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The heterogeneity problem among different sensor ontologies hinders the interaction of information. Ontology matching is an
effective method to address this problem by determining the heterogeneous concept pairs. In the matching process, the
similarity measure serves as the kernel technique, which calculates the similarity value of two concepts. Since none of the
similarity measures can ensure its effectiveness in any context, usually, several measures are combined together to enhance the
result’s confidence. How to find suitable aggregating weights for various similarity measures, i.e., ontology metamatching
problem, is an open challenge. This paper proposes a novel ontology metamatching approach to improve the sensor ontology
alignment’s quality, which utilizes the heterogeneity features on two ontologies to tune the aggregating weight set. In particular,
three ontology heterogeneity measures are firstly proposed to, respectively, evaluate the heterogeneity values in terms of syntax,
linguistics, and structure, and then, a semiautomatically learning approach is presented to construct the conversion functions
that map any two ontologies’ heterogeneity values to the weights for aggregating the similarity measures. To the best of our
knowledge, this is the first time that heterogeneity features are proposed and used to solve the sensor ontology metamatching
problem. The effectiveness of the proposal is verified by comparing with using state-of-the-art ontology matching techniques on
Ontology Alignment Evaluation Initiative (OAEI)’s testing cases and two pairs of real sensor ontologies.
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1. Introduction

A sensor network is composed of various sensors. In order to
realize the information integration and communication
between multiple sensor networks, a semantic sensor web is
born, which is composed of the semantic web and the sensor
network. In the semantic sensor web, sensor data is marked
as metadata characterized by sensor ontology to increase
interoperability [1–3]. Sensor ontology can reach a consensus
on the meaning of concepts in sensor certain field and
provide rich domain knowledge and semantic vocabulary
for the interaction between application systems in the seman-
tic sensor web. In recent years, there have been many sensor
ontologies, such as SensorOntology2009 (https://www.w3
.org/2005/Incubator/ssn/wiki/SensorOntology2009), IoT-
Lite (https://www.w3.org/Submission/2015/SUBM-iot-lite-
20151126/), original SSN (Semantic Sensor Network)
(https://www.w3.org/2005/Incubator/ssn/wiki/SSN#Sensor),
new SSN (https://www.w3.org/ns/ssn/), and SOSA (Sensor,
Observation, Sample, and Actuator) (https://www.w3.org/
ns/sosa/). These ontologies can represent the function, per-
formance, and usage conditions of sensors, which can pro-
vide different data for different purposes and contexts [4,
5]. However, in the distributed and open environment, since
the people who construct sensor ontologies might have
diverse preferences, knowledge backgrounds, and styles of
understanding knowledge, one concept could be defined with
different names or granularities, and the context of a concept
could also be different as well. These lead to the problem of
ontology heterogeneity [6, 7]. For example, the existence of
the concept “personal computer” in one ontology is defined
as “PC” in another ontology, which results in syntax
heterogeneity. To support the semantic interaction between
intelligent systems based on sensor ontology, we need to
determine the correspondence between their heterogeneous
concepts in sensor ontologies, which is the so-called sensor
ontology matching [8]. During the matching process, it is
important to distinguish identical concepts by calculating their
similarity value, and thus, similarity measure becomes the
kernel technique that directly affects the alignment’s quality.
At present, similarity measures can be mainly divided into
three categories, i.e., syntax-based measure, linguistics-based
measure, and structure-based measure [9]. Although these
methods have been extensively studied and used, it is still a
challenge to find an effective similarity measure for a specific
matching task. With the emergence of various similarity
measures, it is a feasible way of using multiple similarity mea-
sures to overcome the limitations of a single one [10–12].
However, how to find suitable aggregating weights to combine
them becomes another problem, i.e., ontology metamatching
problem [13]. Traditional metamatching methods include
Max, Min, and average approaches [14–16], which, respec-
tively, take into account the maximum value, minimum value,
and average value of the concepts measured by various
similarity measures but ignore the heterogeneity features of
concepts. This paper proposes a novel ontologymetamatching
approach to face this challenge, which uses the heterogeneity
features of two ontologies to semiautomatically tune the
weights for aggregating different similarity measures.

