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A subdomain precise integrationmethod is developed for the dynamical responses of periodic structures comprisingmany identical
structural cells. The proposed method is based on the precise integration method, the subdomain scheme, and the repeatability of
the periodic structures. In the proposed method, each structural cell is seen as a super element that is solved using the precise
integration method, considering the repeatability of the structural cells. The computational efforts and the memory size of the
proposed method are reduced, while high computational accuracy is achieved. Therefore, the proposed method is particularly
suitable to solve the dynamical responses of periodic structures. Two numerical examples are presented to demonstrate the accuracy
and efficiency of the proposed method through comparison with the Newmark and Runge-Kutta methods.

1. Introduction

A periodic structure consists of identical structural cells that
are connected together end-to-end to form the entire struc-
ture. Precisely because of the repeatability of the periodic
structures, these structures exhibit numerous interesting and
useful physical properties and are widely applied in many
types of engineering, such as railway engineering [1], the
pantograph-catenary system [2], and photonic [3, 4] and
phononic [5] crystals, among others. Currently, because of
the importance of periodic structures, many correlational
studies have been reported. In [1], a method based on the
symplectic mathematical scheme and Schur decomposition
was proposed for the random responses of a vehicle moving
on an infinitely long periodic track. In [4], Dobson applied
finite element discretization coupled with a preconditioned
subspace iteration algorithm to periodic dielectric photonic
crystals. In 1993, Kushwaha et al. [5] presented the first full
band-structure calculations for periodic, elastic composites.
Their work introduced a new field of research on periodic
phononic crystals. Zhong andWilliams investigated the wave
propagation problems of repetitive structures [6, 7] and the
localization phenomenon for the high-frequency vibration
modes of imperfectly repetitive structures [8] using an
analogy between computational structural mechanics theory

and optimal control theory.Wang et al. introduced a lumped-
massmethod to study the propagation of elastic waves in one-
[9] and two-dimensional [10] periodic systems. Wang et al.
[11] investigated the free and forced vibration of certain peri-
odic structures using the properties of the structural modes
of periodic structures. Mead [12] developed a general theory
for the forced vibration of multicoupled, one-dimensional
periodic structures. The theory starts from the dynamic
stiffness matrix of a single multicoupled periodic element
and derives the matrix equations for the magnitudes of the
characteristic free waves excited by harmonic forces and/or
displacements acting at a single periodic junction. Ding et al.
[13] analyzed the wave propagation in a periodic elastic-
piezoelectric axial-bending coupled beam by employing the
Lyapunov exponent method. In [14], an efficient algorithm
was developed for computing the dynamic responses of
one-dimensional periodic structures and periodic structures
with defects. In [15], the exact solutions for the dynamic
response of a periodic spring and mass structure were
given. The solutions cover arbitrary initial conditions and
both polynomial and harmonic external forces. While many
reports concerning periodic structures have been published,
developing a method to accurately and efficiently calculate
the dynamical responses of periodic structures remains a
noteworthy issue.
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Aprimary goal of this paper is to investigate the time inte-
gration scheme for the linear dynamical equations of periodic
structures produced using the finite element method. To
solve the dynamical equation, common methods such as
the Runge-Kutta (R-K) method [16–18] and the Newmark
method [19] can be used. In 1994, Zhong and Williams [20]
developed the precise integrationmethod (PIM) based on the
accurate computation of the exponential of a matrix, which
is widely employed in many types of problems because of its
high accuracy. The high accuracy of the method is derived
from precisely computing the exponential of the matrix,
which, however, requires significant computational efforts.
To improve the computational efficiency of PIM,many works
have been reported. In [21], an adaptive algorithm of precise
integration was proposed by automatically generating the
involved parameters in the original PIM in terms of the
required accuracy. In [22], Gao et al. proposed the modified
fast precision integration method (FPIM), which utilizes
the sparse nature of the system matrices and the physical
features of the structural dynamics problems to improve the
computational efficiency of the exponential of the matrix
without loss of precision. Later, the FPIM was extended to
the hyperbolic heat conduction problems in [23]. In this
paper, a subdomain precise integration method (SPIM) is
presented for the dynamical responses of periodic structures
with many identical structural cells. SPIM is based on PIM,
the subdomain scheme [24–26], and the repeatability of
periodic structures. This method reduces the computational
efforts and reduces the amount of memory required during
the computation.

2. Precise Integration Method for
Dynamical Systems

The subdomain precise integration method is based on the
original PIM; thus, a brief introduction for the original PIM
is given in this section.

Suppose that the dynamical equation for a periodic struc-
ture (see Figure 1) produced using the finite element method
(FEM) can be written as

M ̈X + C ̇X + KX = f (1)

with the initial conditions

X (𝑡

0
) = X
0
,

̇X (𝑡

0
) = V
0
, (2)

where M, C, and K are the 𝑁 × 𝑁 mass and damping and
stiffness matrices of the periodic structure, respectively, and
𝑁 is the number of degrees of freedom (DOFs) of the periodic
structure.X, ̇X, and ̈X are the𝑁×1 displacement and velocity
and acceleration vectors, respectively, and the dot over the
variable denotes differentiation with respect to time 𝑡. f ∈

𝑅

𝑁×1 is the load vector, and 𝑡

0
denotes the initial time.

