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The primary resonance of van der Pol oscillator under fractional-order delayed negative feedback and forced excitation is studied.
Firstly, the approximate analytical solution is obtained based on the averaging method, and it could be found that the fractional-
order delayed feedback has not only the property of delayed velocity feedback but also that of delayed displacement feedback.
Moreover, the amplitude-frequency equation for the steady-state solution is established, and its stability conditions are also
obtained. Then, the results of the approximate analytical solution and numerical integration are compared and analyzed. The
agreement between the two methods is very high, so that the correctness and accuracy of the approximate analytical solution
are verified. Finally, the effects of all the parameters in the fractional-order delayed feedback on the amplitude-frequency curves
are analyzed. It could be concluded that fractional-order delayed feedback has important influences on the dynamical behavior of
van der Pol oscillator, which is very significant to the optimization and control of a similar system.

1. Introduction

As an important branch of mathematics, fractional calculus
had been studied for more than 300 years. In recent years,
it had attracted more attention in a lot of research fields,
such as physics, chemistry, mechanics, biology, electromag-
netics, materials science, and control engineering [1–11].
This was due to the fact that many features in time and
space could be explained by the fractional-order calculus
model, such as memory and nonlocality. At present, the
forms of fractional-order differential systems can be clas-
sified into two categories. The first one is to simply add
fractional-order derivative term into the original integer-
order system, so as to establish a fractional-order system.
For example, Shen et al. [12–16] studied several linear
and nonlinear fractional-order oscillators by the averaging
method or incremental harmonic balance method and found
that the fractional-order derivatives had both damping and
stiffness effects on the dynamical response in those oscil-
lators. Chen et al. [17, 18] studied the response of some
nonlinear fractional-order oscillator under Gaussian white
noise excitation. Yang et al. [19, 20] investigated the stochastic
response of nonlinear system with Caputo-type fractional

derivative subject to Gaussian white noise. Xu et al. [21]
proposed a new technique to deal with strongly nonlinear
stochastic systems with fractional derivative damping and
random harmonic excitation.The other one is that the classic
integer-order derivatives in dynamical system are directly
extended to the fractional-order ones, so that a fractional-
order differential system in state space is obtained. This kind
of systems include fractional-order Lorenz, van der Pol, and
Duffing system, and one could study the stability region,
bifurcations, chaos, and its control [22]. For example, Li
and Peng [23] found that chaos existed in Chen’s system
with a fractional order by utilizing the fractional calculus
techniques. Ahmed et al. [24] proposed some Routh-Hurwitz
stability conditions for some fractional-order systems. Li
and Wu [25] studied the chaotic behaviors and the Hopf
bifurcation in a new fractional-order hyperchaotic system
based on the Lorenz system. Čermák and Nechvátal [26]
discussed the stability conditions and chaotic behavior of
the Lorenz system involving the Caputo fractional derivative
with order between 0 and 1.

Time delay is more common and inevitable in dynamical
and control systems, and it could lead to the instability
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of the dynamical system and the damage to the control
performance [27–29]. At present, some researches had been
done on fractional-order and time delay systems. For exam-
ple, Deng et al. [30] studied the stability of n-dimensional
linear fractional differential equation with time delays. Shi
and Wang [31] presented the BIBO stability criterion of a
fractional-order delayed system. Babakhani et al. [9] studied
the existence of solutions at the neighborhood of equilibrium
for fractional-order delayed differential equations and the
Hopf bifurcations.

In recent years, the research on fractional-order van der
Pol oscillator had attracted more and more attention of the
scholars. For example, Guo et al. [32, 33] studied the steady-
state solution of the fractional van der Pol system with time
delay via residue harmonic balance technique. Liu et al.
[34] analyzed the asymptotic behaviors of the steady-state
responses of a fractional van der Pol oscillator by homotopy
analysis method and memory-free principle. Xie and Lin
[35] investigated the asymptotic solution of the van der
Pol oscillator with small fractional damping by using the
method of two-scale expansion. Shen et al. [36] obtained the
approximately analytical solution for the limit cycle of van der
Pol oscillator with two kinds of fractional-order derivatives
and analyzed its properties about amplitude and frequency.
Wen et al. [37] investigated the influence of fractional-order
delayed control on parameter-excited vibration for Mathieu-
Duffing oscillator based on the switch of stability.

