
Research Article
Intrusion Detection System for Internet of Things Based on
Temporal Convolution Neural Network and Efficient
Feature Engineering

Abdelouahid Derhab ,1 Arwa Aldweesh ,2 Ahmed Z. Emam ,2

and Farrukh Aslam Khan 1

1Center of Excellence in Information Assurance (CoEIA), King Saud University, Saudi Arabia
2College of Computer and Information Sciences (CCIS), King Saud University, Saudi Arabia

Correspondence should be addressed to Abdelouahid Derhab; abderhab@ksu.edu.sa

Received 13 October 2020; Revised 23 November 2020; Accepted 4 December 2020; Published 23 December 2020

Academic Editor: Xiaojie Wang

Copyright © 2020 Abdelouahid Derhab et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In the era of the Internet of Things (IoT), connected objects produce an enormous amount of data traffic that feed big data analytics,
which could be used in discovering unseen patterns and identifying anomalous traffic. In this paper, we identify five key design
principles that should be considered when developing a deep learning-based intrusion detection system (IDS) for the IoT. Based
on these principles, we design and implement Temporal Convolution Neural Network (TCNN), a deep learning framework for
intrusion detection systems in IoT, which combines Convolution Neural Network (CNN) with causal convolution. TCNN is
combined with Synthetic Minority Oversampling Technique-Nominal Continuous (SMOTE-NC) to handle unbalanced dataset.
It is also combined with efficient feature engineering techniques, which consist of feature space reduction and feature
transformation. TCNN is evaluated on Bot-IoT dataset and compared with two common machine learning algorithms, i.e.,
Logistic Regression (LR) and Random Forest (RF), and two deep learning techniques, i.e., LSTM and CNN. Experimental results
show that TCNN achieves a good trade-off between effectiveness and efficiency. It outperforms the state-of-the-art deep learning
IDSs that are tested on Bot-IoT dataset and records an accuracy of 99.9986% for multiclass traffic detection, and shows a very
close performance to CNN with respect to the training time.

1. Introduction

The Internet of Things (IoT) network is a set of smart devices
such as sensors, home appliances, phones, vehicles, and com-
puters that are interconnected through the global Internet.
This type of network is increasingly becoming an essential
part of our everyday life and is providing a variety of applica-
tions such as smart home, smart grid, smart agriculture,
smart cities, and intelligent transportation.

Although the IoT can make the human’s life more com-
fortable, this benefit comes at the expense of security [1].
Nowadays, IoT networks are becoming an attractive target
for cybercriminals and are exposed to major risks. A report
from Unit 42 of Palo Alto Networks revealed that 98% of

all IoT device traffic is unencrypted, and 41% of attacks
exploit IoT device vulnerabilities [2]. The vulnerable devices
could be later used by adversaries to join an IoT botnet and
participate in sophisticated and large-scale attacks. For exam-
ple, the first IoT botnet launched in October 2016, named
Mirai [3], was able to compromise vulnerable CCTV cameras
that were using default usernames and passwords to launch a
DDoS attack on DNS servers. This attack resulted in stopping
the Internet accessibility in some parts of the USA. In April
2020, an IoT botnet, named Mozi, was discovered and was
found capable of launching various DDoS attacks [4, 5].

To deal with this kind of threat, the intrusion detection
systems have been widely used to detect malicious network
traffic [6, 7], especially when the preventive techniques fail