Many methods can be employed to solve (1), such as the
Newmark method, the R-K method, and PIM. If PIM is used
to solve (1), it should first be rewritten in the state space:

̇U = HU + Nf , (3)

· · ·· · ·· · ·

Figure 1: A periodic structure.

where

U = (

X
V) , H = [

0 I
−M−1K −M−1C] , N = (

0
M−1) .

(4)

In (4),V =

̇X denotes the velocity vector, I ∈ 𝑅

𝑁×𝑁 is the unit
matrix, and 0 ∈ 𝑅

𝑁×𝑁 is a zero matrix.
For numerical integration, the time domain is divided

into a series of time intervals of equal length 𝜂; that is,

𝑡

0
= 0, 𝑡

1
= 𝜂, . . . , 𝑡

𝑘
= 𝑘𝜂, 𝑡

𝑘+1
= (𝑘 + 1) 𝜂, . . . . (5)

By letting

U
𝑘
= U (𝑡

𝑘
) , (6)

the solution to (3) at discrete times is given by

U
𝑘+1

= TU
𝑘
+ ∫

𝜂

0

exp [H (𝜂 − 𝜉)]Nf (𝑡
𝑘
+ 𝜉) d𝜉, (7)

in which

T = exp (H𝜂) . (8)

The matrix T defined by (8) is called the exponential of
thematrixH𝜂. To evaluate the second term on the right-hand
side of (7), the load vector f(𝑡

𝑘
+ 𝜉) can first be approximated

using the Lagrange interpolation polynomial [27] in the time
interval [𝑡

𝑘
, 𝑡

𝑘+1
]. Hence, if we select 𝑚 + 1 interpolation

points, denoted by 𝑡

𝑘
+ 𝜉

𝑖
, in the time interval [𝑡

𝑘
, 𝑡

𝑘+1
], the

load vector can be approximated as

f (𝑡
𝑘
+ 𝜉) =

𝑚

∑

𝑖=0

𝐿

𝑚,𝑖 (
𝜉) f (𝑡𝑘 + 𝜉

𝑖
) (9)

for which

𝐿

𝑖 (
𝜉)

=

(𝜉

0
− 𝜉) (𝜉

1
− 𝜉)⋅ ⋅ ⋅(𝜉

𝑖−1
− 𝜉) (𝜉

𝑖+1
− 𝜉)⋅ ⋅ ⋅(𝜉

𝑚
− 𝜉)

(𝜉

0
− 𝜉

𝑖
) (𝜉

1
− 𝜉

𝑖
)⋅ ⋅ ⋅(𝜉

𝑖−1
− 𝜉

𝑖
) (𝜉

𝑖+1
− 𝜉

𝑖
)⋅ ⋅ ⋅(𝜉

𝑚
− 𝜉

𝑖
)

,

(10)

where 𝐿

𝑖
is the 𝑖th Lagrange interpolation polynomial, 𝑖 =

0, 1, . . . , 𝑚. In terms of (7) and (9), the state vector at 𝑡
𝑘+1

is
obtained:

U
𝑘+1

= TU
𝑘
+Ψ
0
f
0,𝑘

+Ψ
1
f
1,𝑘

+ ⋅ ⋅ ⋅ +Ψ
𝑚
f
𝑚,𝑘 (11)

for which

f
𝑖,𝑘

= f (𝑡
𝑘
+ 𝜉

𝑖
) , Ψ

𝑖
= ∫

𝜂

0

𝐿

𝑖 (
𝜉) exp [H (𝜂 − 𝜉)]Nd𝜉

(12)
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and Ψ
𝑖
can be computed using numerical integration meth-

ods, such as the Gaussian quadrature method [28], which
has been studied and proved to be an efficient method
for determining the integral term in PIM. In terms of
(8) and (12), it can be easily observed that computing the
exponentials of matrices efficiently and accurately is the key
issue when computing the responses of dynamical systems,
which is most likely to be overcome using PIM. Based on
the addition theorem, PIM uses the idea of only computing
the incremental part of T to improve the computational
precision.

The implementation of PIM for computing the exponen-
tial of the matrix H and time step 𝜂 can be given as follows.
LetH

1
= H𝜂/2

𝑄, in which 𝑄 is an integer; (8) then becomes

T = [exp (H
1
)]

2
𝑄

.

(13)

If𝑄 is large enough, such that the infinite norm ofH
1
satisfies

‖H
1
‖

∞
≪ 1, then exp(H

1
) can be approximated by the Taylor

series of order 𝑔; that is,

exp (H
1
) ≈ I +H

1
+ ⋅ ⋅ ⋅ +

H𝑔
1

𝑔!

. (14)

Theoretically, if both 𝑄 and 𝑔 are large enough, (14) yields
a very accurate approximation of exp(H

1
). However, the

round-off error may be significant in numerical computation
because of the sum of the unit matrix I and the small rest
terms. Therefore, in PIM, the exponential matrix exp(H

1
) is

divided into two parts; that is,

exp (H
1
) = I + R

0
, R

0
= H
1
+ ⋅ ⋅ ⋅ +

H𝑔
1

𝑔!