Different from the aforementioned references, the pri-
mary resonance of van der Pol oscillator under fractional-
order delayed feedback and forced excitation is analytically
studied by averaging method in this paper. Particularly
the effects of all the parameters in fractional-order delayed
feedback on the primary resonance of the van der Pol
system are studied, and the calculation process of the aver-
aging method in fractional-order system is simplified. The
paper is organized as follows. In Section 2 the approximate
solution for primary resonance of van der Pol oscillator
under fractional-order delayed feedback is obtained. The
equivalent stiffness and damping coefficients denoted by the
feedback gain, fractional order, time delay, and so on are
defined. In Section 3 the stability condition of the steady-
state solution is obtained. Then, the results of approximate
analytical solution and numerical integration are compared
by numerical simulation in Section 4. Moreover, the effects
of the parameters in the fractional-order delayed feedback
on the amplitude-frequency equation are also given in this
section. Finally, the main conclusions are made in Section 5.

2. Approximate Analytical Solution of van
der Pol Oscillator under Fractional-Order
Delayed Feedback

Van der Pol oscillator under forced excitation and fractional-
order delayed negative feedback is considered as follows:

𝑚𝑥̈ (𝑡) + 𝑘𝑥 (𝑡) + 𝛼1 [𝑥2 (𝑡) − 1] 𝑥̇ (𝑡)= 𝐾1𝐷𝑝 [𝑥 (𝑡 − 𝜏)] + 𝐹 cos (𝜔𝑡) , (1)

where 𝑚, 𝑘, 𝛼1, 𝜏, 𝐹, and 𝜔 are the system mass, linear
stiffness coefficient, nonlinear stiffness coefficient, time delay,
excitation amplitude, and excitation frequency, respectively,𝐷𝑝[𝑥(𝑡 − 𝜏)] is the p-order derivative of 𝑥(𝑡 − 𝜏) to t (0 ≤ 𝑝 ≤1), and 𝐾1 (𝐾1 < 0) is the fractional feedback gain. Here we
adopt Caputo’s definition [22]:

𝐷𝑝 [𝑥 (𝑡)] = 1Γ (1 − 𝑝) ∫𝑡0 𝑥󸀠 (𝑢)(𝑡 − 𝑢)𝑝 d𝑢, (2)

where Γ(𝑦) is Gamma function satisfying Γ(𝑦 + 1) = 𝑦Γ(𝑦).
Introduce the following transformations:

𝜔0 = √ 𝑘𝑚,
𝜀𝛼 = 𝛼1𝑚 ,
𝜀𝑘1 = 𝐾1𝑚 ,
𝜀𝑓 = 𝐹𝑚.

(3)

Equation (1) becomes𝑥̈ (𝑡) + 𝜔20𝑥 (𝑡) + 𝜀𝛼 [𝑥2 (𝑡) − 1] 𝑥̇ (𝑡)= 𝜀𝑘1𝐷𝑝 [𝑥 (𝑡 − 𝜏)] + 𝜀𝑓 cos (𝜔𝑡) , (4)

where 𝜔0 is natural frequency and 𝜀 is a small positive
dimensionless parameter.We focus on the primary resonance
by averaging method [12–15, 37], which means 𝜔 ≈ 𝜔0.
Hence, one could introduce 𝜔2 = 𝜔20 + 𝜀𝜎 to illustrate the
approximation degree, where 𝜎 is the detuning factor.

Then, (4) can be written as𝑥̈ (𝑡) + 𝜔2𝑥 (𝑡) = 𝜀 {𝑘1𝐷𝑝 [𝑥 (𝑡 − 𝜏)] + 𝑓 cos (𝜔𝑡)
+ 𝜎𝑥 (𝑡) − 𝛼 [𝑥2 (𝑡) − 1] 𝑥̇ (𝑡)} . (5)

Letting 𝜑 = 𝜔𝑡 + 𝜃, the solution of (5) can be assumed as𝑥 (𝑡) = 𝑎 cos𝜑, (6a)𝑥̇ (𝑡) = −𝑎𝜔 sin𝜑, (6b)𝑥 (𝑡 − 𝜏) = 𝑎 cos (𝜑 − 𝜔𝜏) , (6c)

where the amplitude 𝑎 and the phase 𝜃 are slow-varying
functions of time 𝑡.