In particular, three ontology heterogeneity measures are
firstly proposed to, respectively, evaluate the heterogeneity
values in terms of syntax, linguistics, and structure heteroge-
neity features, and then, along with the aggregating weights
of corresponding similarity measures which are given by
experts, conversion functions that convert any two ontol-
ogies’ heterogeneity values to the weights for aggregating
the similarity measures are trained. The training process of
conversion function is shown in Figure 1, where Or and Oi
represent the ith pair of ontologies for training (Or is the
reference ontology and Oi is a target ontology), and Wi, Wi′,
and Wi″ are the ith set of weights for aggregating the syn-
tax-based, linguistics-based, and structure-based similarity
measures, respectively, which are given by experts and have
the best effectiveness to measure the ith pair of ontologies.
The conversion function aims at converting the heterogene-
ity value into corresponding aggregating weight, such as
converting the syntax heterogeneity to the aggregating
weight for syntax-based similarity measure.

In the rest of the paper, Section 2 defines the related
concepts about sensor ontology and the evaluation function;
Section 3 describes in detail the ontology heterogeneity
measure and semiautomatically learning method; Section 4
shows the experimental results; Section 5 summarizes the
work and presents future work.

2. Preliminaries

2.1. Sensor Ontology and Entity Correspondence. Sensor
ontology is a 3-tuple [17] O = ðC, P, IÞ, where C is a non-
empty set of classes, P is a nonempty set of properties, I is a
set of instances (can be empty). In general, class, property
(datatype property and object property), and instance are
called entities.

The sensor ontology matching measure utilizes the infor-
mation inside the sensor ontology and other knowledge bases
outside the sensor ontology to determine the similar entities
in two sensor ontologies [18]. The entity mapping set is
called sensor ontology alignment, and each entity correspon-
dence inside is defined as follows:

An entity correspondence is a 4-tuple [19] ðe, e′, n, rÞ,
where e and e′ are two entities from the sensor ontologies,
respectively; n represents the similarity value obtained by
calculating e and e′ through mathematical functions; and r
is the semantic relationship between e and e′, which is the
equivalence relationship in this work [20].

2.2. Similarity Measure. A similarity measure is a function
that takes as input two entities’ information d and d′ and
returns their similarity value of v = gðd, d′Þ ∈ ½0, 1�. Next,
we introduce three types of similarity measures in detail,
i.e., syntax-based, linguistic-based, and structure-based.

2.2.1. Syntax-Based Similarity Measure. Syntax-based simi-
larity measure utilizes the syntax information of two strings
to calculate their similarity value. There are many similarity
measures based on syntax, such as Jaro-Winkler distance
[21], SMOA distance [22], and N-gram [23]. According to
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[23], N-gram similarity measure shows superior perfor-
mance when concepts match, and especially when N = 3,
the best effect is achieved. Therefore, this paper uses the N-
gram as the representative of the syntax-based similarity
measure. N-gram is defined as follows:

N‐gram s1, s2ð Þ = 2 × comm s1, s2ð Þ
Ns1

+Ns2

, ð1Þ

where s1 and s2 are the strings to be matched, Ns1
and Ns2

,
respectively, represent the number of substring in the two
strings when N = 3, and commðs1, s2Þ represents the number
of common substring in the two strings.

2.2.2. Linguistics-Based Similarity Measure. Linguistics-based
similarity measure calculates two words’ similarity value by
using a background knowledge base, such as WordNet [24].
WordNet is an electronic language database which includes
the set of synonyms of various vocabularies and defines the
subordinate relation between different vocabularies. It is
usually used to measure the similarity between concepts.
The Wu and Palmer similarity measure used in this paper
uses the depth of the two concepts inWordNet and the depth
of their nearest common parent concept to calculate the
similarity [25]. It considers the change of connection
strength between concepts, and the result of measurement
is more accurate. Given two words c1 and c2, the Wu and
Palmer similarity measure is defined as follows:

Simwp c1, c2ð Þ = 2 × depth LCA c1, c2ð Þð Þ
depth c1ð Þ + depth c2ð Þ , ð2Þ

where LCAðc1, c2Þ is the closest common parent concept
about the concept c1 and c2 in the WordNet hierarchy.
depthðLCAðc1, c2ÞÞ, depthðc1Þ, and depthðc2Þ represent the
depth of the common parent concept, c1 and c2 in the hierar-
chy, respectively.