. (15)

Then, using (13), (14), and (15), T can be written as

T = (I + R
0
)

2
𝑄

= [(I + R
𝑖−1

) (I + R
𝑖−1

)]

2
𝑄−𝑖

= [I + R
𝑖
]

2
𝑄−𝑖

,

(16)

where

R
𝑖
= 2R
𝑖−1

+ R2
𝑖−1

, 1 ≤ 𝑖 ≤ 𝑄. (17)

After computing R
𝑄
, T can be given by

T= I+R
𝑄
. (18)

PIM is an accurate algorithm for computing the matrix
exponential. However, the computational effort of PIM is
𝑂(𝑁

3
), which is very large for the FEM model of periodic

structures with large DOFs. For a periodic structure com-
prising many identical structural cells, the mass, damping,
and stiffness matrices of all the structural cells are the same.
With an increase in the number of structural cells, the
mass, damping, and stiffness matrices of the whole structure
will be too large, which leads to large computation and
memory requirements during the computation of the matrix
exponential. This issue restricts the application of PIM. In
the next section, the repeatability of the periodic structure
is combined with the subdomain technique to improve the
efficiency of PIM.

3. The Subdomain PIM

Suppose that a periodic structure comprises 𝐿 identical
structural cells, and the mass, damping, and stiffness of the
𝑖th identical structural cell are M

𝑖
, C
𝑖
, and K

𝑖
, respectively.

The number of the DOFs of the 𝑖th structural cell is 𝑁
𝑖
, and

the displacement and load vectors are denoted by X
𝑖
and f
𝑖
,

respectively. The dynamical model of the 𝑖th structural cell is
given by

M
𝑖
̈X
𝑖
+ C
𝑖
̇X
𝑖
+ K
𝑖
X
𝑖
= f
𝑖
. (19)

The DOFs of each structural cell are contained within the
DOFs of the whole periodic structure. Hence, the displace-
ment vector X

𝑖
of the 𝑖th structural cell can be found in the

displacement vector X of the whole structure; that is,

X
𝑖
= DT
𝑖
X, (20)

where DT
𝑖

∈ 𝑅

𝑁𝑖×𝑁 is a matrix whose elements are 0 or 1.
DT
𝑖
describes the relationship between X

𝑖
and X and satisfies

DT
𝑖
D
𝑖
= I
𝑖

(21)

in which I
𝑖
∈ 𝑅

𝑁𝑖×𝑁𝑖 is a unit matrix. Multiplying both sides
of (19) by D

𝑖
and substituting (20) into (19), the dynamical

equation of the 𝑖th structural cell can be rewritten as

D
𝑖
M
𝑖
DT
𝑖

̈X +D
𝑖
C
𝑖
DT
𝑖

̇X +D
𝑖
K
𝑖
DT
𝑖
X = D

𝑖
f
𝑖
. (22)

In terms of (22), the entire dynamical equation for the whole
periodic structure can be written as

𝐿

∑

𝑖=1

D
𝑖
M
𝑖
DT
𝑖

̈X +

𝐿

∑

𝑖=1

D
𝑖
C
𝑖
DT
𝑖

̇X +

𝐿

∑

𝑖=1

D
𝑖
K
𝑖
DT
𝑖
X =

𝐿

∑

𝑖=1

D
𝑖
f
𝑖
, (23)

where
𝐿

∑

𝑖=1

D
𝑖
M
𝑖
DT
𝑖
= M,

𝐿

∑

𝑖=1

D
𝑖
C
𝑖
DT
𝑖
= C, (24)

𝐿

∑

𝑖=1

D
𝑖
K
𝑖
DT
𝑖
= K,

𝐿

∑

𝑖=1

D
𝑖
f
𝑖
= f . (25)

Actually, (23) is the same as (1). For a periodic structure
comprising a large number of identical structural cells, the
entire dynamical equation is too large to be solved using
PIM directly due to the computational efforts and required
storage. However, the scale of the dynamical equation of each
structural cell is small compared to the scale of the entire
dynamical equation. In addition, the dynamical equations
of structural cells are the same, except for the structural
cells near the boundary of the periodic structure. Therefore,
using PIM for the dynamical equation (19) of the structural
cell could be a better approach for two reasons. The first
reason is that the size of the cell dynamical equation is much
smaller than that of the entire dynamical equation. Hence,
the cost for the computations of the exponential matrices
corresponding to the structural cell is insignificant compared
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with the cost for that corresponding to the whole periodic
structure. The second reason is that the repeatability of the
periodic structure can be utilized. Because the structural
cells are the same, the corresponding exponential matrices
are also the same. Once the exponential matrix for one of
the structural cells is computed, the rest are also obtained.
Hence, the required storage would be reduced substantially.
Meanwhile, a large time step could be selected to ensure
accuracy because the exponential matrix is computed using
PIM.The exponential matrices of the structural cell involved
could be computed using FPIM [22, 23], which was modified
by Gao et al. based on the original PIM to further improve
the computational efficiency.

