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Collective behaviors such as synchronization, consensus, and flocking have been extensively investigated over the past decades.
Many important results have been disseminated concerning the properties of complex networks. Recent technological devel-
opment requires performance distribution, and this motivates the resolution to the issue of performance distributability. Albeit in
a simple setup, this paper presents an attempt to attacking this problem. Important results are obtained for performance re-
distribution under both unitary and specified specifications. Constraints are also considered revealing the tight bounds on both
nodes dynamics and graph elements for fulfilling the performance distribution and redistribution requirements. Examples are
presented for verification of the claims.

1. Introduction

It has been widely accepted that complex networks encode
many biological, technological, and even social systems, and
many important results have been disseminated over the
past decade [1–6]. Fundamental issues associated with both
dynamical properties and control designs for complex
networks have been extensively investigated such as network
formations [7–9], network propagations [10], network
controllability and observability [11–13], and network es-
timation [14]; collective behaviors such as synchronization
[15–17] and consensus and flocking [18–20] have also been
analyzed with many important results on conditions for
emergences.

Besides the abovementioned research themes, there is
yet another important problem to be addressed: the issue
of performance distribution. ,e concept of performance
distribution comes from the practical engineering re-
quirements where performance variables are specified
with different even contradicting performance indices.

For example, in the newly developed tuned mass dampers,
one performance variable is required to be attenuated for
vibration isolation, while another one should be signifi-
cantly increased for energy harvesting purpose [21, 22].
Performance distribution is best exemplified by the un-
manned aerial vehicle application where one performance
variable is such tuned to harvest energy for self-con-
trolling and self-power [23]. Indeed, such concepts have
promising applications in many engineering fields, yet
this new requirement has not received enough attention in
complex network research. ,is is not curious since
collective behaviors such as synchronization, consensus,
or flocking are the main concern in complex networks. In
these studies, the objective is usually defined by unitary
performance index such as tracking error approaching
zero, or a set under persistent perturbation. ,is is dif-
ferent from performance distribution where one set of
performance variables are required approaching zero,
while others must be maintained above certain threshold
values for efficient utilization (e.g., energy harvesting).
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Consequently the requirement of performance distribu-
tion is close to that of multiobjective optimization where
more than one objective functions need to be optimized
[24, 25]. Yet, multiobjective optimization problems are
usually solved by intelligent algorithms that can often
become very complicated for finding compromise solu-
tions. ,is is particularly true for the design of optimal
parameters with constraints. Physical insights are thus
lost during the optimization process. In this paper,
however, a simple yet powerful method is introduced for
attacking the performance distribution and redistribution
problems. Important physical insights can be retained
when addressing both nominal and constrained designs.
Meanwhile, as technology of the future seems to be more
intelligent and connected which is strongly featured by
smart agents with increasingly complex interactions, it is
therefore focusing on the investigation of the effect of
topological graph on network performance distribution
properties. ,e structure of the paper is as follows. Section
2 presents problem formulation, while the solutions are
given in Section 3. Section 4 considers the problem under
distribution specification, while Section 5 further inves-
tigates the important problem of performance distribu-
tion with parametric constraints. Finally, Section 6 draws
the conclusion and discussion which are given in relation
to the contribution of the current paper.

2. Problem Formulation

Consider a networked system with nonidentical yet linear
nodes’ dynamics subject to exogenous disturbances:

_xi(t) � aixi(t) + 􏽘
N

k�1
k≠i

sikxk(t) + si0di(t), i ∈ [1, N],
(1)

where xi(t) is the state variable of the node i; ai is the
corresponding node dynamics, and it is further assumed that
ai and s are constants yet different, henceforth representing a
heterogeneous network; sik is the topological interaction
among the nodes, and si0 is the interaction strength with the
exogenous signal di(t). ,us, equation (1) represents a
network with N nodes and unity inner coupling [26, 27].