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 6689134, 16 pages
https://doi.org/10.1155/2020/6689134

https://orcid.org/0000-0002-6498-1528
https://orcid.org/0000-0003-4061-8473
https://orcid.org/0000-0003-0662-1097
https://orcid.org/0000-0002-7023-7172
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6689134

at the level of endpoint IoT devices. As cyberattacks targeting
IoT are increasingly becoming more sophisticated and stealthy,
the IDS should continuously evolve to handle emerging secu-
rity threats. Due to its heterogeneous nature, IoT network gen-
erates high-dimensional, multimodal, and temporal data. By
applying big data analytics on such data, it is possible to dis-
cover unseen patterns, reveal hidden correlations, and gain
new insights [8]. Artificial intelligence is increasingly used in
the big data analysis process. In particular, deep learning tech-
niques have proven their success in dealing with heterogeneous
data [8–11]. They are also capable of analyzing complex and
large-scale data to get insights, spot dependencies within data,
and learn from previous attack patterns to recognize new and
unseen attack patterns [12–14]. As IoT devices are resource-
constrained and have limited capabilities in terms of storage
and computation, heavyweight tasks like big data analysis pro-
cess and building of learningmodels need to be offloaded to fog
and cloud servers [15–21]. Hence, computation offloading [22]
can help reduce the execution delay of the task and save energy
consumption of battery-powered andmobile IoT devices, but it
also poses some security concerns [23].

Many deep learning approaches have been proposed for
IDS, and some of them specifically focus on IoT [24–32].
Each approach adopts its own design choices, which might
limit its capability in achieving good performance in terms
of effectiveness and efficiency.

In this paper, we propose five design principles to be con-
sidered when developing an effective and efficient deep learn-
ing IDS for IoT, and we use these principles to propose
TCNN, a variant of CNN that uses causal convolutions.
TCNN is combined with data balancing and efficient feature
engineering. More specifically, the main contributions of the
paper are the following:

(i) We identify five key design principles for the develop-
ment of deep learning-based IDS for IoT, including
handling overfitting, balancing dataset, feature engi-
neering,model optimization, and testing on IoT dataset

(ii) Based on the identified key design principles, we
compare the state-of-the art methods, identify their
gaps, and analyze the main differences with respect
to our work.

(iii) We design and implement Temporal Convolution
Neural Network (TCNN), a deep learning frame-
work for intrusion detection systems in IoT. TCNN
combines Convolution Neural Network (CNN) with
causal convolution.

(iv) To handle the issue of imbalanced dataset, we inte-
grate TCNN with Synthetic Minority Oversampling
Technique-Nominal Continuous (SMOTE-NC).

(v) We employ efficient feature engineering, which con-
sists of the following:

(1) Feature space reduction: it helps in reducing memory
consumption.

(2) Feature transformation: it is applied on continuous
numerical features using log transformation and stan-
dard scaler, which transforms skewed data to
Gaussian-like distribution. It is also applied on cate-
gorical features using label-encoding, which replaces
a categorical column with a unique integer value.

(vi) We evaluate the effectiveness and efficiency of the
proposed TCNN on Bot-IoT dataset, and compare
it with CNN, LSTM, logistic regression, random for-
est, and other state-of-the-art methods. The results
show the superiority of TCNN in scoring an accu-
racy of 99.9986% for multiclass traffic detection.

The rest of the paper is organized as follows. Section 3
presents the key design principles with respect to deep learn-
ing IDS for IoTs. Section 4 overviews related work. Section 4
and Section 5 describe the design and implementation of
TCNN, respectively. Section 6 presents the evaluation results
and comparison with state-of-the-art methods. Finally, Sec-
tion 7 concludes the paper and outlines future research
directions.

2. Key Design Principles for Deep Learning
IDS in IoT

The objective of deep learning-based IDS solutions for IoT is
to generate models that perform well in terms of effectiveness
and efficiency. However, each model adopts some design
choices that might limit its ability in achieving this objective.
For example, some deep learning IDSs in IoT do not consider
the overfitting problem, or apply their model on an unbal-
anced dataset, or neglect employing feature engineering,
which negatively affects their performance in terms of accu-
racy, memory consumption, and computational time. Also,
some IDSs do not try to optimize their learning model, and
some are evaluated on outdated or irrelevant datasets, which
do not reflect real-world IoT network traffic.

