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In this paper, a new structural damage detection framework is proposed based on vibration analysis and pattern recognition,
which consists of two stages: (1) signal processing and feature extraction and (2) damage detection by combining the classification
result. In the first stage, discriminative features were extracted as a set of proposed descriptors related to the statistical moment of
the spectrum and spectral shape properties using five competitive time-frequency techniques including fast S-transform,
synchrosqueezed wavelet transform, empirical wavelet transform, wavelet transform, and short-time Fourier transform. *en,
forward feature selection was employed to remove the redundant information and select damage features from vibration signals.
By applying different classifiers, the capability of the feature sets for damage identification was investigated. In the second stage,
ensemble-based classifiers were used to improve the overall performance of damage detection based on individual classifiers and
increase the number of detectable damages. *e proposed framework was verified by a suite of numerical and full-scale studies (a
bridge health monitoring benchmark problem, IASC-ASCE SHM benchmark structure, and a cable-stayed bridge in China). *e
results showed that the proposed framework was superior to the existing single classifier and could assess the damage with reduced
false alarms.

1. Introduction

Intelligent damage detection of civil infrastructures is vital in
structural health monitoring (SHM) in order to improve
damage prediction performance and reduce maintenance
costs. *erefore, developing efficient methods for detecting
structural damage in the early stage is extremely important
for identifying the structural integrity and supporting de-
cision-making on the structure’s repair. In recent years, the
main SHM focus has been on vibration-based techniques
because of their ability in detecting damage which is invisible
within the internal areas of the structure before being ob-
served by visual inspection [1]. *ese techniques are based
on the idea that damage changes both physical properties of
a structure and its dynamic characteristics which are
revealed in the measured vibration response [2]. A

vibration-based damage detection method includes three
main steps: (1) signal monitoring, (2) signal processing, and
(3) data interpretation. *e objective of signal processing,
which is a major component of any vibration-based tech-
nique, is to extract subtle behaviour changes in vibration
data (feature extraction) in order to depict whether the
structure is damaged or not [3, 4]. Various features that have
been applied in vibration-based SHM research consist of
time-domain, frequency-domain, and time-frequency do-
main features extracted by signal processing methods.

Time-domain features represent temporal aspects and
are fast and readily applicable. *ese techniques such as
mean, root mean square, skewness, kurtosis, and produc-
tivity ratio can directly perform on time-series data [5–7].
Frequency-domain features represent frequency content and
spectral aspects obtained by fast Fourier transform (FFT)
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such as energy in different frequency bands, frequency
bands, and Fourier coefficient [8–10]. Time-frequency do-
main features such as energy concentration, amplitude levels
in time-frequency (TF) bands, and time-frequency distri-
bution can be extracted by using various signal processing
tools to represent signal characteristics in joint time and
frequency domains. Time-frequency techniques such as
wavelet transform (WT), Wigner–Ville distribution, short-
time Fourier transform, and Hilbert–Huang transform have
overcome time information loss problem of frequency-do-
main methods. Wang and Shi [11] proposed a novel damage
index, namely, energy curvature difference (ECD), based on
wavelet packet transform, to identify damage in structures.
Results of their study indicated the proposed ECD index was
sensitive to low damage levels and applicable for damage
identification. Xu and Wu [12] proposed a damage assess-
ment strategy based on the energy of acceleration responses
for identifying damage in long-span bridge structures. Xin
et al. [13] introduced an improved empirical wavelet
transform (EWT) method using measured dynamic re-
sponses of structures to identify structural modal parame-
ters. Young et al. [14] introduced three damage-sensitive
features (DSFs) by applying the continuous wavelet trans-
form. *ese DSFs were extracted from structural responses
and determined as wavelet energy functions at specific times
and specific frequencies. Liu et al. [15] introduced a time-
frequency analysis method, i.e., S-transform, to analyse the
vibration signals of a reinforced concrete beam under dif-
ferent loading force states in order to extract changes in the
vibration data for damage identification. Synchrosqueezed
wavelet transform (SWT) was employed to detect features
for structural damage assessment [16, 17].

In the data interpretation stage, an automatic decision-
making system is required to classify the structure condition
into different health condition categories. Indeed, com-
bining pattern recognition algorithms with signal processing
techniques has attracted the attention of many researchers in
recent years. Some of the most common classification
methods used in structural damage detection are artificial
neural networks, fuzzy logic, support vector machine,
k-nearest neighbor, and Bayesian classifiers [18–21].

Each of the abovementioned signal processing tech-
niques has its own advantages and disadvantages which may
affect the final results of the damage identification process.
Some of these techniques are proper for one application, but
not for another. *us, it is important to choose a signal
processing method for assessing structural damage. If the
method is not appropriate, it may lead to erroneous results
or false alarm.

In the present study, the proposed strategy is an ex-
tension of a technique proposed by Bisheh et al. [22], which
evaluated the possibility of damage occurrence by analysing
the measured structural responses using feature extraction
and selection.*e present work aims to identify the presence
of damage in structures via employing pattern recognition
methods using a set of damage-sensitive features. *e
proposed feature set as a structural damage indicator is
selected by combining the feature-based technique, feature
selection, and ensemble classifier methods to increase the