2.2.3. Structure-Based Similarity Measure. Structure-based
similarity measure utilizes two concepts’ parent-child
concepts defined in their ontologies to calculate the similarity
value. As a classic structure-based similarity measure,
SimRank [26] works based on the assumption that if two
concepts are related to similar concepts, then the two
concepts are similar. The relationship graph between con-
cepts is expressed as G = ðV , EÞ, V as a node represents an
object, and E as an edge connecting nodes represents the rela-
tionship between objects. The SimRank similarity measure is
defined as follows:

s a, bð Þ =

1, a = b,

C
I að Þj j I bð Þj j 〠

I að Þj j

i=1
〠
I bð Þj j

j=1
s Ii að Þ, I j bð Þ� �

, I að Þ ≠ 0, I bð Þ ≠ 0,

0, I að Þ = 0, I bð Þ = 0,

8
>>>>><

>>>>>:

ð3Þ

where a and b are two concepts from two ontologies,
respectively, IiðaÞ represents the ith concept that points to a
in the relationship graph, and jIðaÞj represents the cardinal-
ity of the concepts pointing to a in the relationship graph.
When a = b, the similarity value between concepts is 1; other-
wise, the similarity value of a and b is the average value of the
similarity value of all combinations of the concepts pointing
to a and the concepts pointing to b. The constant C as the
damping coefficient is generally assigned to 0.8. When the
number of concepts pointing to a or b is 0, the similarity
value between a and b is 0.

As a recursive algorithm, SimRank algorithm has an
iterative process as follows. Let Rkða, bÞ be the similarity of
ða, bÞ in the kth iteration process and initialized as

R0 = a, bð Þ =
1, a = b,
0, a ≠ b:

(

ð4Þ
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Figure 1: The construction progress of conversion function.
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When a = b, the initial similarity value between concepts
is 1; otherwise, the initial similarity value between concepts is
0, using the initialization result to start iteration:

Rk+1 a, bð Þ = C
I að Þj j I bð Þj j 〠

I að Þj j

i=1
〠
I bð Þj j

j=1
Rk Ii að Þ, I j bð Þ� �

: ð5Þ

When a = b, Rk+1ða, bÞ = 1. The similarity of each
generation ða, bÞ will be updated according to the value of
the previous generation. Rk+1ða, bÞ converges with the increase
of k. When k→∞, it can be considered that Rkða, bÞ = sða, bÞ.
Usually, it has the best effect when k ≈ 5.

2.3. EvaluationMetrics on Alignment’s Quality. Traditionally,
the quality of a sensor ontology alignment can be evaluated by
recall, precision, and f -measure [27, 28]. The recall indicates
the correct matching pairs among the total found matching
pairs accounting for the reference matching pairs. When the
recall is 1, it means that all correct matching pairs have been
found. However, this does not mean that there are no wrong
matching pairs among the found matching pairs, so the accu-
racy needs to be evaluated. The precision indicates the correct
matching pairs among the total found matching pairs account-
ing for the found matching pairs. In order to comprehensively
evaluate the matching quality, the weighted harmonic mean
(i.e., f -measure) of the precision and recall is used. The preci-
sion, recall, and f -measure are defined as follows:

Recall = R ∩ Aj j
Rj j ,

Precision = R ∩ Aj j
A

,

f ‐measure = 2 × recall × precision
recall + precision ,

ð6Þ

where R is a reference alignment and A is an alignment.

3. Ontology Heterogeneity Measure and
Conversion Function

In this work, we dedicate to semiautomatically tuning the
aggregating weights for various similarity measures by taking
into consideration two ontologies’ heterogeneity features.
Firstly, we construct an ontology hierarchy graph for each
ontology, whose nodes are the ontology’s concepts and the
edge between two nodes is the relationship between the
corresponding concepts [29]. Secondly, the concepts in each
ontology are ranked in descending order according to their
corresponding nodes’ out-in-degrees [30] in the ontology
hierarchy graph. After that, the first third concepts with the
best ranked are selected as the representative concepts, which
are further used to measure the heterogeneity value of two
ontologies. On this basis, the representative datatype proper-
ties and object properties can also be determined. Then,
given the similarity measures of their aggregating weights,
we try to learn conversion functions that map any two ontol-

ogies’ heterogeneity values to the weights for aggregating the
corresponding similarity measures.