Motivated by the above observations, the deep learning-
based IDS solution for IoT should advocate the following
key design principles:

(i) Handling overfitting: overfitting happens when the
model achieves a good fit on the training data, but
it does not generalize well on unseen data. In deep
learning, overfitting could be avoided by the follow-
ing methods:

(1) Applying regularization, which adds a cost to the
loss function of the model for large weights.

(2) Using dropout layers, which randomly remove
certain features by setting them to 0.

(ii) Balancing dataset: data imbalance refers to a dispro-
portion distribution of classes within a dataset. If a
model is trained under an imbalanced dataset, it will
become biased, i.e., it will favor the majority classes

2 Wireless Communications and Mobile Computing

and fail to detect the minority classes. By balancing
the dataset, the effectiveness of the model will be
improved.

(iii) Feature engineering: it allows reducing the cost of the
deep learning workflow in terms of memory con-
sumption and time. It also allows improving the
accuracy of the model by discarding irrelevant fea-
tures and applying feature transformation to
improve the accuracy of the learning model.

(iv) Model optimization: the objective of model optimi-
zation is to minimize a loss function, which com-
putes the difference between the predicted output
and the actual output. This is achieved by iteratively
adjusting the weights of the model. By applying an
optimization algorithm such as SGD and Adam
[33], the effectiveness of the model will be improved.

(v) Testing on IoT dataset: a deep learning-based IDS for
IoT should be tested under an IoT dataset to get
results that reflect real-world IoT traffic.

3. Related Work

Deep learning has been applied in many fields of cybersecu-
rity including malware detection [34–39] and intrusion
detection system [14, 40–46]. In this section, we give an over-
view on deep learning-based IDS for IoT networks.

Lopez et al. [26] proposed RNN-CNN, a combination of
recurrent neural network (RNN) and convolutional neural
network (CNN). To deal with overfitting, they added some
layers such as max pooling, batch normalization, and drop-
out. They only considered a subset of features to improve
the effectiveness of the model.

Putchala [28] applied the Gated Recurrent Unit (GRU)
algorithm on KDD 99Cup dataset. He also used the random
forest classifier as a feature selection technique. The best pos-
sible performance results are obtained by minimizing the loss
function.

Roy and Cheung [31] presented Bidirectional Long
Short-Term Memory Recurrent Neural Network (BLSTM
RNN). They applied feature normalization and converted
categorical features to numeric values.

Diro et al. [24] applied a deep neural network (DNN) on
NSL-KDD dataset. The loss function of DNN is minimized
using stochastic gradient descent (SGD). There are fog nodes,
which are responsible for training the deep learning model.
The local parameters are sent to a fog coordinator node for
update. This allows sharing the best parameters and helps
avoiding local overfitting.

Roopak et al. [29] applied four different classification
deep learning models: MLP, 1d-CNN, LSTM, and CNN
+LSTM on CICIDS2017 dataset. They also balanced the
dataset by duplicating the records. However, it is not
explained which balancing method is used. The overfitting
issue is handled by adding some layers to the model such as
max pooling and dropout.

In [32], Deep Belief Network (DBN) is used to develop a
feed-forward deep neural network (DNN) and is applied on

an IoT simulation dataset. DNN is optimized by assigning a
cost function to each layer of the model.

Otoum et al. [27] proposed Stacked-Deep Polynomial
Network (SDPN) on NSL-KDD dataset. For optimal selec-
tion of features, they employed the Spider Monkey Optimiza-
tion (SMO) algorithm [47]. To avoid overfitting, the L2
regularization technique is integrated with the loss function.

Ferrag and Maglaras [25] applied recurrent neural net-
work (RNN) with the truncated backpropagation through
time (BPTT) algorithm on two non-IoT datasets and BoT-
IoT dataset. They normalized the features before feeding
them to RNN-BPTT.