detection accuracy or reduce false alarms. A traditional
method, i.e., short-time Fourier transform (STFT), was
employed as a tool for nonstationary signal processing to
extract information contained damage from vibration sig-
nals. However, assessing the damage occurred in the bridge
depends on how efficiently damage features are extracted by
signal processing procedures. *erefore, using more recent
signal processing procedures can improve the accuracy of
feature extraction. *is work focuses on the recently de-
veloped signal processing methods for feature extraction and
selection process in order to provide feature subsets of
damage. *e ensemble classifier is considered to find an
optimal feature set with high accuracy as the indicator of
structural damage. On the other hand, in the study by Bisheh
et al. [22], support vector machine (SVM) was utilized to
classify damage as a classical classification method. In this
study, classifier combination techniques were applied to
enhance the accuracy of the damage detection. Accordingly,
in the first stage, five signal processing techniques were used
as potential candidates for feature extraction and the results
obtained from various approaches were investigated and
compared. *ese techniques consisted of fast S-transform
(FST), synchrosqueezed wavelet transform (SWT), empirical
wavelet transform (EWT), wavelet transform (WT), and
short-time Fourier transform (STFT). In the second stage,
ensemble-based classifiers were used for finding the pre-
dicted class in order to improve the overall performance of
damage detection based on three individual classifiers,
namely, MLP, KNN, and SVM. In particular, the following
combining algorithms were applied: majority voting, alge-
braic combiners, decision templates (DTs), and Demp-
ster–Shafer (DS) as ensemble-based methods. *e
performance of the proposed method was validated using a
suite of numerical simulations and full-scale studies. *is
paper is organized as follows. *e related techniques are
briefly presented. Next, the proposed framework is described
and applied to the structures. Later, the results are discussed
and, finally, conclusions are given in the last section.

2. Theoretical Basis

2.1. Feature Extraction Methods in Vibration Signals.
Feature extraction is a crucial step for signal processing and a
key procedure in damage identification in structures. Fea-
ture extraction aims to extract a set of features, which
maximizes the recognition rate by retrieving the most im-
portant data from the raw data. *e extraction manner of
ideal features that can reflect the relevant information of
structural damage as complete as possible is the most im-
portant factor in achieving high assessment performance. In
this paper, time-frequency features are applied since they are
able to extract signal characteristics which may be hidden in
the time domain. Furthermore, they can track the time-
varying nature of real signals, which is not possible using the
conventional methods.

*ese descriptors are the spectral indicators corre-
sponding to the statistical properties of the spectrum and
spectral shape properties. *ese features are calculated using
Equations (1)–(10)as indicated in Table 1 [23].
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Various time-frequency techniques are used for feature
extraction in order to obtain damage features with less
dimensionality and higher sensitivity. Time-frequency
techniques analyse time-varying spectral properties of the
vibration signals. *ese techniques include the FST, SWT,
EWT, WT, and STFT. *e detailed description of the used
methods is given in Appendix A.

2.2. Ensemble Classifiers. Ensemble techniques combine
various classifiers to enhance performance scores relative to
an individual classifier. Instead of using a single classifier,
this method combines several weak classifiers together to
enhance the recognition precision. In this paper, three in-
dividual classifications, i.e., KNN, MLP, and SVM, were
implemented to find the predicted class. *ese classifiers can
rely on different classification strategies. *e following al-
gorithms are used to cover various categories of
combinations.

*e decision of the tth classifier is given as dt,j ∈ 0, 1{ },
where j � 1, . . . , C and t � 1, . . . , T. Tand C are the number
of classifiers and classes, respectively, dt,j � 1, when the tth

classifier selects class ωj and dt,j � 0 for other cases [24].

(1) Majority voting: the most well-known majority
voting classifiers are as follows: (1) unanimous voting
which means all classifiers are used; (2) simple
majority, in which more than half of the classifiers
are used; or (3) plurality voting, in which the sum of
the whole votes exceeds 50%. *e plurality voting
method is shown as follows:

􏽘
T

t�1
dt,j � maxC

j�1 􏽐
T

t�1
dt,j. (1)

(2) Average rule: the mean of all classifiers is calculated.
*is rule is the same as the summation rule with the
dividing factor of 1/T:

μj(x) �
1
T

􏽘

T

t�1
dt,j(x). (2)

(3) Extrema rule: these functions simply take the
maximum or minimum among the classifiers’ in-
dividual outputs. *e extrema of the individual
classifiers are calculated as follows:

μj(x) � min
t�1,...,T

dt,j(x)􏽮 􏽯,

μj(x) � min
t�1,...,T

dt,j(x)􏽮 􏽯.
(3)

(4) Product rule: a label is assigned to each classifier by
multiplication. *e best classifiers which have the
score near 1 are selected. In the same way, classifiers
with a low score (close to 0) are given less chance to
be selected.

μj(x) �
1
T

􏽙

T

t�1
dt,j(x). (4)

(5) DTs: they are calculated by the mean of decisions for
every classifier in the training process. *e decision
profile of each instance, DP (x), is compared to the
DT of the corresponding class and the most similar
ones are selected as the ensemble decision:

DTj �
1

Nj

􏽘
Xj∈ωj

DP Xj􏼐 􏼑, (5)

where Nj is the number of class j instances.
(6) DS-based rule: DS theory is widely used in data fusion

techniques which use belief functions (unlike the
common probability theory) to combine data from
different sources. Inspired by data fusion, DS theory is
used here for ensemble combination. If DTt

j is the tth

row in the DT, and Ct(x) is the tth classifier output,
the proximity Φj,t(X) is computed as follows:

Φj,t( x ) �
1 + DTt

j − Ct( x )
�����

�����
2

􏼒 􏼓
− 1

􏽐
C
k�1 1 + DTt

j − Ct( x )
�����

�����
2

􏼒 􏼓
− 1. (6)

Table 1: Features from time-frequency domain.