3.1. Ontology Heterogeneity Measure. To the best of our
knowledge, this is the first time to quantify the degree of
ontology heterogeneity features. To reduce the computational
complexity, it is necessary to select the representative concepts
from the ontology for the heterogeneity calculation. In this
work, we first calculate the sum of each node’s out-in-degrees,
which reflects the close connection between this node and its
surrounding nodes, as well as the importance of the nodes.
Then, the first third concepts with the best ranked are selected
as the representative concepts (i.e., classes). The datatype
properties and object properties related to representative
classes can be chosen as the representative ones.

Being inspired by traditional metrics such as recall and
precision, the heterogeneity value in this work is calculated
through the ratio of the heterogeneous part to the overall
part. Supposing cardinality of the alignment in this paper is
one-to-one mapping, E1 and E2 are two entity sets to be
matched; the heterogeneity value is calculated as follows:

H =
min E1j j, E2j jf g − Emapped

�� ��

min E1j j, E2j jf g , ð7Þ

where jE1j and jE2j are, respectively, E1 and E2’s cardinalities,
jEmappedj is the cardinality of the identical entities in the two
entity sets. At present, there are three kinds of ontology het-
erogeneity, and the quantification of the heterogeneity of
each of them should be carried out on the entities related to
the heterogeneity. In different heterogeneity measures, the
choice of entity sets E1 and E2 is different:

(1) Syntax Heterogeneity Measure. It is inspired by the
syntax similarity measure N-gram, which directly
measures the entities in the ontology. Then, the
quantification of syntax heterogeneity feature will
also focus on the entities in the ontology. E1 and E2,
respectively, represent the representative entity sets
in the two ontologies to be matched

(2) Linguistics Heterogeneity Measure. It is inspired by
linguistics similarity measure Wu and Palmer, mea-
suring the synonyms of the entities to be matched
in WordNet, that the quantification of linguistic het-
erogeneity will also focus on the synonyms of the
entities in the ontology in WordNet. E1 and E2,
respectively, represent the set of representative enti-
ties in the two ontologies to be matched and their
synonyms in WordNet

(3) Structure Heterogeneity Measure. The parent-child
concepts of the entities to be matched in the ontology
will be considered into the quantification of struc-
tural heterogeneity, and it is enlightened by the struc-
tural similarity measure SimRank, which measures
the parent-child concepts of the entities to be
matched in the ontology hierarchy graph. E1 and E2
, respectively, represent the set of representative
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entities in the two ontologies to be matched and their
parent-child concepts in the ontology hierarchy

According to different heterogeneity features, different
entities are selected as the input of the heterogeneity method
(formula (7)), which can quantify the degree of different
heterogeneity features more targeted.

3.2. Conversion Function Learning. The construction of the
“heterogeneity value-weight” conversion function is aimed
at exploring the functional relationship between the aggre-
gating weights of various similarity measures and the hetero-
geneity features that cause the heterogeneity between
ontologies, aiming to give more effective aggregating weights
to various similarity measures. After determining three kinds
of heterogeneity values between two ontologies, we need to
further convert them to the aggregating weights for different
similarity measures. So the conversion function is needed to
construct. As shown in Figure 1, the learning data of the
conversion function includes heterogeneity value and the
corresponding aggregating weight (about N-gram, Wu and
Palmer, or SimRank) given by experts.

This work uses the data analysis software Origin2020
(https://www.originlab.com) to construct the conversion
function. The fitting algorithm behind the tool is least-
squares. Compared to language interpolating polynomials
and cubic spline interpolation, the least-squares algorithm
is more suitable for forecasting. Furthermore, by observing
that “heterogeneity value-weight” fitting data is an exponen-
tial function, and the least-squares algorithm is capable of
fitting the exponential function.