To proceed, transform equation into complex domain
leading to

s − ai( 􏼁Xi � 􏽘
N

k�1
k≠i

sikXk + si0Di, i ∈ [1, N],
(2)

where s is the complex variable. For ease of presentation, the
dependence of Xi(s) on s has been omitted. Now, at a
frequency ω0, suppose the nodes dynamics are stable; then,
(2) becomes an N-simultaneous algebraic equations and
henceforth X1(jω0), X2(jω0), . . . , XN(jω0) can be solved
for Di(jω0) as follows:

X1

X2

⋮

XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

a1 − jω0( 􏼁 s12 · · · s1N

s21 a2 − jω0( 􏼁 · · · s2N

⋮ ⋮ ⋱ ⋮

sN1 sN2 · · · aN − jω0( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
s10D1

s20D2

⋮

sN0DN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

Remark 1. ,e advantage of writing in the matrix represen-
tation is that network system dynamics can be captured from
frequency domain identification during commission stage, and
this is often crucial for large-scale interconnected networks.

To proceed, note that, for a discrete frequency ω0, the
exogenous disturbances can be expressed as si0Di(jω0) �

CiD (jω0), where Ci is a complex number representing the
gain and phase shift with respect to the signal d(t). With this
convention, the frequency responses of Xi(jω0)s can be
represented with respect to D(jω0) as follows:

X1

X2

⋮

XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

a1 − jω0( 􏼁 s12 · · · s1N

s21 a2 − jω0( 􏼁 · · · s2N

⋮ ⋮ ⋱ ⋮

sN1 sN2 · · · aN − jω0( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1
C1

C2

⋮

CN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D.

(4)

Now, denote X �

X1
X2
⋮
XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and C �

C1
C2
⋮
CN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; define

S �

0 s12 · · · s1N

s21 0 · · · s2N

⋮ ⋮ ⋱ ⋮
sN1 sN2 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Λ � blockdiag (a1 − jω0) · · · (aN − jω0)( 􏼁. ,en, the
above equation becomes

X � (Λ + S)
−1

C D. (5)

Obviously, G is the topological graph and Λ defines the
nodes dynamics. Further manipulation leads to

X � I + Λ−1
S􏼐 􏼑

−1
Λ−1

C D. (6)

Equation (6) defines the disturbance distribution
property of the nodes for any specific topology graph S. It
thus provides a foundation for further reshaping of per-
formance distribution for each node. Consequently, the
problem of performance redistribution through topology
can be posed as follows:

2.1. Problem of Performance Redistribution. Given a per-
formance specification for all the nodes of the complex
network, find a topology graph S, such that the specification
is satisfied; if the specification cannot be satisfied, provide
conditions explaining the failure of satisfaction.
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3. Performance Redistribution

To proceed, it is envisioned that a given topology graph
produces two zones of performance distribution, namely, (1)
attenuation zone and (2) enhancement zone.,us, the above
problem of performance redistribution can be recast to
reshape the two zones by topology redesign. Without loss of
generality, it is assumed that two nodes X1 and X2 corre-
spond to the two zones, e.g., X1 is attenuated and X2 is
enhanced. Henceforth, the original performance redistri-
bution problem can be reformulated as shaping X1 being
attenuated and X2 being enhanced. ,at is, the following
definition is in force:

I + Λ− 1
S􏼐 􏼑

− 1
Λ− 1 ≡

G11 G12

G21 G22
􏼢 􏼣. (7)

,us,

X1

X2
􏼢 􏼣 �

G11C1 + G12C2

G21C1 + G22C2
􏼢 􏼣D. (8)

,e topology leads to the following disturbance distri-
bution property:

G11C1 + G12C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1,

G21C1 + G22C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1.
(9)

Now, the reshaping of the performance distribution
requires

G11C1 + G12C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

G21C1 + G22C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1,
(10)

with redesigned parameters Gik.
,is can be reformulated as the existence of Δik(Gik �

Gik + Δik) such that the following is fulfilled:

G11 + Δ11( 􏼁C1 + G12 + Δ12( 􏼁C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> 1,

G21 + Δ21( 􏼁C1 + G22 + Δ22( 􏼁C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1.
(11)

Obviously, should there be total freedom upon the
choice of Δik, (11) is always achievable; however, constraints
must exist for any nontrivial networks. ,e most common
situation is a symmetric graph. If S is symmetric, so is
(I + Λ−1S)− 1Λ−1, implying that Gik � Gki. ,is reduces the
number of freedom in Δik, and a known representation in Λ
would further reduce the freedom by the number of N.
While there are two sets of inequalities in both (9) and (10),
two sets of conditions for the unknowns can be derived. And
consequently the problem of performance redistributablity
is determined by the compatibility of the two sets of con-
ditions for the unknowns to be satisfied. ,is can be
summarized as follows.