Roopak et al. [30] proposed a sequential architecture
combining CNN and LSTM and applied it on CISIDS2017
dataset. For optimal selection of features, they employed a
multiobjective optimization algorithm named nondomi-
nated sorting genetic algorithm (NSGA) [48]. To avoid over-
fitting, they implemented a max-pooling layer between CNN
and LSTM layers.

Koroniotis et al. [49] are the first who developed BoT-IoT
dataset, and they used it to test RNN and LSTM. For feature
selection, they computed the correlation coefficient among
the features of the dataset and applied feature normalization
to scale the data within the range [0, 1].

Aldhaheri et al. [50] proposed DeepDCA, an IDS that
combines Dendritic Cell Algorithm (DCA) and Self Normal-
izing Neural Network (SNN). They adopted Information
Gain as a feature selection technique to decide on the set of
features to be fed to BoT-IoT dataset. Although, the authors
presented results with balanced dataset but no information
about balancing method is provided. As for model optimiza-
tion, they used a loss function to update the weights of the
deep learning layers.

Soe et al. [51] proposed Artificial Neural Network (ANN)
to detect DDoS attacks in Bot-IoT dataset. To balance the
dataset, they used the SMOTE technique. Also, they applied
feature normalization before feeding the input data to ANN.

Ge et al. [52] applied feed-forward neural networks
(FNN) on BoT-IoT dataset. The dataset is balanced not
through oversampling but in an algorithmic way, i.e., giving
class weights to the training data. To optimize the model,
they used Adam optimizer and a sparse categorical cross-
entropy loss function to update weights. To deal with overfit-
ting, they employed different regularization techniques such
as L1, L2, and dropout. They also encoded categorical fea-
tures as numerical using one-hot encoding.

Muna et al. [53] proposed a combination of deep autoen-
coder (DAE) and deep feed-forward neural network
(DFFNN) to detect malicious activities in industrial IoT.
The optimal parameters are obtained by calculating a loss
function, which allows updating the weights and minimizes
the difference between the actual and the predicted output.

3.1. Key Finding. Table 1 summarizes and compares the IDS
solutions with respect to the abovementioned five design
principles. We can notice that only 6 out of 14 solutions are
tested under IoT dataset [25, 27, 49–51]. The majority of
solutions do not consider dataset balancing. Only 4 solutions
are designed with data balancing [29, 50–52], two of them do

3Wireless Communications and Mobile Computing

not explain how the balancing approach is implemented [29,
50], one solution considers algorithmic-level data balancing
[52], and only one solution considers data-level balancing
by applying SMOTE algorithm [51]. Handling overfitting is
not considered in the design of 7 solutions [25, 28, 31, 32,
49, 50, 53]. On the other hand, model optimization is only
considered by 7 solutions [24, 27, 28, 32, 50, 52, 53]. Most
of the solutions employ feature engineering in their design,
except for two solutions [29, 32].

3.2. Comparison with Related Work. To the best of our
knowledge, our wok and [52] are the only ones that consider
all the five design principles. Differently from [52], which
adopts algorithmic-level data balancing, our work applies
the SMOTE-NC algorithm on Bot-IoT dataset, which can
handle continuous and categorical features. We use overfit-
ting and optimization techniques in achieving effective IDS.
We also use feature space reduction and feature transforma-
tion in achieving efficient and lightweight IDS in terms of
memory usage and training time.

4. Proposed Framework

4.1. Basic Principles. Deep learning is a concatenation of
different layers. The first layer is called the input layer,
and the last layer is called the output layer. In addition,
hidden layers are inserted between the input and the out-
put layers. Each layer is composed of a set of units, called
neurons. The size of the input layer depends on the
dimension of the input data, whereas the output layer is
composed of C units, which corresponds to the C classes
of a classification task.

