.2311 0.7621 0.0068 0.9218 0.0053 0.0204 0.0525 𝐶

Severe 0.3200 0.6134 0.0666 0.9649 0.0001 0.0098 0.0252 𝐶

Impeller
unbalance (𝑈)

Mild 0.2026 0.6813 0.1161 0.0153 0.7468 0.1934 0.0445 𝑈

Medium 0.1897 0.7385 0.0718 0.0118 0.8216 0.1430 0.0236 𝑈

Severe 0.1365 0.7027 0.1608 0.0092 0.7604 0.2259 0.0045 𝑈

Shaft
misalignment
(𝑀)

Mild 0.3415 0.6435 0.0150 0.1138 0.2126 0.6072 0.0664 𝑀

Medium 0.2071 0.7446 0.0483 0.0158 0.1901 0.6831 0.1110 𝑀

Severe 0.3007 0.6756 0.0237 0.0576 0.1573 0.6315 0.1536 𝑀
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Table 7: The diagnostic results of various states with the defect degrees by fuzzy neural network.

Test state Defect degree Judge state by fuzzy neural network
Direct diagnosis Sequential diagnosis

Normal (𝑁) 𝑁 𝑁

Cavitation (𝐶)
Mild 𝑁 𝑁

Medium 𝑁 𝐶

Severe 𝐶 𝐶

Impeller unbalance (𝑈)
Mild 𝑁 𝑈

Medium 𝑈 𝑈

Severe 𝑈 𝑈

Shaft misalignment (𝑀)
Mild 𝑁 𝐶

Medium 𝐶 𝑀

Severe 𝑀 𝑀

P1

P2

Sy
m

pt
om

 p
ar

am
et

er
s

Input layer

P3
Shaft misalignment

Normal state

Impeller unbalance

Cavitation state

Unknown state
...

Middle layer Output layer

Figure 14: Direct diagnosis method based on fuzzy neural network.
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Figure 15: Sequential diagnosis method based on fuzzy neural
network.

(2) Softmargin SVM is used to define synthetic symptom
parameter (SSP) and then to raise the discernment
sensitivity of original SPs.

(3) The efficiency of intelligent fuzzy diagnosis proposed
here has been verified by applying it to a practical
diagnosis for incipient faults of the centrifugal pump,
with a performance. In fact, the perfect performance
of intelligent diagnosis using possibility functions of
the SSPs is attributed primarily to effective feature

extraction by statistic filter, SVMs’ generalization
capability, SSPs’ high sensitivity, andDST’s combining
evidence.

In the near future, themethod proposed in this paper will
be applied to condition diagnosis in various types of rotating
machinery in a real plant.
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