Substituting (6a), (6b), and (6c) into (5), one could obtaiṅ𝑎 = − 1𝜔 [𝑃1 (𝑎, 𝜃) + 𝑃2 (𝑎, 𝜃, 𝜏)] sin𝜑, (7a)

𝑎 ̇𝜃 = − 1𝜔 [𝑃1 (𝑎, 𝜃) + 𝑃2 (𝑎, 𝜃, 𝜏)] cos𝜑, (7b)

where 𝑃1 (𝑎, 𝜃) = 𝜀 [𝑓 cos (𝜑 − 𝜃) + 𝜎𝑎 cos𝜑
+ 𝛼𝜔 (𝑎3 − 𝑎) sin𝜑 − 𝛼𝜔𝑎3sin3𝜑] ,𝑃2 (𝑎, 𝜃, 𝜏) = 𝜀𝑘1𝐷𝑝 [𝑎 cos (𝜑 − 𝜔𝜏)] .

(8)
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Applying the averaging method to (7a) and (7b) in time
interval [0, 𝑇], one could obtain

̇𝑎 = − 1𝑇𝜔 ∫𝑇
0
[𝑃1 (𝑎, 𝜃) + 𝑃2 (𝑎, 𝜃, 𝜏)] sin𝜑 d𝜑, (9a)

𝑎 ̇𝜃 = − 1𝑇𝜔 ∫𝑇
0
[𝑃1 (𝑎, 𝜃) + 𝑃2 (𝑎, 𝜃, 𝜏)] cos𝜑 d𝜑. (9b)

In the above equation, the time 𝑇 is selected as 𝑇 = 𝑙 if𝑃1(𝑎, 𝜃) is a function with period 𝑙, or 𝑇 = ∞ if 𝑃2(𝑎, 𝜃, 𝜏)
is an aperiodic one. One could obtain the simplified forms of
the first part in (9a) and (9b)

̇𝑎1 = − 12𝜋𝜔 ∫2𝜋
0

𝑃1 (𝑎, 𝜃) sin𝜑 d𝜑
= − 𝜀𝑓2𝜔 sin 𝜃 + 𝜀𝛼𝑎2 − 𝜀𝛼𝑎38 , (10a)

𝑎 ̇𝜃1 = − 12𝜋𝜔 ∫2𝜋
0

𝑃1 (𝑎, 𝜃) cos𝜑 d𝜑
= − 𝜀𝑓2𝜔 cos 𝜃 − 𝜀𝜎𝑎2𝜔 . (10b)

In order to calculate the second part in (9a) and (9b), one
could use the formula in literature [3]𝐷𝑝 [cos (𝜇𝑡)] = 𝜇𝑝 cos(𝜇𝑡 + 𝑝𝜋2 ) ,

𝐷𝑝 [sin (𝜇𝑡)] = 𝜇𝑝 sin(𝜇𝑡 + 𝑝𝜋2 ) . (11)

Then, it yields𝐷𝑝 [cos (𝜇𝑡 + 𝜎)] = 𝜇𝑝 cos(𝜇𝑡 + 𝜎 + 𝑝𝜋2 ) ,
𝐷𝑝 [sin (𝜇𝑡 + 𝜎)] = 𝜇𝑝 sin(𝜇𝑡 + 𝜎 + 𝑝𝜋2 ) . (12)

Hence,̇𝑎2 = − lim
𝑇→∞

1𝑇𝜔 ∫𝑇
0
𝑃2 (𝑎, 𝜃, 𝜏) sin (𝜔𝑡 + 𝜃) d𝑡

= lim
𝑇→∞

−𝜀𝑘1𝑇𝜔 ∫𝑇
0
𝐷𝑝 [𝑎 cos (𝜔𝑡 + 𝜃 − 𝜔𝜏)] sin (𝜔𝑡

+ 𝜃) d𝑡 = −𝜀𝑎𝑘1𝜔 lim
𝑇→∞

1𝑇 ∫𝑇
0
𝜔𝑝

⋅ cos(𝜔𝑡 + 𝜃 − 𝜔𝜏 + 𝑝𝜋2 ) sin (𝜔𝑡 + 𝜃) d𝑡
= −𝜀𝑎𝑘1𝜔𝑝−12 lim

𝑇→∞

1𝑇
⋅ ∫𝑇
0
[sin(2𝜔𝑡 + 2𝜃 + 𝑝𝜋2 − 𝜔𝜏)

− sin(𝑝𝜋2 − 𝜔𝜏)] d𝑡 = 𝜀𝑎𝑘1𝜔𝑝−12 sin(𝑝𝜋2− 𝜔𝜏) .