Parameter Equation
Spectral centroid S1 � (􏽐

(K/2)− 1
k�0 k · |X(k, n)|2/􏽐

(K/2)− 1
k�0 |X(k, n)|2)

Spectral spread S2 � (􏽐
(K/2)− 1
k�0 (k − S1)2 · |X(k, n)|2/􏽐

(K/2)− 1
k�0 |X(k, n)|2)

Spectral skewness S3 � (2􏽐
(K/2)− 1
k�0 (|X( k, n )| − μ|X|)

3/K · σ3|X|)

Spectral kurtosis S4 � (2􏽐
(K/2)− 1
k�0 (|X( k, n )| − μ|X|)

4/K · σ4|X|) − 3
Spectral rolloff S5 � i| 􏽐

i
k�0 |X(k, n)| � k0 􏽐

(K/2)− 1
k�0 |X(k, n)|, k0 � 0.85

Spectral flux S6 � (

�����������������������������

􏽐
(K/2)− 1
k�0 (|X(k, n)| − |X(k, n − 1)|)2

􏽱

/(K/2))

Spectral decrease S7 � (􏽐
(K/2)− 1
k�0 (1/k) · ( |X( k, n )| − |X( 0, n )| )/􏽐

(K/2)− 1
k�0 |X( k, n )|)

Spectral slope S8 � (􏽐
(K/2)− 1
k�0 (k − μk )( |X( k, n )| − μ|X|)/􏽐

(K/2)− 1
k�0 (k − μk)2)

Spectral crest factor S9 � (max0≤k≤(K/2)− 1|X(k, n)|/􏽐
(K/2)− 1
k�0 |X(k, n)|)

Spectral flatness S10 � (exp( (2/k) · 􏽐
(K/2)− 1
k�0 log( |X( k, n )| ) )/(2/k) · 􏽐

(K/2)− 1
k�0 |X( k, n )|)

|X(k, n)| is the magnitude spectrum (magnitudes of the STFT) of the input signal.
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*e detailed description of the individual classifiers used
is given in Appendix B.

3. Proposed Framework

*e proposed strategy was an extension of the method
proposed by Bisheh et al. [22]. In this section, we provide a
proposed feature set based on feature extraction and present
an ensemble learning framework that combines classifiers
trained on different feature sets. An optimal feature set was
obtained by combining feature-based methods, feature se-
lection, and ensemble classifier techniques in order to im-
prove damage detection accuracy. First, various feature
extraction techniques in the time-frequency domain and the
feature selection method were employed for extracting the
spectral descriptors from signals in order to provide the
damage-sensitive feature subsets. Next, an effective feature
set which was in good correlation with damage was found by
using ensemble classifiers. Different combinations of these
classifiers were examined to find the best subset of features
with the highest damage detection capability, as is sum-
marized in Figure 1:

(1) Dataset containing vibration data before and after
damage of the structures is used. *e data are the
vertical acceleration of the bridge deck which is
divided into shorter segments for processing.

(2) *e descriptor set (or instantaneous features in time-
frequency domain) presented in Table 1 is extracted
from vibration signals by using different signal
processing methods including STFT, FST, WT,
SWT, and EWT. By applying each of the competitive
time-frequency techniques, the extracted feature set
produces one vector for each data segment. Forward
selection method is carried out to eliminate the
redundant information and select damage feature
from the descriptor set. Before the analysis, nor-
malization is conducted because data have different
ranges, as

vnj �
vj − μj

σj

, (7)

where σj and μj are standard deviation and mean of
the jth dataset and vj and vnj are input and nor-
malized data points, respectively.

(3) To investigate the ability of each feature set extracted
by using four competitive time-frequency methods,
three schemes for decision-making are used. *e
individual classifiers include multilayer perceptron
(MLP), SVM, and k-nearest neighbor (KNN). Cross-
validation is conducted to verify the classification
performance for the unseen data. k-fold cross-vali-
dation method is employed in the work. To do so, the
original data sample is randomly divided into k equal
subsamples. It is worth noting that MATLAB (2009)
is used for calculation.

(4) Ensemble learning methods are applied to improve
the performance of diverse classifiers.*ese methods

combine different classifiers that are trained on
different feature sets and are obtained by using
various signal processing methods. To find the
predicted class, strategies employed in combining
single classifiers to cover various categories of
combinations include algebraic combiners (maxi-
mum/minimum/average/sum/product rule), ma-
jority voting, DTs, and Dempster–Shafer.

4. Numerical and Full-Scale Studies

4.1. Bridge Health Monitoring Benchmark Problem. *e
numerical model of a bridge health monitoring benchmark
problem represented by the University of Central Florida
was used to validate the proposed method, as shown in
Figure 2. *e physical model had two spans of 5.49m in the
longitudinal direction with continuous beams. It was sup-
ported by 1.07m columns and the width of the bridge was
0.92m. By applying a finite element model, the numerical
benchmark problem was prepared. *e FE model included
1056 degrees of freedom, 176 nodes, and 181 elements.*ree
damage cases with different levels such as boundary con-
dition change and reduced stiffness at connections were
simulated. Several sensors, such as accelerometers, were
located on the model to record dynamic responses under
random loading. More details about the benchmark study
and the numerical model can be found at the benchmark
bridge website [25]. For this part of the study, a number of
different accelerometers located on the model were con-
sidered to record the vertical accelerations (N1, N2, N4, and
N5 in Figure 2). In addition to the undamaged bridge, three
damage cases (i.e., cases A, B, and C) were considered to
show the effectiveness of the proposed optimal feature
subsets and compare them with each other.

4.1.1. Case A: Removing Plate and Releasing Moment at N3.
In this case, the gusset plates at node N3 were removed and
the moment of the transverse beam connecting at this node
was released by removing the bolts. Also, 10% white noise
was added artificially. *e response data were collected from
the model. To evaluate the effect of feature extraction
methods on the final results, the features presented in Table 1
were extracted by using different signal processing tech-
niques. Next, forward feature selection (FFS) was performed
for each of the feature extraction methods in order to obtain
an optimal feature set, as damage index. STFT, FST, WT,
SWT, and EWT were considered as signal processing
methods. *e classification precision of various feature sets
in damage detection of the bridge was studied using SVM as
a classifier to separate damaged and healthy states. *e
classification accuracies are presented in Table 2. Results
showed that the proposed features were successful in
detecting damage for this case at node N2 without giving any
false alarm or misclassification. Moreover, selecting the
features as a damage index satisfied precision for classifying
or predicting the bridge condition for this case at node N1.
Results illustrated that STFT was more successful in
extracting these features than other methods since we
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obtained 100% and 99.6% classification accuracy for this case
at node N2 and N1, respectively.