Due to the different heterogeneity features of various
entities in ontology, not all the three types of similarity
measures are needed for each kind of entity.

(1) For class. The learning data for fitting can be defined
as ðXj

i ,Q
j
iÞ, where Xiði = 1, 2, 3Þ represents a certain

kind of heterogeneity value of the three, and Qi is
the aggregating weight of the similarity measure
which belongs to the same kind, such as Xi is the syn-
tax heterogeneity value and Qi is the aggregating
weight of the syntax-based similarity measure N-
gram. j = 1, 2, 3⋯ represents the serial number of
the data for fitting

(2) For properties (datatype property and object prop-
erty). Due to the lack of structural features, SimRank
is not suitable for them. So in ðXj

i ,Q
j
iÞ, i = 1, 2

Finally, seven conversion functions are obtained. The
quality of the conversion functions will be evaluated with
coefficient of determination (R-square) [31].

4. Ontology Metamatching

In this section, we describe the proposed ontology meta-
matching technique in detail. The entities in an ontology
can be divided into three types, i.e., class, datatype property,
and object property, and they all have such information as
ID, label, and comment. Next, we take class as an example
to illustrate the matching process: given a pair of ontologies
to be matched, (1) select the representative classes from the
two ontologies, calculate three kinds of heterogeneity values,
and, respectively, substitute them into the corresponding
“heterogeneity value-weight” functions to obtain the aggre-
gating weights. In particular, the ith aggregating weights are
denoted as Wi; (2) construct the similarity matrices on ID
and label using different similarity measures, which are,
respectively, denoted as MID

i and Mlabel
i . Since comment has

no structural relationship and it is usually a sentence that
SimRank and Wu and Palmer could not measure it
effectively, we utilize N-gram to measure their similarity;
(3) multiply the similarity matrix of ID and label with their
corresponding aggregating weights and, respectively, add
these weighted matrices to a comprehensive similarity
matrix, i.e., ∑3

i=1M
ID
i ×Wi and ∑3

i=1M
label
i ×Wi; (4) use a

threshold to filter the comprehensive similarity matrix: first,
filter the ID matching pairs; second, for those entities that
do not match, filter them by their labels; third, for those
entities that still do not match, filter by their comments;
finally, put the mappings whose similarity values are above
the threshold into the final alignment in each step. For the
sake of clarity, we show the flowchart of the process of deter-
mining the final ontology alignment in Figure 2.

5. Experiment

5.1. Dataset and Experimental Configuration. In the experi-
ment, we use the testing cases provided by the Ontology
Alignment Evaluation Initiative (OAEI) (http://oaei
.ontologymatching.org). A brief description on OAEI’s
testing cases is shown in Table 1. In particular, each case
contains two ontologies to be matched and one reference
alignment for evaluating the quality of the alignment. The

Ontology1 and
Ontology2 to
be matched

Selection of
representative

entities

Calculation of
heterogeneity

values

“heterogeneity value - weight”
(3)

(2)

(1)

functions
Combination

weights

ID similarity
matrixID

label

comment

label
similarity

matrix

comment
similarity

matrix

(4)

Final
alignment

�reshold
filtering

Figure 2: Ontology alignment determination.
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testing cases include another part of the benchmark above
and two pairs of real sensor ontologies, i.e., new SSN vs. orig-
inal SSN and new SSN vs. SOSA. Where the original SSN

describes sensors and observations and related concepts,
the new SSN improves the original SSN as follows: addressing
changes in scope and audience, addressing shortcomings of

Table 1: The brief descriptions on OAEI’s testing cases and real sensor ontologies.

Ontology Brief description

OAEI

101-104 The ontology pairs to be matched in the cases are identical or have different constraints in OWL.

201-210
The concept language features of the ontology pairs to be matched are different, but the structure of them

is the same.

221-247
The concept structure of the ontology pairs to be matched is different, but the language features of them

are the same.

248-262 The ontology pairs to be matched in the cases have different lexical, linguistic, and structure features.

Real sensor
ontologies

Original
SSN

Description of sensors and observations and related concepts.

New SSN
Addressing changes in scope and audience, shortcomings of the original SSN, and new technical

developments.