(13a)

After a similar calculation, one could obtain

𝑎 ̇𝜃2 = − lim
𝑇→∞

1𝑇𝜔 ∫𝑇
0
𝑃2 (𝑎, 𝜃, 𝜏) cos (𝜔𝑡 + 𝜃) d𝑡

= −𝜀𝑎𝑘1𝜔𝑝−12 cos(𝑝𝜋2 − 𝜔𝜏) . (13b)

This calculation process is simpler than that in the literature
[37].

Combining (10a) and (10b)with (13a) and (13b), one could
obtain

̇𝑎 = − 𝜀𝑓2𝜔 sin 𝜃 + 𝜀𝛼𝑎2 − 𝜀𝛼𝑎38
+ 𝜀𝑎𝑘1𝜔𝑝−12 sin(𝑝𝜋2 − 𝜔𝜏) , (14a)

𝑎 ̇𝜃 = − 𝜀𝑓2𝜔 cos 𝜃 − 𝜀𝜎𝑎2𝜔
− 𝜀𝑎𝑘1𝜔𝑝−12 cos(𝑝𝜋2 − 𝜔𝜏) . (14b)

Substituting the parameters with the original ones, (14a) and
(14b) could be written as

̇𝑎 = − 𝐹2𝑚𝜔 sin 𝜃 + 𝛼1𝑎2𝑚 − 𝛼1𝑎38𝑚
+ 𝑎𝐾1𝜔𝑝−12𝑚 sin(𝑝𝜋2 − 𝜔𝜏) , (15a)

𝑎 ̇𝜃 = − 𝐹2𝑚𝜔 cos 𝜃 − 𝜔𝑎2 + 𝑘𝑎2𝑚𝜔
− 𝑎𝐾1𝜔𝑝2𝑚𝜔 cos(𝑝𝜋2 − 𝜔𝜏) . (15b)

Thus, one could get the approximate analytical solution of the
system. Reorganizing (15a) and (15b), it yields

̇𝑎 = − 𝐹2𝑚𝜔 sin 𝜃 − 𝛼1𝑎38𝑚 − 𝑎2𝑚𝐶𝑒 (𝑝) , (16a)

𝑎 ̇𝜃 = − 𝐹2𝑚𝜔 cos 𝜃 − 𝜔𝑎2 + 𝑎2𝑚𝜔𝐾𝑒 (𝑝) , (16b)

where

𝐶𝑒 (𝑝) = −𝛼1 − 𝐾1𝜔𝑝−1 sin(𝑝𝜋2 − 𝜔𝜏) , (17a)

𝐾𝑒 (𝑝) = 𝑘 − 𝐾1𝜔𝑝 cos(𝑝𝜋2 − 𝜔𝜏) (17b)

are defined, respectively, as the equivalent damping coeffi-
cient and the equivalent stiffness coefficient.

From (16a), (16b), (17a), and (17b), we could conclude that
the feedback gain 𝐾1, fractional-order 𝑝, and time delay 𝜏
have important effects on𝐶𝑒(𝑝) and𝐾𝑒(𝑝). Since the feedback
gain 𝐾1 is linearly related to 𝐶𝑒(𝑝) and 𝐾𝑒(𝑝), it affects the
response amplitude and resonance frequency in van der Pol



4 Shock and Vibration

oscillator simultaneously. When fractional-order 𝑝 ̸= 0,
the fractional-order delayed feedback has the functions of
both delayed displacement feedback and delayed velocity
feedback. When 𝑝 → 0, fractional-order delayed feedback
is almost equivalent to delayed displacement feedback. How-
ever, it is almost the same as delayed velocity feedback when𝑝 → 1. Moreover, we could find that the amplitude and
resonance frequency are affected periodically with the change
of 𝜏.
3. Amplitude-Frequency Equation
and Stability Condition of the
Approximate Solution

Now we study the steady-state solution, which is more
important and meaningful in vibration control. By puttinġ𝑎 = 0 and ̇𝜃 = 0 in (16a) and (16b), we could obtain4𝐹 sin 𝜃0 + 𝑎03𝛼1𝜔 + 4𝑎0𝜔𝐶𝑒 (𝑝) = 0, (18a)𝐹 cos 𝜃0 + 𝑚𝜔2𝑎0 − 𝑎0𝐾𝑒 (𝑝) = 0, (18b)

where 𝑎0 and 𝜃0 are the amplitude and phase of the steady-
state solution, respectively.