Proposition 1. For a symmetric graph, performance redis-
tribution is achievable if and only if the two sets of conditions
specified for the unknowns resulting from inequalities (9) and
(10) are simultaneously solvable.

Example 1. In the case of two nodes, there are only one
unknown variable for a symmetric graph. Assume Λ + S �

a1 − jω s12
s12 a2 − jω􏼢 􏼣 which is symmetric. For illustration

purpose, it is simply assumed that C1, C2, and C3 are unities.
,en, it can be calculated:

I + Λ− 1
S􏼐 􏼑

− 1
Λ− 1

�
1

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

a2 − jω −s12

−s12 a1 − jω
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(12)

Now, assume that the parameters satisfy

a2 − jω − s12

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1,

a1 − jω − s12

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> 1.

(13)

,us, the problem transforms to whether there exists
Δ12 � s12 − s12 such that the following representations are
fulfilled:

a2 − jω − s12

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> 1,

a1 − jω − s12

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1.

(14)

Now, (13) and (14) will be satisfied with the following
conditions fulfilled, respectively:

a2 − jω − s12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< a1 − jω − s12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

a1 − jω − s12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< a2 − jω − s12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(15)

Or equivalently

a1 − a2( 􏼁s12 <
a1 − a2( 􏼁 a1 + a2( 􏼁

2
, (16)

a1 − a2( 􏼁 s12 + Δ12( 􏼁>
a1 − a2( 􏼁 a1 + a2( 􏼁

2
. (17)

Obviously, for

(1) a1 > a2, appropriate values of Δ12 > 0 will fulfill (16)
(2) a1 < a2, appropriate values of Δ12 < 0 will fulfill (17)

,at is, Δ12 always exists so that (13) and (14) are si-
multaneously solvable, excluding a1 � a2.

Assertion 1. For a two-node network with symmetric graph,
performance redistribution is always achievable if and only if
a1 ≠ a2.

,e above assertion has a profound implication: per-
formance redistributability is not influenced by the element
s12. However, it should be noted that s12 can shape the
specific performance distribution level. ,is is to be looked
at in detail below.
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4. Performance
Redistribution under Specification

,e above development only answers the question of fea-
sibility of performance redistribution under unity specifi-
cation. In practical situations, it is more concerned to be
capable of disturbance attenuation up to a certain level. For
example, it is required that the disturbance should be
redistributed above 6 dB. ,us, (9) and (10) must be
reformulated as

G11C1 + G12C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< δ1 < 1,

G21C1 + G22C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> δ2 > 1.
(18)

And it is required to reshape the performance to be

G11C1 + G12C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌> δ3 > 1,

G21C1 + G22C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< δ4 < 1,
(19)

with redesigned parameters Gik.
In practice, δi can possess simple algebraic relationship

such as δ3 � δ2, δ4 � δ1, and δ2 � (1/δ1). ,en, with the
redefinition of δ1 � δ, (18) and (19) can be written as

G11C1 + G12C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< δ,

G21C1 + G22C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
1
δ
,

(20)

G11C1 + G12C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
1
δ
,

G21C1 + G22C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< δ.

(21)

Parallel with the development in the above section for
unity specification requirement, the following result is
available.

Proposition 2. For a symmetric graph, performance redis-
tribution under specification is achievable if and only if the
two sets of conditions specified for the unknowns resulting
from inequalities (20) and (21) are simultaneously solvable.

Example 2. In Example 1, further consider the problem of
performance redistribution under a specification; then, (13)
and (14) are written as

a2 − jω − s12

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< δ,

a1 − jω − s12

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
>
1
δ
.

(22)

,us, the problem transforms to whether there exists
Δ12 � s12 − s12 such that the following representations are
fulfilled:

a2 − jω − s12

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
>
1
δ
,

a1 − jω − s12

a1 − jω( 􏼁 a2 − jω( 􏼁 − s
2
12

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< δ.