4.1.2. Case B: Boundary Support Restraint at N6 and N7.
For this case, moment releases at nodes N6 and N7 were
eliminated and 10% white noise was added artificially. *e
deck was now fixed to the column. *e response of the
accelerometers was recorded from the model at nodes N4
and N5, and feature extraction and selection process were
performed for this location, as shown in Figure 2. Average
classification accuracy is presented in Table 3, which shows
that these features were efficient for damage detection.

Figure 3 depicts the effectiveness of all feature extraction
methods, which had the average accuracy of 100%, for this
case at node N4. Results clearly demonstrated that N5 had
less accuracy than N4 since it was the away node from the
damage location.

4.1.3. Case C: Release Moment at N3. *e moment of the
transverse beam connecting at node N3 was released and
10% white noise was added for case C. *e vertical

accelerations at nodes N1 and N2 were recorded as the input
data to investigate the effectiveness of features and feature
extraction methods in improving the final results. For this
case, results showed that damage detection accuracy
depended on the signal processing techniques, in which
STFT was relatively successful. It obtained the average ac-
curacy of 95.2% for this case at node N2, as shown in Table 4.

4.2. 7e IASC-ASCE Benchmark Structure. In this section, a
shear-building structure is employed to verify the proposed
method, as depicted in Figure 4. *e structure was a four-
story, 2 × 2 bay, steel-frame structure conducted by the
University of British Columbia (UBC). *e model was 2.5m
wide and 3.6m high. Each floor was 0.9m high and there
were fixed connections between the beams and columns. It
had two braces on each floor and the steel plates were located
on each bay. Two analytical models were developed to
generate the simulated response data. *e first one was a 12-
degree-of-freedom shear-building model. In this case, the
slabs and beams were assumed to be rigid bodies and it
constrained all motion, except one rotation and two hori-
zontal translations per floor. In the second model, each of
the nodes had six DOFs, including three rotational DOFs
and three translational DOFs, with respect to the x, y, and z
directions. For more details on the benchmark structure,
refer to Johnson et al. [26].

In this paper, finite element model of the 120-degree-of-
freedom structure which was accessible through the Task
Group website was applied. In addition to the undamaged
structure, four damaged cases were defined to examine the
capability of various signal processing methods for damage
detection, as shown in Figure 5. *e damage patterns are
defined as follows:

(a) Stiffness in the braces of the 1st story was removed

Data
collection

Features
extraction &

selections

Decision of all
classifiers

Combining
classifiers

Vibration
signal

Feature Set 1
using STFT

Feature Set 2
using Fast-ST

Feature Set 3
usingWT

Feature Set 4
using SWT

Feature Set 5
using EWT

KNN
classifier

MLP
classifier

SVM
classifier

Ensemble
techniques

Predicted
class

technique

Identification
of structural

damage

Figure 1: Proposed framework of damage detection.

N1

N2 N3 N4

N5

N6

N7

Damage location
(N3)

Damage locations
(N6 and N7)

Figure 2: Node numbers for the steel grid structure.
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(b) Stiffness in one brace of the 1st story was removed
(c) Stiffness in one brace of the 1st story and stiffness in

one brace of the third story were removed and beam-
column connection was weakened

(d) Stiffness in one brace of the 1st story was reduced by
two-thirds

*e excitations applied to the shear-building were
modelled as independent filtered Gaussian white noise

processes passed via a sixth-order low-pass Butterworth
filter with the 100Hz cutoff. *e dynamic response data
(accelerations in the x and y directions) were collected from
the model at sensor 1 (x� 2.5m, y� 1.25m, and z� 0.9m)
and sensor 2 (x� 1.25m, y� 2.5m, and z� 0.9m). *e
features in the time-frequency domain were extracted by
using different signal processing techniques, as shown in
Table 1. Forward selection algorithm was carried out to
select a feature from the feature set. Next, SVM was

Table 3: Classification accuracy of the selected feature subset obtained by using different feature extraction methods for bridge health
monitoring benchmark problem (case B).

Signal processing technique Optimal feature set Accuracy (%) Optimal feature set Accuracy (%)
Sensor N4 Sensor N5

STFT S5 100 S5 100
Fast-ST S10 100 S5, S1, S2 99.1
WT S2 100 S2, S5 98
SWT S1 100 S2, S5, S1, S9 97.3
EWT S5 100 S3, S5, S8 93.7
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Figure 3: Normalized damage feature for case B. (a) *e features extracted by using STFT, fast-ST, and WTmethods and (b) the features
extracted by using SWT and EWT.

Table 4: Classification accuracy of the selected feature subset obtained by using different feature extraction methods for bridge health
monitoring benchmark problem (case C).

Signal processing technique Optimal feature set Accuracy (%) Optimal feature set Accuracy (%)
Sensor N2 Sensor N1

STFT S5 95.2 S5, S10, S3, S6 75.6
Fast-ST S5, S2 63.7 S5, S7 60.5
WT S3, S4 60.1 S7, S4, S8, S9 57.3
SWT S5 76.4 S5, S4 58.5
EWT S8, S5, S1, S2 71.2 S3, S8, S4 82.4

Table 2: Classification accuracy of the selected feature subset obtained by using different feature extraction methods for bridge health
monitoring benchmark problem (case A).

Signal processing technique Optimal feature set Accuracy (%) Optimal feature set Accuracy (%)
Sensor N2 Sensor N1

STFT S5 100 S5, S2 99.6
Fast-ST S5 100 S5, S3 88.7
WT S7 100 S9, S7, S1, S3 91.3
SWT S5 100 S5, S3 90.1
EWT S3 100 S5 91.7
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employed to investigate the ability of each feature set
extracted by using five competitive time-frequency methods.
*e average accuracy for different damage patterns is given
in Tables 5 and 6. Results showed that all the signal pro-
cessing methods, except EWT, were successful since they
reached 100% classification accuracy for damage patterns.