Convolutional neural network (CNN), as shown in
Figure 1, is a deep neural network that is composed of
multiple layers. The three main types of layers are the
following:

(i) Convolutional layer: it applies a set of filters, also
known as convolutional kernels, on the input data.
Each filter slides over the input data to produce a
feature map. By stacking all the produced feature
maps together, we get the final output of the convo-
lution layer

(ii) Pooling layer: it operates over the feature maps to
perform subsampling, which reduces the dimen-
sionality of the feature maps. Average pooling
and max pooling are the most common pooling
methods

(iii) Fully connected layer: It takes the output of the pre-
vious layers, and turns them into a single vector that
can be an input for the next layer

The TCNN deep learning architecture [54] is a combi-
nation of CNN architecture and causal padding, which
results in causal convolutions. Figure 2 shows 1D causal
convolution with a kernel size of 3, which is applied on
time-series input data ðx0, x1,⋯,xTÞ. By causal convolu-
tions, we mean that an output at time t is convolved only
with elements from time t and earlier in the previous
layer. Therefore, it does not violate the temporal order of
the data, and there is no leakage of information from
future to past. Zero padding of length ðkernel size − 1Þ is
added to the layers to have the same length as the input
causal convolution layer.

Table 1: Deep learning-based IDS for IoT.

Ref DL technique Overfitting
Unbalanced

dataset
Feature

engineering
Model

optimization
Testing on IoT dataset

[26] CNN-RNN Yes No FS No No: RedIRIS

[28] GRU No No FS:RF Yes No: KDDCup’99

[31] BLSTM RNN No No FE No No: UNSW-NB15

[24] DNN Yes No FE Yes No: NSL-KDD

[29] MLP, 1d-CNN, LSTM, CNN+LSTM Yes Yes No No No: CICIDS2017

[32] DNN No No No Yes Yes: simulation

[27] SDPN Yes No FS:SMO Yes No: NSL-KDD

[25] RNN-BPTT No No FN No Yes: Bot-IoT

[30] CNN+LSTM Yes No FS: NSGA No No: CISIDS2017

[49] RNN, LSTM No No FS:CC No Yes: Bot-IoT

[3] DeepDCA No Yes FS:IG Yes Yes: BoT-IoT

[51] ANN No SMOTE FN No Yes: BoT-IoT

[52] FNN Yes Yes FE Yes Yes: BoT-IoT

[53] DAE-DFFFN No No FE, FN Yes No: NSL-KDD, UNSW-NB15

Our work
TCNN Yes SMOTE-NC FSR Yes Yes: BoT-IoT

FT: LT, SS, FE

FS: feature selection; RF: random forest; FE: feature encoding; FN: feature normalization; FSR: feature space reduction; IG: information gain; CC: correlation
coefficient; FT: feature transformation; LT: log transformation; SS: standard scaler; SMO: Spider Monkey Optimization; NSGA: nondominated sorting genetic
algorithm.

4 Wireless Communications and Mobile Computing

4.2. Overall Architecture. Figure 3 shows the overall architec-
ture of the proposed TCNN framework, and its implementa-
tion is detailed in Section 5. The proposed architecture is
composed of the following phases:

(i) Dataset balancing: as mentioned above, an imbal-
anced dataset can produce misleading results. To
handle this problem, we use in this phase the
SMOTE-NC method, which creates synthetic
samples of minority classes and is capable of han-
dling mixed dataset of categorical and continuous
features.

(ii) First feature engineering (feature space reduction): in
this phase, we clean the dataset, i.e., reduce the fea-
ture space by removing unnecessary features, and
converting the memory-consumption features into
lower-size datatype.

(iii) Dataset splitting: in this phase, the dataset is split
into: training, validation, and testing subsets in order
to counter overfitting.

(iv) Second feature engineering (feature transformation):
in this phase, we apply feature transformation on
the training subset. Log transformation and stan-
dard scaler are applied on the continuous numerical
features. In addition, label encoding is applied to cat-

egorical features, which simply replaces each cate-
gorical column with a specific number. This
transformation process is later applied on the valida-
tion and the testing subsets.