Before using PIM for the cell dynamical equation (19),
some issues should first be discussed.The first issue concerns
the force vector f

𝑖
. In (19), the force vector f

𝑖
actually contains

two parts, denoted by p
𝑖
and q

𝑖
. p
𝑖
is the force produced by

outside factors, such as gravity, and q
𝑖
is the force produced

by the neighboring structural cells. For the whole periodic
structure, q

𝑖
is the so-called internal force, which means

𝐿

∑

𝑖=1

D
𝑖
p
𝑖
= f ,

𝐿

∑

𝑖=1

D
𝑖
q
𝑖
= 0. (26)

The force vectors f(𝑡), p
𝑖
(𝑡), and q

𝑖
(𝑡) can also be approxi-

mated as

q
𝑖
(𝑡

𝑘
+ 𝜉) =

2𝑞−1

∑

𝑛=0

𝐿

2𝑞,𝑛
(𝜉) q
𝑖,𝑛
,

p
𝑖
(𝑡

𝑘
+ 𝜉) =

2𝑞−1

∑

𝑛=0

𝐿

2𝑞,𝑛 (
𝜉) p𝑖,𝑛

f
𝑖
(𝑡

𝑘
+ 𝜉) =

2𝑞−1

∑

𝑛=0

𝐿

2𝑞,𝑛
(𝜉) f
𝑖,𝑛
,

f
𝑖,𝑛

= q
𝑖,𝑛

+ p
𝑖,𝑛

(27)

by selecting 2𝑞 Lagrange interpolating points [27] in the time
interval [𝑡

𝑘
, 𝑡

𝑘+1
]. In (27), p

𝑖,𝑛
, q
𝑖,𝑛
, and f

𝑖,𝑛
are the 𝑁

𝑖
× 1

force vectors at the 𝑛th interpolating time point, and q
𝑖,𝑛

is
an undetermined vector. Substituting (27) into (19) yields

M
𝑖
̈X
𝑖
+ C
𝑖
̇X
𝑖
+ K
𝑖
X
𝑖
=

2𝑞−1

∑

𝑛=0

𝐿

2𝑞,𝑛
(𝜉) f
𝑖,𝑛

(28)

which can also be rewritten as

̇U
𝑖
= H
𝑖
U
𝑖
+ N
𝑖

2𝑞−1

∑

𝑛=0

𝐿

2𝑞,𝑛 (
𝜉) f𝑖,𝑛, (29)

U
𝑖
= (

X
𝑖

V
𝑖

) , N
𝑖
= (

0
M−1
𝑖

) ,

H
𝑖
= [

0 I
𝑖

−M−1
𝑖
K
𝑖
−M−1
𝑖
C
𝑖

] .

(30)

Note that p
𝑖
is known and q

𝑖
is undetermined. Selecting

2𝑞 interpolating points to approximate the force vector q
𝑖

implies that there are 2𝑞 unknown vectors (i.e., q
𝑖,𝑛
, 𝑛 = 1∼2𝑞)

that should be determined. To determine these vectors, take
𝑙 derivatives of (29) with respect to time:

U(𝑙+1)
𝑖

= H
𝑖
U(𝑙)
𝑖
+ N
𝑖

2𝑞−1

∑

𝑛=0

𝐿

(𝑙)

2𝑞,𝑛
(𝜉) f𝑖,𝑛, (31)

where

U(𝑙)
𝑖

=

d𝑙U
𝑖
(𝑡)

d𝑡𝑙
, 𝑙 = 0, 1, . . . , 𝑞 − 1.

(32)

Then, applying PIM to (31) yields

U(𝑙)
𝑖,𝑘+1

= T
𝑖
U(𝑙)
𝑖,𝑘

+

2𝑞−1

∑

𝑛=0

𝜓
𝑖,𝑙,𝑛

f
𝑖,𝑛
,

(33)

where 𝜓
𝑖,𝑙,𝑛

∈ 𝑅

2𝑁𝑖×𝑁𝑖 is given by

𝜓
𝑖,𝑙,𝑛

= ∫

𝜂

0

exp [H
𝑖
(𝜂 − 𝜉)]N

𝑖
𝐿

(𝑙)

2𝑞,𝑛
(𝜉) d𝜉 (34)

which can be computed using the Gaussian quadrature
method [28]. In terms of (33), we have

(

(

U(0)
𝑖,𝑘+1

U(1)
𝑖,𝑘+1

.

.

.

U(𝑞−1)
𝑖,𝑘+1

)

)

=

(

(

T
𝑖
U(0)
𝑖,𝑘

T
𝑖
U(1)
𝑖,𝑘

.

.

.

T
𝑖
U(𝑞−1)
𝑖,𝑘

)

)

+

[

[

[

[

[

𝜓
𝑖,0,0
𝜓
𝑖,0,1

⋅ ⋅ ⋅ 𝜓
𝑖,0,2𝑞−1

𝜓
𝑖,1,0
𝜓
𝑖,1,1

⋅ ⋅ ⋅ 𝜓
𝑖,1,2𝑞−1

.

.

.

.

.

. d
.

.

.

𝜓
𝑖,𝑞−1,0
𝜓
𝑖,𝑞−1,1

⋅ ⋅ ⋅ 𝜓
𝑖,𝑞−1,2𝑞−1

]

]

]

]

]

(

f
𝑖,0

f
𝑖,1

.

.

.

f
𝑖,2𝑞−1

).

(35)

For convenience, let (35) be rewritten as

W
𝑖,𝑘+1

= b
𝑖,𝑘

+ Y
𝑖
Q
𝑖 (36)
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in which

W
𝑖,𝑘+1

=

(

(

U(0)
𝑖,𝑘+1

U(1)
𝑖,𝑘+1

.

.

.

U(𝑞−1)
𝑖,𝑘+1

)

)

,

Y
𝑖
=

[

[

[

[

[

𝜓
𝑖,0,0
𝜓
𝑖,0,1

⋅ ⋅ ⋅ 𝜓
𝑖,0,2𝑞−1

𝜓
𝑖,1,0
𝜓
𝑖,1,1

⋅ ⋅ ⋅ 𝜓
𝑖,1,2𝑞−1

.