(23)

Now, (22) and (23) will be satisfied with the following
conditions fulfilled, respectively:

a2 − jω − s12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< δ2 a1 − jω − s12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

a1 − jω − s12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< δ2 a2 − jω − s12
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(24)

Or equivalently

s12 −
a2 − a1δ

2

1 − δ2
􏼠 􏼡

2

<
δ2 a1 − a2( 􏼁

2

1 − δ2􏼐 􏼑
2 − ω2

, (25)

s12 + Δ12 −
a1 − δ2a2

1 − δ2
􏼠 􏼡

2

<
δ2 a1 − a2( 􏼁

2

1 − δ2􏼐 􏼑
2 − ω2

. (26)

Unlike the situation in Example 1, the validity of the
conditions depends not only on s12 but also on the frequency
ω under consideration. Indeed, even the feasibility of the
specification itself is constrained by the positiveness of the
right hand of the inequality:

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2 > 0. (27)

Manipulation of (27) leads to

a1 − a2

ω

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌>
1
δ

− δ
􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (28)

Consequently, condition (28) actually puts a funda-
mental constraint on performance redistributability speci-
fied by δ. Essentially, the following statement has been
proved: for a two-node network with symmetric graph,
performance redistribution is achievable only if condition
(28) is fulfilled. In the following, it will be shown that this
condition is also sufficient.

To proceed, given the satisfaction of (28), it can be
deduced from (25):

−

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
a2 − a1δ

2

1 − δ2
< s12 <

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
a2 − a1δ

2

1 − δ2
(29)
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or

−

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
1 + δ2

1 − δ2
a2 − a1( 􏼁 + Δ12 < s12 + Δ12 −

a1 − δ2a2

1 − δ2
<

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
1 + δ2

1 − δ2
a2 − a1( 􏼁 + Δ12. (30)

Inequality (30) is the performance redistributability
condition inferred from original specification, while (26) is

the performance redistributability condition inferred from
redistribution requirement which can be simplified as

−

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

< s12 + Δ12 −
a1 − δ2a2

1 − δ2
<

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

. (31)

,us, (30) and (31) must have at least an intersection set
leading to

−2

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

−
1 + δ2

1 − δ2
a2 − a1( 􏼁<Δ12 < 2

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

−
1 + δ2

1 − δ2
a2 − a1( 􏼁. (32)

To recap, should inequality (32) be satisfied, for s12
within (29), original performance distribution (22) and
performance redistribution requirement (23) will be feasible
simultaneously. ,e only constraint on satisfaction of (32) is
condition (28). ,us, we have proved the following re-
markable results.

Assertion 2. For a two-node network with symmetric graph
with feasible performance distribution, performance redis-
tribution is achievable if and only if condition (28) is ful-
filled, or |(a1 − a2/ω)|> |(1/δ) − δ|.

Assertion 3. For a two-node network with symmetric graph
with |(a1 − a2/ω)|> |(1/δ) − δ|, performance redistribution is
achievable and the required topology Δ12 � s12 − s12 must
satisfy (32).

Remark 2. ,e condition |(a1 − a2/ω)|> |(1/δ) − δ| relates
performance redistribution specification to nodes’ dynamics
and frequency, which also answers the important problem of
redistributability. Hence, Assertion 2 is a fundamental result
for performance redistribution under a general performance
specification.

Remark 3. It is now seen clearly that Assertion 1 is a special
case of Assertion 2 with δ � 1.

As a typical requirement of a 6 dB redistribution being
targeted (hence, δ � 0.5) with a feasible specification, the
above assertions claim that performance redistribution is
achievable if and only if |(a1 − a2/ω)|> 1.5. And the required
topology Δ12 � s12 − s12 should satisfy

−2

��������������

4 a1 − a2( 􏼁
2

9
− ω2

􏽳

−
5
3

a2 − a1( 􏼁<Δ12 < 2

��������������

4 a1 − a2( 􏼁
2

9
− ω2

􏽳

−
5
3

a2 − a1( 􏼁. (33)

5. Performance
Redistribution with Constraints

As the graph can often represent physical topological
connections, e.g., mass-damper-spring systems, the physical
parameters are positive that would require the elements of S
being positive-definite or negative-definite; meanwhile, the

node dynamics in considered systems can be (non) Hur-
witzian. ,us, this will further constrain the redistribut-
ability of performance. A general discussion can be preceded
with detailed classifications, e.g., symmetric graph with
positive-definite elements and Hurwitzian nodes dynamics
and symmetric graph with negative-definite elements and
non-Hurwitzian node dynamics. To clarify and illustrate the

Shock and Vibration 5



basic ideas, we shall restrict to the discussion of the situation
for symmetric graph with positive-definite elements. ,e
remaining cases can then be deduced by parallel analogy
from the development below.