Using signal characteristics in joint time and frequency
domains and frequency contents obtained by EWTto extract
the spectral descriptors was not successful for damage
patterns in a shear-building structure. *e spectral indica-
tors or time-varying descriptors corresponding to the sta-
tistical properties of the spectrum and spectral shape
properties were extracted from all the empirical modes in the
EWTanalysis. Since some of the empirical modesmay not be
efficient for extracting damage features, using all empirical
modes can lead to misclassifications or false alarms in
identifying structural damage. Using the effective empirical
modes (one mode or more than one mode) for feature
extraction, instead of all modes, may improve damage de-
tection accuracy for the damage patterns and can be in-
vestigated in future studies.

4.3. Full-Scale Study. *e Tianjin Yonghe Bridge is a cable-
stayed bridge with a continuous prestressed box girder. *e
bridge had a main span of 260m and two side spans of
99.85m.*e total width of the bridge was 11m (four vehicle
lanes of 9m wide and two 1m pedestrians). *is bridge was
built in 1987 and, after 19 years of operation, cracks as wide
as 2 cm were observed at the bottom of the midspan girder.
During the repair process between 2005 and 2007, an SHM
system was designed and implemented for the bridge. *e
monitoring system consisted of 14 uniaxial accelerometers
placed on the deck, downstream and upstream, as shown in
Figure 6. More details on the full-scale bridge benchmark
problem can be found in [27, 28] and are accessible at http://
smc.hit.edu.cn.

In August 2008, two damage patterns were identified
during the bridge inspection: the external portions of both
side spans were cracked and the piers were damaged (Fig-
ure 7). Fortunately, the time history data of the accelerations

for both healthy and damaged states were available. *e
available data consist of 24 h records (24 parts of 1 h length),
which were recorded on January 1, January 17, February 3,
March 19, March 30, April 9, June 16, and July 31 2008. Data
in the healthy and damaged conditions were recorded on 17
January and 31 July 2008, respectively, in the same locations
[27]. *e sampling frequency of the data was 100Hz.

In this study, the whole process consisted of feature
extraction, feature selection (to obtain optimal feature
subset), three individual classifications, and ensemble
techniques for finding the predicted class. By applying
different signal processing techniques in the time-frequency
domain as the potential candidates, the set of features was
extracted to identify the feature set yielding the most ac-
curate classification. Different feature sets were prepared by
feature selection in order to eliminate the redundant feature
and select effective features from the original feature sets. In
the feature selection stage, forward feature selection tech-
nique [29] was employed to achieve an optimal reduced set
of features. Also, normalization was conducted before fea-
ture selection. By applying individual classifiers and, then,
ensemble classifiers, the classification precision of various
feature sets was studied.

4.3.1. Assessment Capability of Feature Sets. By applying
different signal processing methods, the features were
extracted from the measured acceleration data, as shown in
Table 1. Different feature sets were calculated by using
different signal processing techniques. In other words, the
feature sets 1, 2, 3, 4, and 5 included features extracted by
using STFT, FST, WT, SWT, and EWT, respectively. In the
feature extraction part, the data were divided into successive
segments by time-frequency analysis. Features were then
computed for each of these blocks and, finally, the mean of
the extracted feature for a 1 h period was considered as the
input for classification. Afterwards, using STFT, the spec-
trogram of the data was computed. A hamming windowwith
the length of 100 and overlap of 50% was considered for
STFT. In the next step, classification was carried out and the
corresponding accuracy was calculated for healthy and
damaged data segments by utilizing individual classifiers.
After performing forward feature selection process for all the
original feature sets, three types of classifiers were used,
which included MLP, KNN, and SVM. In the classification
part, all the experiments were conducted by using 10-fold
cross-validation. 50% of the data were used randomly for
training and the rest for testing. For each of the original
feature sets, the subset of important features as the optimal
subset was obtained by using forward feature selection, as
presented in Table 7.

It was found that the most significant features for the
original feature set, extracted by using STFT, were S8, S2, S7,
S3, and S1, while the selected features in feature set 2,
extracted by using FST, were S10, S5, S4, S1, S9, and S7.
Feature set 4 with effective features S5, S2, S9, S1, S4, S7, S6,
and S3 was obtained by using SWTand the forward selection
method.*e average accuracy of the individual classification
methods for different feature sets is shown in Figure 8.
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Figure 4: Diagram of analytical model with strong and weak
directions.
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Results showed that feature set 1 and feature set 4, extracted
by STFT and SWT, respectively, with the classification ac-
curacy of about 97%, had better performance than other
feature sets with the classification accuracy of about 92%. In
other words, STFT and SWTmethods can be effective tools
for extracting the proposed damage features.

Figure 9 shows normalized damage features extracted by
using different signal processing techniques for various
monitoring dates. *e exact time, at which damage occurred,
was not known [28, 30]. In other words, the data label for
different months was not clear, except for January 17 and July

31 2008, which were considered healthy and damaged labels,
respectively, in the abovementioned research. However, each
of the features extracted by different methods partly referred
the damage effect on the bridge behaviour from healthy to
damage states for the monitoring dates. It was clear that the
change in the bridge behaviour occurred almost in May.

4.3.2. Effectiveness of Ensemble-Based Classifiers. To im-
prove the classification performance of each feature set,
various types of ensemble-based classifiers were

Table 6: Classification accuracy of the selected feature subset obtained by using different feature extraction methods for the IASC-ASCE
SHM benchmark structure (for sensor 2).