SOSA As a lightweight core for SSN.
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b
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Figure 3: Conversion function of class. (a) “Heterogeneity value-weight” conversion function on syntax. (b) “Heterogeneity value-weight”
conversion function on linguistics. (c) “Heterogeneity value-weight” conversion function on structure.
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the original SSN, and addressing technical developments;
SOSA provides a lightweight core for SSN and aims at broad-
ening the target audience and application areas that can
make use of Semantic Web ontologies (https://www.w3.org/
TR/vocab-ssn/). As classic sensor ontologies, SSN series sen-
sor ontology is widely used in satellite imagery, large-scale
scientific monitoring, industrial and household infrastruc-
tures, social sensing, citizen science, observation-driven
ontology engineering, and the Web of Things. They greatly
promote information exchange in various fields.

The relevant configuration of the experiment is as follows:
the threshold of the similarity matrix is 0.68; the model of the
conversion function is the exponential function yðxÞ = a × bx

+ c. In this experiment, through the benchmark, we compare
our approach with OAEI’s participants and three classic
metamatching methods, i.e., maximum-based metamatching
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f N
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0.5 1.0

Equation
a

0.81122

b
c

R-square (COD)

(b)

Figure 4: Conversion function of datatype property. (a) “Heterogeneity value-weight” conversion function on syntax. (b) “Heterogeneity
value-weight” conversion function on linguistics.
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a
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b
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R-square (COD)

(b)

Figure 5: Conversion function of object property. (a) “Heterogeneity value-weight” conversion function on syntax. (b) “Heterogeneity value-
weight” conversion function on linguistics.

Table 2: Comparison with OAEI’s participants.

Matching system Recall Precision f -measure

edna 0.68 0.50 0.56

AML 0.43 1.00 0.55

LogMap 0.65 0.92 0.72

LogMapLt 0.68 0.50 0.55

PhenoMF 0.02 0.02 0.02

PhenoMM 0.02 0.02 0.02

PhenoMP 0.01 0.02 0.02

XMap 0.59 0.96 0.68

LogMapBio 0.53 0.53 0.51

Our approach 0.74 0.98 0.82
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approach, minimum-based metamatching approach, and
average-based metamatching approach. Finally, we apply the
method of this paper to two pairs of real sensor ontologies to
verify the robustness.

5.2. Experimental Results and Analysis. As shown in
Figures 3–5, seven conversion functions are achieved, among
which class has three kinds of conversion functions, while
due to the lack of structural features, datatype property and
object property have two kinds of conversion functions,
respectively. According to R-square, we can see that each
conversion function is able to effectively reflect the mapping
relation between heterogeneity value and aggregating weight.
From the conversion functions, we can find that the aggregat-
ing weight of syntax-based similarity measure N-gram takes
the largest percentage among the similarity measures for all
three kinds of entities, while the others account for a small
part. In addition, the aggregating weight of the syntax-
based N-gram decreases exponentially as its heterogeneity
value increases for all three kinds of entities; on the contrary,
the aggregating weight of the linguistics-based similarity
measure Wu and Palmer and the structure-based similarity
measure SimRank increases exponentially as their heteroge-
neity value increases.

In Table 2, edna [32] is the baseline method, and AML
[33], LogMap series [34], and XMap [35] are OAEI’s partic-
ipants. In terms of the comprehensive evaluation index f
-measure, our method score is 0.82, which is much higher
than other state-of-the-art methods. Since AML uses more
than ten similarity measures, its precision is slightly higher
than our method, but there will be suppression between
multiple similarity measures, which yields low recall and high
computational complexity on tuning these similarity mea-
sures and debugging the results. Our approach’s recall is
0.74, which is higher than other state-of-the-art methods.

As shown in Tables 3–5 that in all 45 testing cases, our
method achieves better results than other competitors in
terms of 41 testing cases and has equal results with other
competitors in terms of another 4 testing cases, which further
shows the effectiveness of our method. For a more intuitive
comparison, a bar graph of f -measure for the four methods
is drawn in Figure 6.