.

.

.

.

. d
.

.

.

𝜓
𝑖,𝑞−1,0
𝜓
𝑖,𝑞−1,1

⋅ ⋅ ⋅ 𝜓
𝑖,𝑞−1,2𝑞−1

]

]

]

]

]

,

Q
𝑖
= (

q
𝑖,0

q
𝑖,1

.

.

.

q
𝑖,2𝑞

),

b
𝑖,𝑘

=

(

(

T
𝑖
U(0)
𝑖,𝑘

T
𝑖
U(1)
𝑖,𝑘

.

.

.

T
𝑖
U(𝑞−1)
𝑖,𝑘

)

)

+

[

[

[

[

[

𝜓
𝑖,0,0
𝜓
𝑖,0,1

⋅ ⋅ ⋅ 𝜓
𝑖,0,2𝑞−1

𝜓
𝑖,1,0
𝜓
𝑖,1,1

⋅ ⋅ ⋅ 𝜓
𝑖,1,2𝑞−1

.

.

.

.

.

. d
.

.

.

𝜓
𝑖,𝑞−1,0
𝜓
𝑖,𝑞−1,1

⋅ ⋅ ⋅ 𝜓
𝑖,𝑞−1,2𝑞−1

]

]

]

]

]

(

p
𝑖,0

p
𝑖,1

.

.

.

p
𝑖,2𝑞

),

(37)

where Y
𝑖
∈ 𝑅

2𝑞𝑁𝑖×2𝑞𝑁𝑖 is a square matrix and p
𝑖,𝑛

∈ 𝑅

𝑁𝑖×1 is
the force vector produced by the neighboring structural cells
at the 𝑛th interpolating point. Therefore, in the vector p

𝑖,𝑛
,

the elements corresponding to the DOFs inside the structural
cell are all zeros. For the 𝑖th structural cell, the displacements
and velocities of the DOFs inside the cell are denoted by X

𝑖,𝑖

and V
𝑖,𝑖
, respectively. The displacements and velocities of the

DOFs that are on the boundary of the cell are denoted byX
𝑏,𝑖

and V
𝑏,𝑖
, respectively. The subscripts 𝑖 and 𝑏 indicate internal

and boundary DOFs, respectively. Meanwhile, let the state
vector U

𝑖,𝑘+1
be partitioned into

U
𝑖,𝑘+1

= (

U
𝑖,𝑖,𝑘+1

U
𝑏,𝑖,𝑘+1

) , U
𝑖,𝑖,𝑘+1

= (

X
𝑖,𝑖

V
𝑖,𝑖

) ,

U
𝑏,𝑖,𝑘+1

= (

X
𝑏,𝑖

V
𝑏,𝑖

)

(38)

and rewrite (36) in the block matrix form

(

W
𝑖,𝑖,𝑘+1

W
𝑏,𝑖,𝑘+1

) = (

b
𝑖,𝑖,𝑘

b
𝑏,𝑖,𝑘

) + [

Y
𝑖𝑖,𝑖

Y
𝑖𝑏,𝑖

Y
𝑏𝑖,𝑖

Y
𝑏𝑏,𝑖

](

0
Q
𝑏,𝑖

) (39)

in which W
𝑖,𝑖,𝑘+1

corresponds to the DOFs inside the struc-
tural cell, and W

𝑏,𝑖,𝑘+1
corresponds to the DOFs on the

boundary; that is,

W
𝑖,𝑖,𝑘+1

=

(

(

U(0)
𝑖,𝑖,𝑘+1

U(1)
𝑖,𝑖,𝑘+1

.

.

.

U(𝑞−1)
𝑖,𝑖,𝑘+1

)

)

, W
𝑏,𝑖,𝑘+1

=

(

(

U(0)
𝑏,𝑖,𝑘+1

U(1)
𝑏,𝑖,𝑘+1

.

.

.

U(𝑞−1)
𝑏,𝑖,𝑘+1

)

)

,

Q
𝑏,𝑖

= (

q
𝑏,𝑖,0

q
𝑏,𝑖,1

.

.

.

q
𝑏,𝑖,2𝑞

).

(40)

In terms of (39), we have

Y−1
𝑏𝑏,𝑖

W
𝑏,𝑖,𝑘+1

= Y−1
𝑏𝑏,𝑖

b
𝑏,𝑖,𝑘

+Q
𝑏,𝑖
, (41)

W
𝑖,𝑖,𝑘+1

= b
𝑖,𝑖,𝑘

+ Y
𝑖𝑏,𝑖
Y−1
𝑏𝑏,𝑖

(W
𝑏,𝑖,𝑘+1

− b
𝑏,𝑖,𝑘

) . (42)

Equation (41) can be seen as the dynamical stiffness
equation of the 𝑖th structural cell, andQ

𝑏,𝑖
can be seen as the

boundary force produced by the neighboring cells. In terms
of (41), only the response information about the boundary
DOFs is involved; that is, the dynamical stiffness equation
(41) of the 𝑖th structural cell is reduced, and the 𝑖th structural
cell is treated as a super element. Let the displacements and
velocities of the DOFs on the boundaries of all structural cells
be denoted by X