Signal processing technique Optimal feature set Accuracy (%) Optimal feature set Accuracy (%)
Damage pattern (a) Damage pattern (c)

STFT S7 100 S3 100
Fast-ST S3 100 S9 100
WT S2 100 S2 100
SWT S1 100 S3 100
EWT S10, S2, S9 63.4 S7 99.7

Damage pattern (b) Damage pattern (d)
STFT S3 100 S3, S10 86.4
Fast-ST S10 100 S10, S3 78.5
WT S2 100 S2 87.2
SWT S3 100 S9, S2, S10 91.6
EWT S7 93.5 S6, S2 57.3
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Figure 5: Four damage patterns. (a) No stiffness in 1st floor brace, (b) no stiffness in one 1st floor brace, (c) no stiffness in one 1st floor brace,
no stiffness in one 3st floor brace, and beam-column connection weakened, and (d) 2/3 stiffness in one 1st floor brace.

Table 5: Classification accuracy of the selected feature subset obtained by using different feature extraction methods for the IASC-ASCE
SHM benchmark structure (for sensor 1).

Signal processing technique Optimal feature set Accuracy (%) Optimal feature set Accuracy (%)
Damage pattern (a) Damage pattern (c)

STFT S9 100 S1 100
Fast-ST S10 100 S9 100
WT S2 100 S1 100
SWT S2 100 S3 100
EWT S7, S6 97.8 S7 68.7

Damage pattern (b) Damage pattern (d)
STFT S1 100 S1 100
Fast-ST S9 100 S9 100
WT S9 100 S9 100
SWT S3 100 S3 100
EWT S7 62.3 S2, S8, S1, S4 60.1
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implemented, which illustrated different combining strate-
gies between the classification methods. *e selected com-
binations included algebraic combiners (maximum,
minimum, summation, average, and product rule), majority
voting, DS, and DTs for improving the performance of the
single classifiers. *e average accuracy obtained using these
techniques is presented in Table 8.

Majority vote is one of the simplest and most intuitive
ensemble combination techniques. Essentially, the ensemble
chooses the class that is chosen by the majority of the
classifiers. By applying this method, the detection perfor-
mance is increased to 99%. After classifying the feature sets,
algebraic combiners are used to combine base classifiers and
99% classification accuracy is achieved by the summation

method. In the DT combiner, the most common decision
specifications are obtained for each class. Next, new patterns
are classified by comparing their decision profiles with the
DT of each class using similarity measurements. It is seen
that the accuracy of damage identification is increased to
99% by DTs and DS techniques. Results showed that the
ensemble-based classifiers improved the classification per-
formance, so that the maximum accuracy of 99% was

Tianjin

2515 9985 26000 9985 2515
(1), (2) (3), (4) (5), (6) (7), (8) (9), (10) (11), (12) (13), (14)

IIangu

2, 4, 6, 8,10, 12, 14
Downstream

1, 3, 5, 7, 9, 11, 13
Upstream

Accelerometer

Figure 6: Elevation of the Tianjin Yonghe Bridge with the main dimensions and accelerations health monitoring system. Adapted from
“Structural health monitoring of a cable-stayed bridge with Bayesian neural networks” by Stefania Arangio & Franco Bontempi (2015),
Structure and Infrastructure Engineering, 11 : 4, 575–587, reprinted by permission of Taylor & Francis Ltd.

(a) (b)

Figure 7: Damage patterns of the Tianjin Yonghe Bridge. (a) Cracks at the closure segment at both side spans. (b) Damaged concrete piers of
the bridge. Adapted from “Structural health monitoring of a cable-stayed bridge with Bayesian neural networks” by Stefania Arangio &
Franco Bontempi (2015), Structure and Infrastructure Engineering, 11 : 4, 575–587, reprinted by permission of Taylor & Francis Ltd.

Table 7: Selected features by forward selection technique for
different feature sets.

Feature set Time-frequency
method Optimal feature set

Feature set 1 STFT S8, S2, S7, S3, and S1
Feature set 2 Fast-ST S10, S5, S4, S1, S9, and S7
Feature set 3 WT S8, S5, S3, and S4

Feature set 4 SWT S5, S2, S9, S1, S4, S7, S6, and
S3

Feature set 5 EWT S6, S5, and S10
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Figure 8: *e average accuracy of different feature sets using
individual classifiers.
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achieved for feature set 1 and feature set 4. *is means that
false alarm was decreased by about 2%. For feature set 2, 99%
accuracy was yielded compared to 92% accuracy obtained by
individual classifiers. Also, for the feature sets extracted by
FST and EWT, the accuracy of 92% was increased to about
95%. Generally, ensemble-based classifiers have better
performance than individual classifiers, among which ma-
jority voting, summation rule, DT, and DS methods simi-
larly lead to high accuracy in identifying the damage of the
bridge. To summarize the above results, the average im-
provement in performance between ensemble-based clas-
sifiers and single classifiers for different feature sets is
presented in Table 9. Results indicated that improvement in
performance between around 2% to 5% can be achieved by
applying ensemble-based classifiers and decreasing the false
alarms. Ensemble classifiers make multiple classifiers with
various types of features to raise the detection precision and
decrease variance and bias. In ensemble-based systems, if
single classifiers are diverse, they can cause various errors;

combining these classifiers can decrease the total error
through averaging. *us, the final classification result of the
ensemble classification computed by some predefined rules
of each classifier is better than the result of a single classifier.

5. Conclusions

In this paper, a framework was proposed which involved
feature extraction and combination of individual classifiers
for structural damage detection. In the first stage, a set of
time-varying descriptors was extracted from the vibration
signals by using competitive signal processing techniques as
the potential candidates for damage assessment of the
bridge to achieve original feature sets. *ese techniques
included STFT, FST, WT, SWT, and EWT. To evaluate the
effectiveness of feature sets obtained through forward
feature selection process, three diverse classifiers, i.e., MLP,
KNN, and SVM, were employed. In the second stage,
ensemble methods were used to achieve improved
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Figure 9: Normalized damage feature (S5) extracted by using STFT and SWT from healthy to damage states for the monitoring dates.