(v) Training and optimization: in this phase, the TCNN
model is built, as described in Section 4.3. It is
trained using the training subset, and its parameters
are optimized using Adam optimizer and the valida-
tion subset.

(vi) Classification: the generated TCNNmodel is applied
on the testing subset to attribute each testing record
to its actual class: normal or a specific category of
attack.

4.3. Training and Optimization of TCNN Framework. The
training and optimization phase of the proposed TCNN is
composed of two 1D causal convolution layers, two dense
layers, and a softmax layer, which applies softmax functions
for multiclass classification task. To overcome overfitting, we
use global maximum pooling, batch normalization, and drop-
out layers. We choose Adam optimizer to update weights and
optimize cross-entropy loss function. Adam optimizer com-
bines the advantages of two stochastic gradient descent algo-
rithms, namely Adaptive Gradient Algorithm (AdaGrad)
and Root Mean Square Propagation (RMSProp).

 C
on
vo
lu
ti
on

 la
y
er

P
oo
li
n
g

 la
y
er

C
on
vo
lu
ti
on

 la
y
er

P
oo
li
n
g

 la
y
er

F
u
ll

In
p
u
t

Class A
Class B

Class D

Class E

Class C

Y
-c
on
n
ec
te
d

 la
y
er

Softmax layer

Figure 1: CNN architecture.

x0 x1 x2 … xT –2xT –1xT

y0 y1 y2
…^ ^ ^ yT –2yT –1yT

^ ^ ^

Figure 2: 1D causal convolution [54].

5Wireless Communications and Mobile Computing

Specifically, the training and optimization phase of the
proposed TCNN architecture, as shown in Figure 4, is com-
posed of the following layers:

(i) First 1D causal convolution layer: it convolves across
the input vectors with 64 filters and filter size of 3.

(ii) Second 1D causal convolution layer: it uses 128 filters
and a filter size of 3. This second layer before pooling
allows the model to learn more complex features.

(iii) 1D global maximum pooling layer: it replaces data,
which is covered by the filter, with its maximum
value. It prevents overfitting of the learned features
by taking the maximum value.

(iv) Batch normalization layer: it normalizes the data
coming from the previous layer before going to the
next layer.

(v) Fully connected dense layer: it employs 128 hidden
units and a dropout ratio of 30%.

(vi) Fully connected dense layer with softmax activation
function: it produces five units that correspond to the
five categories of traffic for multiclass classification.

5. Implementation

To implement the detection learning models, we use Intel
Quad-core i7-8550U processor with 8GB RAM and 256GB
Hard drive. As for software, we use Python 3.6 programming
language, and TensorFlow to build deep learning models.
Moreover, different libraries are used including Scikit-learn,
Keras API, Panda, and Inmblearn. We implement the frame-
work in Figure 3 on Bot-IoT Dataset [49].

5.1. Bot-IoT Dataset. We use Bot-IoT [49], an IoT dataset
that was released in 2018 by the Cyber Center in the Univer-
sity of New South Wales. By virtualizing the setup of various
smart home appliances including weather stations, smart
fridges, motion-activated lights, remotely activated garage
doors, and smart thermostats, legitimate and malicious traffic
is generated. The dataset consists of more than 73,000,000
records, which are represented by 42 features, as shown in
Table 2. Each record is labeled either as normal or attack.
In addition, the attack dataset is divided into four categories:
DoS, DDoS, reconnaissance, and information theft, and each
category is further divided into subcategories, as shown in
Table 3.

In
p
u
t

1D
 ca

u
sa
l c
on
vo
lu
ti
on

1D
 ca

u
sa
l c
on
vo
lu
ti
on

G
lo
ba
l m

a
x

 p
oo
li
n
g

B
a
tc
h

 n
or
m
a
li
z
a
ti
on

F
u
ll
y
-c
on
n
ec
te
d

 d
en
se

D
ro
p
ou

t

F
u
ll
y
-c
on
n
ec
te
d

 d
en
se

So
f
m
a
x

Prediction

Entropy
loss

function

Actual values

Loss
score

Adam
optimizerWeight adjustment

Figure 4: Training and optimization of the proposed TCNN framework.