Eliminating 𝜃0 from (18a) and (18b), the amplitude-
frequency equation is obtained as follows:𝑎024 {[𝛼1𝑎024 + 𝐶𝑒 (𝑝)]2 + 1𝜔2 [𝐾𝑒 (𝑝) − 𝜔2𝑚]2}

= 𝐹24𝜔2 .
(19)

For simplicity, one could define

𝜌 def= 𝑎024 . (20)

Then, another equivalent form of (19) can be written as

𝜌 {[𝛼1𝜌 + 𝐶𝑒 (𝑝)]2 + 1𝜔2 [𝐾𝑒 (𝑝) − 𝜔2𝑚]2} = 𝐹24𝜔2 . (21)

From (24), we could see that theremay be one or three steady-
state solutions in the case of primary resonance. Next, we
study the stability of the steady-state solution. Letting 𝑎 =𝑎0 + Δ𝑎 and 𝜃 = 𝜃0 + Δ𝜃 and linearizing (16a) and (16b) at(𝑎0, 𝜃0), it yields

dΔ𝑎
d𝑡 = [−3𝛼1𝑎028𝑚 − 𝐶𝑒 (𝑝)2𝑚 ]Δ𝑎 − 𝐹 cos 𝜃02𝑚𝜔 Δ𝜃, (22a)

dΔ𝜃
d𝑡 = 𝐹 cos 𝜃02𝑚𝑎02𝜔Δ𝑎 + 𝐹 sin 𝜃02𝑚𝑎0𝜔 Δ𝜃. (22b)

Combined with (18a) and (18b), one could eliminate 𝜃0
from (22a) and (22b) and get the characteristic equation as
follows:

det( 𝐴1 − 𝜆 𝜔𝑎02 − 𝑎0𝐾𝑒 (𝑝)2𝑚𝜔− 𝜔2𝑎0 + 𝐾𝑒 (𝑝)2𝑚𝜔𝑎0 𝐴2 − 𝜆 ) = 0; (23)

that is,

𝜆2 − (𝐴1 + 𝐴2) 𝜆 + 𝐴1𝐴2 + [𝐾𝑒 (𝑝)2𝑚𝜔 − 𝜔2 ]2 = 0, (24)

where 𝐴1 = −3𝛼1𝑎028𝑚 − 𝐶𝑒 (𝑝)2𝑚 = −3𝛼1𝜌2𝑚 − 𝐶𝑒 (𝑝)2𝑚 ,
𝐴2 = −𝛼1𝑎028𝑚 − 𝐶𝑒 (𝑝)2𝑚 = −𝛼1𝜌2𝑚 − 𝐶𝑒 (𝑝)2𝑚 . (25)

Based on the Hurwitz criterion, one could obtain the neces-
sary and sufficient conditions for the stability of the steady-
state solution as follows: 𝐴1 + 𝐴2 < 0,

𝐴1𝐴2 + [𝐾𝑒 (𝑝)2𝑚𝜔 − 𝜔2 ]2 > 0. (26)

Substituting (25) into (26), one could obtain the stability
conditions as𝐶𝑒 (𝑝) + 2𝛼1𝜌= 𝛼1 (2𝜌 − 1) − 𝐾1𝜔𝑝−1 sin(𝑝𝜋2 − 𝜔𝜏) > 0, (27a)

[𝐶𝑒 (𝑝) + 2𝛼1𝜌]2 − 𝛼21𝜌2 + 1𝜔2 [𝐾𝑒 (𝑝) − 𝜔2𝑚]2
> 0. (27b)

4. Numerical Simulation and the Effect of
System Parameters

4.1. Comparison between Approximate Analytical and Numer-
ical Solution. In order to verify the correctness and precision
of the approximate analytical solution, the numerical results
of (1) are presented to compare the differences between the
approximate analytical solutions and the numerical solutions.
An illustrative example system is studied herein as defined by
system parameters: 𝛼1 = 1, 𝑚 = 4, 𝑘 = 10, 𝐾1 = −0.25,𝑝 = 0.5, and 𝐹 = 1.4.