Table 8: *e average accuracy of different feature sets using ensemble classifiers.

Feature set
Ensemble techniques

Majority voting Maximum Summation Minimum Average Product Decision templates Dempster–Shafer
Feature set 1 99 95 99 95 99 95 99 99
Feature set 2 97 89 97 89 97 89 97 97
Feature set 3 95 94 95 94 95 94 95 95
Feature set 4 98 92 98 93 98 92 98 99
Feature set 5 94 91 94 90 94 91 95 95

Table 9: *e performance improvement between the ensemble-based classifiers with individual classifiers.

Feature set
Accuracy (%)

Individual classifiers Ensemble classifiers Performance improvement
Feature set 1 97 99 2
Feature set 2 92 97 5
Feature set 3 92 95 3
Feature set 4 97 99 2
Feature set 5 92 95 3
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recognition accuracy for the bridge in order to combine the
output of single classification algorithms. Majority voting,
algebraic combiners, DTs, and DS were used as ensemble-
based methods to predict the class. Apart from the nu-
merical studies, a full-scale bridge was utilized to validate
the efficacy of the proposed method. It was observed that
the methodology was successful in damage detection.
Overall, the following conclusions can be drawn from the
results:

Feature sets with the effective features extracted by
using STFT and SWT yielded better performance than
other feature sets, which achieved the average accuracy
of 97%.
Using an ensemble classifier instead of an individual
classifier improved the average classification accuracy.
By applying DTs and DS-based combination, 99%
accuracy was achieved for the feature sets extracted by
STFT and SWT. Furthermore, for feature set 2, the
average classification accuracy was increased to 97%. In
other words, using an ensemble of classifiers yielded 2%
to 5% reduction in the false alarm.

Appendix

A.1. Short-Time Fourier Transform (STFT)

STFT is a signal processing technique for analysing non-
stationary signals, in which statistic features alter over time.
It extracts several blocks (frames) of the original vibration
signals to represent frequency contents of the signal by
moving a window block over time. If the frame used is
sufficiently small, each of the extracted blocks can be esti-
mated as the stationary signal, so that fast Fourier transform
(FFT) can be applied. By shifting the window through the
whole record and implementing the Fourier transform, the
relevance among time and variance of frequency could be
recognized and time-varying spectrum is calculated for each
of the frames. STFTof a sequence (time-series data x(i)) can
be defined as follows:

X(k, n) � 􏽘

ie(n)

i�is(n)

x(i)exp − jk · i − is(n)( 􏼁
2π
k

􏼒 􏼓, k � ie(n) − is(n) + 1,

(A.1)

where X(k, n) denotes the window function and k denotes
the time index. STFT breaks up the signal in time domain
into a number of signals of shorter duration. *en, it applies
Fourier transform to each part. A spectrogram that is the
squared magnitude of STFT is defined as follows [31]:

Sx(k, n) � |X(k, n)|
2
. (A.2)

A.2. Wavelet Transform (WT) and
Synchrosqueezed Wavelet Transform (SWT)

WT is a signal processing tool that is applied to time- and
frequency-domain analysis for getting the optimal equiva-
lence between time resolution and frequency resolution. By

using a wavelet basis function, WTdecomposes the original
signal into several components at different frequency bands.
For original data x(t), the continuous wavelet transform
(CWT) is defined as follows:

Wx(u, s)≤ψs,u(t),

x(t)≥ |s|
− 1/2

􏽚
∞

− ∞
x(t)ψ∗

t − u

s
􏼒 􏼓dt,

(A.3)

where the asterisk ψ∗ is the complex conjugate and wu(s)

denotes the wavelet coefficient. *e translation parameter u

and scale parameter s differ continuously and
ψ(t) ∈ L2(R) · ψ(t).

SWT reallocates the CWT coefficients to get a sharper
exhibition in both frequency and time domains. *e fol-
lowing steps are involved in SWT:

(i) For time u and scale s, a CWT is computed in order
to retrieve the amplitudes at the temporary
frequencies.

(ii) An instantaneous frequency w(u, s) for the data x(t)

is calculated as the derivative of the coefficients
wx(u, s) at any point (u, s):

w(u, s) � − i Wx(u, s)( 􏼁
− 1 z

zu
(u, s). (A.4)

(iii) *e information from the time-scale plane is con-
verted into the time-frequency plane, in which any
amount of Wx(u, s) is reassigned to (u,ωl). ωl

denotes the frequency that is the closest to the in-
stantaneous frequency of w(u, s) and its syn-
chrosqueezed transform T(u,ωl) is written in the
following equation:

T u,ωl( 􏼁 � (Δω)
− 1

􏽘

sk: |ω u,sk( )− ωl|≤Δω/2

Wx u, sk( 􏼁s
− 3/2
k Δs,

(A.5)

where Δω � ωl − ωl− 1 is the width of every frequency bin
and, equivalently, for Δs � sk − sk− 1. Detailed information
regarding CWT and SWT can be found in [32].

A.3. Fast S-Transform (FST)

FST is an algorithm which was introduced by Brown and
Frayne [33] for solving the classic S-transform with sig-
nificantly reduced computational requirements. FST uses
double frequency sampling to decrease a narrowed window
and the amount of data to decrease the instances that need to
be assessed. *e FST method is as follows:

(1) *e Fourier transform of a time-domain signal is
computed, H( n/NT ).

(2) *e needed kernel functions are precomputed:
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ϕ+
� KT,

n

NT
􏼒 􏼓 � e

(i2πkn/N)
,

ϕ−
� KT,

n

NT
􏼒 􏼓 � e

(i2πkn/N)
.