𝑏
and V

𝑏
, respectively, and we have

X
𝑏,𝑖

= DT
𝑏,𝑖
X
𝑏
, V

𝑏,𝑖
= DT
𝑏,𝑖
V
𝑏
, (43)

whereDT
𝑏,𝑖
describes the relationship betweenX

𝑏,𝑖
andX

𝑏
and

DT
𝑏,𝑖
D
𝑏,𝑖

is a unit matrix. Combining (38) and (40) with (43)
yields

U(𝑙)
𝑏,𝑖,𝑘+1

= ET
𝑏,𝑖
U(𝑙)
𝑏,𝑘+1

, W
𝑏,𝑖,𝑘+1

= GT
𝑏,𝑖
W
𝑏,𝑘+1

, (44)

where

ET
𝑏,𝑖

= [

DT
𝑏,𝑖

0
0 DT

𝑏,𝑖

] , U(𝑙)
𝑏,𝑘+1

= (

X(𝑙)
𝑏,𝑘+1

V(𝑙)
𝑏,𝑘+1

) ,

U(𝑙)
𝑏,𝑖,𝑘+1

= (

X(𝑙)
𝑏,𝑖,𝑘+1

V(𝑙)
𝑏,𝑖,𝑘+1

) ,

W
𝑏,𝑘+1

=

(

(

U(0)
𝑏,𝑘+1

U(1)
𝑏,𝑘+1

.

.

.

U(𝑞−1)
𝑏,𝑘+1

)

)

, GT
𝑏,𝑖

=

[

[

[

[

ET
𝑏

ET
𝑏

d
ET
𝑏

]

]

]

]

.

(45)
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· · ·
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· · ·· · ·· · ·· · ·· · ·

m2/2m2

(b)

Figure 2: The spring-mass model.

Substituting (44) into (41) andmultiplying (41) withG
𝑏,𝑖
yield

G
𝑏,𝑖
Y−1
𝑏𝑏,𝑖

GT
𝑏,𝑖
W
𝑏,𝑘+1

= G
𝑏,𝑖
Y−1
𝑏𝑏,𝑖

b
𝑏,𝑖,𝑘

+ G
𝑏,𝑖
Q
𝑏,𝑖
. (46)

In terms of (46), we have
𝐿

∑

𝑖=1

G
𝑏,𝑖
Y−1
𝑏𝑏,𝑖

GT
𝑏,𝑖
W
𝑏,𝑘+1

=

𝐿

∑

𝑖=1

G
𝑏,𝑖
Y−1
𝑏𝑏,𝑖

b
𝑏,𝑖,𝑘

+

𝐿

∑

𝑖=1

G
𝑏,𝑖
Q
𝑏,𝑖
. (47)

Q
𝑏,𝑖
denotes the boundary force produced by the neighboring

cells; that is, it is the so-called internal force for the entire
periodic structure; hence, we have

𝐿

∑

𝑖=1

G
𝑏,𝑖
Q
𝑏,𝑖

= 0. (48)

Combining (47) with (48) yields

(

𝐿

∑

𝑖=1

G
𝑏,𝑖
Y−1
𝑏𝑏,𝑖

GT
𝑏,𝑖
)W
𝑏,𝑘+1

=

𝐿

∑

𝑖=1

G
𝑏,𝑖
Y−1
𝑏𝑏,𝑖

b
𝑏,𝑖,𝑘

. (49)

In terms of (49), W
𝑏,𝑘+1

can be computed. Once W
𝑏,𝑘+1

is obtained, the vector W
𝑏,𝑖,𝑘+1

can be computed using (44).
Then, W

𝑖,𝑖,𝑘+1
can also be computed by applying W

𝑏,𝑖,𝑘+1
to

(42).WhenW
𝑏,𝑖,𝑘+1

andW
𝑖,𝑖,𝑘+1

are determined, the displace-
ments and velocities of all the DOFs in each structural cell
are obtained, which means that the computation over the
time interval [𝑡

𝑘
, 𝑡

𝑘+1
] is complete. In the same manner, the

displacements and velocities of all the DOFs at each time
node can be computed once the initial conditions are given.

For a periodic structure consisting of many identical
structural cells, the mass, damping, and stiffness matrices
of the structural cell are the same except for the structural
cells constrained by the boundary. Hence, for the identical
structural cells, the involved exponent matrices only need to
be computed once. It can be observed that the proposed SPIM
is particularly suitable for the dynamical problems of periodic
structures. The number 2𝑞 of the interpolation points for
approximating q

𝑖
(𝑡) could affect the performance of SPIM.

If the interpolation points in SPIM are too numerous, a
high accuracy can be obtained; however, the computational
efficiency will be unsatisfactory. In the next section, the effect
of 𝑞 on the performance of SPIM will be discussed using two
numerical examples.

4. Numerical Examples

Example 1. Consider the periodic structure consisting of
masses and springs depicted in Figure 2. The entire peri-
odic structure is composed of 50 structural cells, shown in

Figure 2(a), with its masses and stiffnesses being𝑚
1
= 1 (kg)

and 𝑚

2
= 2 (kg) and 𝑘 = 1 (N/m), respectively. For each

structural cell, there are 50DOFs. The entire periodic struc-
ture contains 2500DOFs (see Figure 2(b)) and is fixed at both
ends.The initial conditions are that the initial displacement of
the 1226thDOF is unity, the initial displacements of the rest
of the DOFs are zeros, and the initial velocity is zero for all
DOFs. The external force is not considered in this example.