Here we select time delay 𝜏 = 3, 2.25, and 1.5, respectively,
so that one could obtain three different response modes
of amplitude-frequency curve shown in Figure 1, where the
solid line is for the stable solution and the dot line is for the
unstable one.

Next the numerical formula [22] is adopted as

𝐷𝑝 [𝑥 (𝑡𝑙)] ≈ ℎ−𝑝 𝑙∑
𝑗=0

𝐶𝑝𝑗 𝑥 (𝑡𝑙−𝑗) , (28)

where 𝑡𝑙 = 𝑙ℎ (𝑙 = 1, 2, 3, . . .) is the time sample points, ℎ is
step length, and 𝐶𝑝𝑗 is the fractional binomial coefficient with
the iterative relationship as𝐶𝑝0 = 1,

𝐶𝑝𝑗 = (1 − 1 + 𝑝𝑗 )𝐶𝑝𝑗−1. (29)
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(c) 𝜏 = 1.5

Figure 1: Comparisons of the amplitude-frequency curves by the approximate analytical solution with that by numerical integration in three
response modes.

Letting 𝜏 = 𝑖 × ℎ, where 𝑖 is natural number, one could
obtain [37]

𝐷𝑝 [𝑥 (𝑡 − 𝜏)] = 𝐷𝑝 [𝑥 (𝑡 − 𝑖ℎ)] . (30)

Based on (28)–(30), one could get the numerical iterative
algorithm of (1) as follows:

𝑋1 (𝑡𝑙) = 𝑋2 (𝑡𝑙−1) ℎ − 𝑙∑
𝑗=1

𝐶1𝑗𝑋1 (𝑡𝑙−𝑗) , (31a)

𝑋2 (𝑡𝑙) = 1𝑚 {𝐾1𝑋3 (𝑡𝑙−1−𝑖)
− 𝛼1 [𝑋21 (𝑡𝑙−1) − 1]𝑋2 (𝑡𝑙−1) − 𝑘𝑋1 (𝑡𝑙−1)
+ 𝐹 cos (𝜔 ⋅ 𝑡𝑙−1)} ℎ − 𝑙∑

𝑗=1

𝐶1𝑗𝑋2 (𝑡𝑙−𝑗) ,
(31b)

𝑋3 (𝑡𝑙) = 𝑋2 (𝑡𝑙−1) ℎ1−𝑝 − 𝑙∑
𝑗=1

𝐶1−𝑝𝑗 𝑋3 (𝑡𝑙−𝑗) , (31c)

where 𝑋1 = 𝑥(𝑡) is displacement, 𝑋2 = 𝑥̇(𝑡) is velocity, and𝑋3 = 𝐷𝑝[𝑥(𝑡)] is the fractional derivative of displacement.
Here we select ℎ = 0.001, and the total computation time
is generally 300 s. Omitting the frontal 80% response, we
take the maximum value of the posterior 20% response as
the steady-state amplitude of the numerical results. As a
comparison, the amplitude-frequency curve by numerical
integration is also shown in Figure 1 denoted by small
circles. From Figure 1, it could be found that the approximate
analytical solutions agree very well with the numerical results
and achieve satisfactory precision in all the three response
modes.

4.2. Effects of the Fractional Parameters on the Amplitude-
Frequency Curves. Now considering the system parameters𝛼1 = 1, 𝑚 = 4, 𝑘 = 10, 𝑝 = 0.5, and 𝜏 = 3, one could obtain
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Figure 2: Effects of the fractional feedback gain 𝐾1 on the amplitude-frequency curves in three response modes (𝑝 = 0.5).
the amplitude-frequency curves shown in Figure 2 when the
fractional feedback gain 𝐾1 varies. From Figure 2, one could
find that the response amplitude decreases when the frac-
tional feedback gain𝐾1 decreases gradually, whichmeans the
equivalent damping of the system increases with the decrease
of𝐾1. Moreover, the resonance frequency will increase along
with the decrease of the fractional feedback gain 𝐾1, which
is because the equivalent stiffness coefficient becomes also
larger. In this process, the amplitude-frequency curve of the
system is shifted to the left. From Figure 2(a), one could find
that the topology structure of amplitude-frequency curve is
even changed due to the variation of 𝐾1. It can be seen that
the decrease of fractional-order feedback gain𝐾1 leads to the
increase of the resonance frequency (i.e., natural frequency)
of the system, and the amplitude-frequency curve is shown to
be shifted and its topology structure is also changed.