(A.6)

(3) *e window functions are precomputed:

w KT,
n

NT
􏼒 􏼓for n in

N

2
,
N

4
,
N

8
, . . . , 4, 2, 1􏼚 􏼛. (A.7)

(4) Band-pass filter H(k) and inverse FT are calculated
to get h′(t):

H′(k) � H(k),
n

2
<|k|≤ n. (A.8)

(5) For every point j in h′(t), the transform samples are
computed:

S jT,
3n

4nT
􏼒 􏼓 � 􏽘

N− 1

k�0
h′(kT) · w kT − T,

3n

4NT

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓 · ϕ+

kT,
3n

4NT
􏼒 􏼓, S jT, −

3n

4nT
􏼒 􏼓 � 􏽘

N− 1

k�0
h′(kT) · w kT − T,

3n

4NT

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓 · ϕ−

kT,
3n

4NT
􏼒 􏼓. (A.9)

A.4. EWT

*e EWT is a new approach for building adaptive wavelets
which is an adaptive data analysis technique developed by
Gilles [34] to extract various modes of a time-domain signal.
By defining a series of wavelet filters adapted to the pro-
cessed signal, all the modes can be extracted. Based on the
Fourier viewpoint, the transform builds a number of band-
pass filters and constructs supports of the filters based on the
location of information in the signal spectrum. In other
words, EWT decomposes the input signal x(t) into narrow
subbands in time-frequency domain based on frequency
information of the signal, compared to DWT, in which the
subbands are based on the sampling frequency of the input
signal. *e following steps are involved in EWT:

(1) Fourier transform and segmentation: as the first step,
local maxima are found by Fourier spectrum x(ω) of
the input signal. *en, the spectrum is segmented
and, for each segment, boundaries ωn are assigned as
the middle of two successive maxima.

(2) Filter construction: a group of wavelets called em-
pirical wavelets is constructed as the band-pass filters
on the segmented Fourier spectrum.

(3) Empirical transform: by constructing wavelet filters,
EWT is applied similar to the conventional WT to
decompose the signal into narrow-band signals as

w
ε
f(n, t) � <f,ψn > � 􏽚 f(τ)ψn(τ − t)dτ,

w
ε
f(0, t) � <f, ϕ1 > � 􏽚 f(τ)ϕ1(τ − t)dτ,

(A.10)

where detail wε
f(n, t) and approximation wε

f(0, t) coeffi-
cients can be calculated by dot product of empirical wavelets
and scaling functions, respectively. *e reconstructed signal
f(t) is obtained by the following equation. Detailed in-
formation on this method is given in Gilles [34].

f(t) � w
ε
f(0, t)

∗ϕ1(t) + 􏽘 w
ε
f(n, t) × ψn(t). (A.11)

B.1. K-Nearest Neighbor (KNN)

*e k-NN algorithm is a nonparametric classification
method that performs very well in the problems with un-
known and nonnormal distributions, contrary to the sim-
plicity of the method. *is algorithm finds k nearest points
between the sample and the data for a particular sample in
the feature space. To define the neighbors based on the
distance, KNN classifier needs a positive integer K and a
metric d. Generally, the Euclidean distance is used as the
most common metric to calculate the distance between
training samples and query data. After this operation, K
samples with minimum distances are chosen to define
threshold that is theK number for this method and the result
is the class with more samples inbound. *e length of the
line between points u and v is the Euclidean distance be-
tween them.

If uj and vi are two points in Cartesian coordinates and
Euclidean n-dimensional, the distance from u to v is defined
as follows [35]:

de �

����������

􏽘

n

i�1
ui − vi( 􏼁

2

􏽶
􏽴

. (B.1)

B.2. MLP Artificial Neural Network

AnANN is a computational model and a supervised learning
algorithm based on a set of connected nodes or units called
artificial neurons. *e multilayer perceptron network
training with backpropagation algorithm is a very popular
ANN architecture and is applicable in several domains in-
cluding a few structural engineering applications. By con-
necting perceptrons, a neural network structure called the
multilayer perceptron (MLP) can be designed. A typical
multilayer perceptron network is constructed with layers of
neurons and consists of at least three layers of nodes: (1) an
input layer, (2) hidden layers, and (3) an output layer, as
shown in Figure 10. Each neuron in a layer receives a
weighted sum of its inputs (x) that are passed through an
activation function (f) providing the output (O) described
mathematically as follows [36]:
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O � f
2

W
1
f
1

W
1
x + b

1
􏼐 􏼑 + b

2
􏼐 􏼑. (B.2)

In an activation function (f), weight (W) and bias (b)

are used to control steepness and delay, respectively.

B.3. Support Vector Machine (SVM)

*e SVM is a relatively new multivariate statistical approach
and a supervised learning model that was initially developed
for classification, pattern recognition, and regression tasks. It
can be used to classify one or more classes efficiently using
small datasets. *e main idea of SVM is that it locates the
optimal separation plane (boundaries) between various
classes. It searches boundaries by maximizing the margin
(the distance between the nearest point and boundary of
each class) from the training data. For nonlinear data which
are not linearly separable, data are transferred to a higher-
dimensional space (called a space kernel) by a transfor-
mation function. *e nearest data points which determine
the margin are called support vectors, the increasing number
of which may increase the complexity of problems.

For the given training data, T � xi, yi􏼈 􏼉
m

k , in which xk is
the feature vector as the input and m is the data point
number, yi ∈ − 1, +1{ } is the label. yi � − 1 belongs to one
class and yi � +1 to the other class. For a linear kernel, we
have

f(x) � w · x + b � 􏽘

m

k�1
wk.xk + b � 0, (B.3)

where w denotes the weight vector and b denotes a scalar.
Maximizing the margin can be achieved through mini-
mizing w. *e optimal hyperplane with larger margin which
separates the data can be defined as a solution to the fol-
lowing constrained quadratic optimization problem [30]:

yk w.xk + b( 􏼁≥ 1, k � 1, 2, . . . , m,

minimise
1
2
‖w‖

2
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(B.4)

If the input data are not linearly separable, SVM
transforms the data into higher dimensions by using kernel
functions. *e generally used four kernel functions are as
given in Table 10.
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