To study the effect of the number 2𝑞 of interpolation
points on the accuracy of SPIM, 𝑞 = 1 and 2 are used. To
investigate the performance of SPIM, the Newmark method
(i.e., the average acceleration implicit scheme) and the vari-
able step R-K method (ODE45 in MATLAB) are employed.
The interval of the integration is set to be [0, 1000] s.
The time step for SPIM is 0.1 s, two time steps of 10−3 s and
10

−4 s are used for theNewmarkmethod, and 10−13 is used for
both the absolute and relative tolerances in the R-K method
(ODE45). The numerical results computed using ODE45 are
considered the reference solution to test the accuracy of the
SPIM results. The relative errors of the SPIM and Newmark
methods are defined as

𝑒d = log
10
(

󵄩

󵄩

󵄩

󵄩

X − XRK
󵄩

󵄩

󵄩

󵄩2

󵄩

󵄩

󵄩

󵄩

XRK
󵄩

󵄩

󵄩

󵄩2

) , 𝑒v = log
10
(

󵄩

󵄩

󵄩

󵄩

V − VRK
󵄩

󵄩

󵄩

󵄩2

󵄩

󵄩

󵄩

󵄩

VRK
󵄩

󵄩

󵄩

󵄩2

) ,

(50)

whereXRK andVRK are the displacement and velocity vectors
computed using the R-K method, respectively. X and V are
the displacement and velocity vectors, respectively, computed
using the SPIM or Newmark methods. The subscript 2
represents the 2-norm of a vector.

In this example, the order of the proposed method is
also tested by using different time steps. If the order of an
algorithm is 𝑠, the numerical error for time step 𝜂 is 𝐶𝜂

𝑠,
in which 𝐶 is a constant. Thus, the errors 𝑒

1
and 𝑒

2
for two

different time steps 𝜂
1
and 𝜂

2
can be given by

𝑒

1
= 𝐶𝜂

𝑠

1
, 𝑒

2
= 𝐶𝜂

𝑠

2
(51)

and the order of the algorithm can be shown by

𝑠 =

log
10
(𝑒

1
) − log

10
(𝑒

1
)

log
10
(𝜂

1
) − log (𝜂

2
)

. (52)

In this example, the errors of the displacement vectors are
defined by (50); thus, the order of the proposed method is
defined as

𝑠 =

𝑒d,1 − 𝑒d,2

log
10
(𝜂

1
) − log (𝜂

2
)

. (53)
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Table 1: Comparison of CPU times for Example 1.

SPIM (𝑞 = 1) SPIM (𝑞 = 2) ODE45 Newmark
Order 4 5 — 2
𝜂 (s) 10

−1
10

−1 — 10

−3
10

−4

CPU times (s) 35 42 374 317 3111
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t
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(a) Displacements of the nodes at 𝑡 = 1000 s
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(b) Velocities of the nodes at 𝑡 = 1000 s

Figure 3: The displacements and velocities of all nodes at 𝑡 = 1000 s.
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(a) Relative errors of the displacement vectors
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t (s)
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−10

−12

e v

(b) Relative errors of the velocity vectors

Figure 4: The relative errors for Example 1. SPIM with 𝑞 = 2 and time step 10

−1 s (solid line), SPIM with 𝑞 = 1 and time step 10

−1 s (∙),
Newmark method with time step 10

−4 s (◻), and Newmark method with time step 10

−3 s (△).

Four time steps 𝜂 = 0.1 s, 0.2 s, 0.3 s, and 0.4 s are selected to
determine the order of the proposed method.

Figures 3(a) and 3(b) give the displacements and veloci-
ties of all the DOFs computed using the proposed method at
1000 s, respectively. The relative errors of the displacements
and velocities computed using the SPIM and Newmark
methods are shown in Figures 4(a) and 4(b). Figure 5 shows
the variations of the errors of the displacement vectors versus
the time step. The order of accuracy and CPU time for all
methods are given in Table 1.

Figures 4(a) and 4(b) demonstrate that the results
obtained using the SPIM with 𝑞 = 2 are more accurate than
those obtained using the SPIM with 𝑞 = 1 when the time
steps used for the two cases are both 0.1 s. From Figure 5 and
Table 1, it can be concluded that the order of accuracy of the
SPIM is approximately 2(𝑞 + 1). However, in terms of Table 1,
the SPIMwith 𝑞 = 2 requires slightlymoreCPU time than the
SPIM with 𝑞 = 1. Compared with the Newmark method, the
SPIM results are more accurate, although the time step used
for SPIM is 100 times that used for the Newmark method. It
can be observed from Table 1 that the CPU time of the R-K
method is 8.9 and 10.7 times that of the SPIM with 𝑞 = 1 and
𝑞 = 2, respectively. In addition, compared with the Newmark
method, SPIM remainsmore efficient because the CPU times

of the Newmark method with two different time steps are 7.5
and 74 times that of the SPIM with 𝑞 = 2, respectively. It can
be concluded from Figure 4 and Table 1 that SPIM using a
large time step can achieve high accuracy and efficiency.