Next we select the system parameters 𝛼1 = 1, 𝑚 = 4,𝑘 = 10, 𝐾1 = −0.25, and 𝜏 = 3. When the fractional-
order 𝑝 changes, one could obtain the amplitude-frequency

curves shown in Figure 3. It could be found that the larger
the fractional-order 𝑝, the larger the maximum amplitude.
The reason is that the equivalent linear damping coefficient
will decrease along with the increase of fractional-order 𝑝.
Moreover, the resonance frequency will be larger along with
the increase of the fractional-order 𝑝, which is due to the fact
that the equivalent stiffness coefficient becomes also larger. In
this process, the amplitude-frequency curve of the system is
shifted to the left. From Figure 3(a), it could be found that the
topology structure of the amplitude-frequency curve will be
changed due to the variation of 𝑝.

However, the above analysis is only applicable to the case
of 𝜏 = 3. When time delay 𝜏 takes another value, the effects of
the fractional-order 𝑝 on this system may vary, which is due
to the fact that the fractional-order 𝑝 is coupling with time
delay 𝜏 as trigonometric function in fractional-order delayed
feedback.

Finally, the system parameters are selected as 𝛼1 = 1,𝑚 = 4, 𝑘 = 10, 𝐾1 = −0.25, 𝑝 = 0.5, and 𝐹 = 1.4. The
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Figure 3: Effects of the fractional-order 𝑝 on the amplitude-frequency curves in three response modes (𝐾1 = −0.25).
amplitude-frequency curves are shown in Figure 4when time
delay 𝜏 takes some different values. From the observation
of Figure 4(a), one could find that the response amplitude
of the system increases gradually when time delay 𝜏 is
increased from 0.5. At the same time, the system resonance
frequency decreases, the amplitude-frequency curve of the
system shifts from right to left, and its topology structure
changes. From Figure 4(b), we could see that the response
amplitude of the system begins to decrease gradually when
time delay 𝜏 continues to increase. Moreover, the resonance
frequency increases, and the system amplitude-frequency
curve continues to shift to the left. As shown in Figure 4(c),
it could be found that the response amplitude of the system
begins to increase gradually again as time delay 𝜏 continues
to increase. Meanwhile, the resonance frequency decreases
and the amplitude-frequency curve of the system shifts to
the right gradually. It is easy to see that the amplitude-
frequency curve of Figure 4(d) varies with time delay 𝜏 as
shown in Figure 4(a), which is due to the equivalent damping

and equivalent stiffness contain trigonometric functions in
(17a) and (17b). One could obtain 𝑇 ≈ 2𝜋/𝜔0 = 3.9738.
Therefore, time delay 𝜏 periodically affects the amplitude-
frequency curve of the system (see Figure 5).

5. Conclusions

The primary resonance of van der Pol oscillator under
fractional-order delayed negative feedback and forced exci-
tation by averaging method is studied, and the approximate
analytical solution is obtained.The steady-state solutions and
stability conditions are investigated. The effects of the frac-
tional feedback, the fractional order, and time delay on the
solution are analyzed, which are characterized by the equiva-
lent damping coefficient and equivalent stiffness coefficient.
Moreover, it is found that the changes of fractional-order
delayed feedback parameters may change the amplitude and
topology structure of the amplitude-frequency curve. These
results have important influence on the dynamical behavior
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Figure 4: Effects of the time delay 𝜏 on the amplitude-frequency curves (𝐾1 = −0.25).







2

1.5

1

0.5

0
10

5

0 −20
−10

0
10

20

Figure 5: Relation between time delay, frequency difference, and
amplitude.

and could be of great significance to the optimization and
control of a similar system.
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