Giving this prelude, the following statement is a
straightforward extension from Proposition 2.

Proposition 3. For a symmetric graph with positive-definite
elements, performance redistribution is achievable if and only

if the feasible S and S in (19) and (20), respectively, have
elements being simultaneously positive-definite.

?e above proposition is best exemplified from the fol-
lowing examples.

Example 3. In Example 2, further consider the constraint
s12 > 0; then, for the corresponding S and S to be feasible,
there must be

−

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
a2 − a1δ

2

1 − δ2
< s12 <

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
a2 − a1δ

2

1 − δ2
,

−

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
a1 − δ2a2

1 − δ2
< s12 + Δ12 <

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
a1 − δ2a2

1 − δ2
.

(34)

,us, should the element be positive, the following in-
equalities must hold:

−

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
a2 − a1δ

2

1 − δ2
> 0,

−

���������������

δ2 a1 − a2( 􏼁
2

1 − δ2􏼐 􏼑
2 − ω2

􏽶
􏽴

+
a1 − δ2a2

1 − δ2
> 0.

(35)

Manipulation leads to

a
2
2 − δ2a2

1 + 1 − δ2􏼐 􏼑ω2 > 0, (36)

a
2
1 − δ2a2

2 + 1 − δ2􏼐 􏼑ω2 > 0. (37)

Together with (28), it is seen that performance redis-
tributability is “severely” restricted by the constraint
demanded by positive s12. ,is is summarized as follows.

Assertion 4. For a two-node network with symmetric graph
and positive graph elements, performance redistribution is
achievable if only if (28), (36), and (37) are simultaneously
satisfied.

Remark 4. As a natural consequence, the freedom for al-
lowable node dynamics and even frequency range are also
restricted whose Hurwitzianess and domains are actually
already determined.

To be specific, consider a 6 dB redistribution being
targeted; then, (28), (36), and (37) read

a
2
1 − 2a1a2 + a

2
2 − 2.25ω2 > 0, (38)

a
2
2 − 0.25a

2
1 + 0.75ω2 > 0, (39)

a
2
1 − 0.25a

2
2 + 0.75ω2 > 0. (40)

From (38) and (39), it is seen that not only the node
dynamics a1 and a2 but also the allowable frequency range ω
are already prescribed through the requirement of positive
s12. For example, for a1 � ω � 1, then a2 is restricted to be

−2.65 −0.5( 􏼁∪ 2.5 2.65( 􏼁; yet, for a1 � 1 and a2 � 10, the
frequency range is narrowed down to 5.66 6.0( 􏼁, which
almost renders the performance redistribution infeasible.

Remark 5. Henceforth, as a final remark, it is noted that the
performance redistribution can eventually become
unachievable if more constraints exist, e.g., domain re-
striction to either graph elements or nodes dynamics
(ai ∈ ai1 ai2􏼂 􏼃) and magnitude constraints due to spatial
restrictions. Performance distribution and redistribution
requirements thus provide tight bounds on both nodes
dynamics and graph elements.

6. Conclusion and Discussion

,e important problem of performance distribution has been
disseminated. Important results upon performance distribution
under both unity and general specifications have been obtained.
Numerical examples have been followed with each claim to
clarify the result and better exemplify the illustrations. ,e
contribution of the paper can be best recognized by recasting
the discussed problems into the general complex networks
research themes: complex networks have been conventionally
approached with the consideration of synchronization, con-
sensus, or flocking, where the objective has been defined by the
performance index as a tracking error approaching zero or a set.
Performance distribution, however, concerns both attenuation
and enhancement. ,is requirement comes from the practical
need from the emerging area of vibration energy harvesting,
noise cloaking in military submarines, etc. Indeed, applications
provide strong motivation to network control theory, and new
requirement thus calls upon new theoretical development.

6 Shock and Vibration



,erefore, other than providing detailed application-
specific results, a framework is established for investigation
of the new requirement of performance distribution prob-
lems. Avenues such as performance distribution and re-
distribution over a frequency band and nonlinear
redistribution can be explored. Such a methodology would
thus forge many design methods together for resolution of
the important problem of performance distribution for any
specific problems associated with practical engineering.
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