Example 2. Consider a two-dimensional phononic crystal
consisting of two different materials. The corresponding
material parameters are 𝐸

1
= 1.4×10

10 Pa, 𝐸
2
= 7.0×10

10 Pa,
𝜌

1
= 2000 kg/m3, 𝜌

2
= 2700 kg/m3, ]

1
= 0.3, and ]

2
= 0.3.

The models of the structural cell and the entire structure are
shown in Figures 6 and 7, respectively. The entire phononic
crystal is composed of 15 × 15 structural cells. The bottom
of the phononic crystal is fixed. On top of the phononic
crystal acts the uniform load 𝑓(𝑡) = 2 × 10

7N/m, which
is independent of time. After using the four-node linear
rectangular elements for the phononic crystal, the number of
the total DOFs is 11400.The FEMmodel of the structural cell
is given in Figure 8.

SPIM, the Newmark method (i.e., the average accelera-
tion implicit scheme) and the variable step R-K method are
used for this example in the time interval [0, 0.02] s.The time
step for SPIM is 𝜂 = 10

−5 s, while 𝑞 = 1, 2, and 3 are used
to study the effect of the number of interpolation points on
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Table 2: Comparison of CPU times for Example 2.

SPIM (𝑞 = 1) SPIM (𝑞 = 2) SPIM (𝑞 = 3) Newmark ODE45
Order 4 6 8 2 —
𝜂 (s) 10

−5
10

−5
10

−5
10

−6
10

−7 —
CPU times (s) 68 169 321 291 4779 2338

−5

−6

−7

−8

−9

−10

−11

−12
−1 −0.8 −0.6 −0.4

q = 1

q = 2

log10(𝜂)

e d

Figure 5: The variations of the errors of the displacement vectors
versus the time step for Example 1.
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Figure 6: The structural cell.

the accuracy of SPIM. Four time steps 𝜂 = 10

−5 s, 2 × 10

−5 s,
3 × 10

−5 s, and 4 × 10

−5 s are selected to determine the order
of the SPIM. For the Newmark method, two time steps of
10

−6 s and 10

−7 s are used, and 10

−13 is used for both the
absolute and relative tolerances in the R-Kmethod (ODE45).
The numerical results computed using ODE45 are used as the
reference solution, and the relative errors of the SPIM and
Newmark methods are defined by (50).

f(t)

Figure 7: The phononic crystal.
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13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Figure 8: The finite element model of the structural cell.

Figures 9(a) and 9(b) present the displacement distribu-
tions at 0.02 s in the 𝑥 and 𝑦 directions computed using the
proposed method, respectively, and Figures 9(c) and 9(d)
present the velocity distributions. The relative errors of the
displacements and velocities computed using the SPIM and
Newmark methods are given by Figures 10(a) and 10(b),
respectively. Figure 10 shows the variations of the errors of
the displacement vectors versus the time step. The order of
accuracy and CPU time for all methods are given in Table 2.

In terms of Figures 10(a) and 10(b) and Table 2, it can be
observed that the SPIM with 𝑞 = 3 has the best precision and
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Figure 9: The displacement and velocity distributions at 𝑡 = 0.02 s.
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(a) Relative errors of the displacement vectors
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(b) Relative errors of the velocity vectors

Figure 10: The relative errors for Example 2. SPIM with 𝑞 = 3 and time step 10

−5 s (solid line), SPIM with 𝑞 = 2 and time step 10

−5 s (∙),
SPIM with 𝑞 = 1 and time step 10

−5 s (◻), Newmark method with time step 10

−7 s (I), and Newmark method with time step 10

−6 s (△).

requires most amount of the CPU time. Hence, for the pro-
posed SPIM, the precision is improved, but the computational
efficiency is reduced with an increase in the interpolation
points. From Figure 11 and Table 2, it can be concluded that
the order of accuracy of the SPIM is approximately 2(𝑞 + 1).
However, comparedwith theNewmark andR-Kmethods, the
computational efficiency of SPIM is improved, according to
Table 2.The CPU time of the SPIM with 𝑞 = 3 is 321 s, which
is much less than that of the R-K method or the Newmark
method with the time step of 10−7 s. Although the CPU time
of the SPIM with 𝑞 = 3 is slightly greater than that of the
Newmark method with the time step of 10−6 s, the SPIM

results are much more accurate than the Newmark method,
as shown by Figures 10(a) and 10(b). It can also be observed
that when 𝑞 = 1, the precision of SPIM is already close to
that obtained with the Newmark method with the time step
of 10−7 s. However, note that when 𝑞 = 1, the CPU time of the
proposed method is approximately 0.015 times that obtained
with the Newmark method with the time step of 10−7 s.

5. Conclusions

A subdomain precise integration method (SPIM) has been
developed to solve the dynamical responses of periodic
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Figure 11: The variations of the errors of the displacement vectors
versus the time step for Example 2.

structures comprising many identical structural cells. SPIM
does not require the entire mass, damping, and stiffness
matrices of the periodic structure. Using the original precise
integration method for the structural cell and considering
the repeatability of periodic structures, the method avoids
repeatedly computing and storing many involved identical
exponential matrices. Hence, the presented method not
only inherits the precision of the original method but also
improves the computational efficiency in terms of both CPU
time and storage. Numerical examples demonstrate that the
proposed method is more efficient than the R-K method or
Newmark method and is more precise than the Newmark
method. It can be concluded that the proposed method is
particularly suitable for periodic structures containing many
identical structural cells.
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