Both in comparisons with the state-of-the-art methods in
OAEI and three classic metamatching methods, our method
achieves ideal results. This is because other methods ignore
the effect of heterogeneity features, which makes them unable
to identify more matching pairs effectively. The heterogene-
ity features into the process of obtaining aggregating weights

Table 3: Comparison with the maximum-based metamatching approach.

Testing
case

Recall Precision f -measure
Maximum-based

approach
Our

approach
Maximum-based

approach
Our

approach
Maximum-based

approach
Our

approach

101-104 1.00 1.00 1.00 1.00 1.00 1.00

201-210 0.73 0.73 0.83 0.95 0.75 0.80

221-247 0.98 1.00 0.97 0.99 0.98 1.00

248-262 0.56 0.58 0.90 0.98 0.68 0.71

101-262 0.73 0.74 0.92 0.98 0.80 0.82

Table 4: Comparison with the minimum-based metamatching approach.

Testing
case

Recall Precision f -measure
Minimum-based

approach
Our

approach
Minimum-based

approach
Our

approach
Minimum-based

approach
Our

approach

101-104 0.98 1.00 0.97 1.00 0.97 1.00

201-210 0.60 0.73 0.89 0.95 0.66 0.80

221-247 0.96 1.00 0.96 0.99 0.96 1.00

248-262 0.16 0.58 0.49 0.98 0.24 0.71

101-262 0.49 0.74 0.70 0.98 0.54 0.82

Table 5: Comparison with the average-based metamatching approach.

Testing case
Recall Precision f -measure

Average-based approach Our approach Average-based approach Our approach Average-based approach Our approach

101-104 0.98 1.00 0.97 1.00 0.97 1.00

201-210 0.60 0.73 0.89 0.95 0.66 0.80

221-247 0.96 1.00 0.96 0.99 0.96 1.00

248-262 0.16 0.58 0.49 0.98 0.24 0.71

101-262 0.49 0.74 0.70 0.98 0.54 0.82
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are first time taken into account in our method and findmore
matching pairs and realize effective matching.

When matching real sensor ontologies, new SSN is
treated as the source ontology, and the other two real sensor
ontologies are treated as the target ontologies. It can be seen
from Table 6 that our approach is able to obtain results that
are very close to the golden alignment. When matching the
new SSN and the original SSN, the recall obtained by our
approach is 0.97, which is due to that we suppose the align-
ment’s cardinality is one to one, i.e., one concept in the ontol-
ogy can only be mapped with one concept of another
ontology and vice versa. However, the cardinality could be
one to many in some practical tasks, e.g., the concept “Stim-
ulus” in the new SSN is mapped with the concept “Stimulus”
in the original SSN which is asserted the same as another
class “Sensor Input.” In our approach, according to the filter-
ing sequence of step 4 in Figure 2, if “Stimulus” in the new
SSN first is mapped with “Stimulus” in the original SSN by
ID, it will no longer participate in the filtering process
(although the comment of “Stimulus” in the new SSN is the
same as the comment of “Sensor Input” in the original
SSN), which decreases our approach’s recall value.

6. Conclusion and Future Work

Addressing ontology metamatching problem requires the
determination of suitable aggregating weights of several
similarity measures for matching ontologies. Considering
that the heterogeneity features of ontology have an important
influence on the aggregating weight of similarity measures,
this paper first proposes three heterogeneity measures to
quantify the heterogeneity values of ontology heterogeneity
features and then constructs the functional relationship
between the heterogeneity feature and the aggregating
weights of various similarity measures. The effectiveness of
the proposal is verified by comparing with the state-of-the-

art matching techniques in OAEI and other classic meta-
matching methods. The robustness of the method is proved
by matching two pairs of real sensor ontologies.

In the future, we are interested in further improving this
approach to deal with the matching task with the alignment’s
cardinality being many to many. We are also interested in
addressing large-scale matching problem, where two sensor
ontologies might own tens of thousands of concepts and
instances. In addition, when the number of similarity
measures is large, e.g., more than 50, the selection of suitable
ones is the critical issue that we need to address. Finally, an
efficient user interacting strategy should be used to further
reduce the interacting time and the user’s error rate.

Data Availability

The data used to support this study can be found in http://
oaei.ontologymatching.org.
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