Unbalanced
dataset

D
at

a b
al

an
ci

ng
Balanced
dataset

Fe
at

ur
e s

pa
ce

 re
du

ct
io

n Testing
subset

Validation
subset

Training
subset

TCNN: training
and optimization

TCNN
model

Numerical and
categorical

feature
transformation

Feature
transformer

Reduced
balanced
dataset Predicted

class

Figure 3: TCNN framework.

6 Wireless Communications and Mobile Computing

T
a
bl
e
2:
Fe
at
ur
es

of
B
ot
-I
oT

da
ta
se
t.

Fe
at
ur
e

D
es
cr
ip
ti
on

D
at
a
ty
pe

Fe
at
ur
e

D
es
cr
ip
ti
on

D
at
a
ty
pe

pk
Se
qI
D

R
ow

id
en
ti
fi
er

In
te
ge
r

D
pk

ts
D
es
ti
na
ti
on

-t
o-
so
ur
ce

pa
ck
et
co
un

t
In
te
ge
r

st
im

e
R
ec
or
d
st
ar
t
ti
m
e

Fl
oa
t

Sb
yt
es

So
ur
ce
-t
o-
de
st
in
at
io
n
by
te
co
un

t
In
te
ge
r

fl
gs

Fl
ow

st
at
e
fl
ag
s
se
en

in
tr
an
sa
ct
io
ns

C
at
eg
or
y

D
by
te
s

D
es
ti
na
ti
on

-t
o-
so
ur
ce

by
te
co
un

t
In
te
ge
r

pr
ot
o

T
ex
tu
al
re
pr
es
en
ta
ti
on

of
tr
an
sa
ct
io
n

pr
ot
oc
ol
s
pr
es
en
ts
in

ne
tw
or
k
fl
ow

C
at
eg
or
y

R
at
e

T
ot
al
pa
ck
et
s
pe
r
se
co
nd

in
tr
an
sa
ct
io
n

Fl
oa
t

Sa
dd

r
So
ur
ce

IP
ad
dr
es
s

C
at
eg
or
y

Sr
at
e

So
ur
ce
-t
o-
de
st
in
at
io
n
pa
ck
et
s
pe
r
se
co
nd

Fl
oa
t

Sp
or
t

So
ur
ce

po
rt
nu

m
be
r

C
at
eg
or
y

D
ra
te

D
es
ti
na
ti
on

-t
o-
so
ur
ce

pa
ck
et
s
pe
r
se
co
nd

Fl
oa
t

D
ad
dr

D
es
ti
na
ti
on

IP
ad
dr
es
s

C
at
eg
or
y

T
nB

P
Sr
cI
P

T
ot
al
nu

m
be
r
of

by
te
s
pe
r
so
ur
ce

IP
In
te
ge
r

D
po

rt
D
es
ti
na
ti
on

po
rt
nu

m
be
r

C
at
eg
or
y

T
nB

P
D
st
IP

T
ot
al
nu

m
be
r
of

by
te
s
pe
r
de
st
in
at
io
n
IP
.

In
te
ge
r

P
kt
s

T
ot
al
co
un

t
of

pa
ck
et
s
in

tr
an
sa
ct
io
n

In
te
ge
r

T
nP

_P
Sr
cI
P

T
ot
al
nu

m
be
r
of

pa
ck
et
s
pe
r
so
ur
ce

IP
.

In
te
ge
r

B
yt
es

T
ot
al
nu

m
be
r
of

by
te
s
in

tr
an
sa
ct
io
n

In
te
ge
r

T
nP

_P
D
st
IP

T
ot
al
nu

m
be
r
of

pa
ck
et
s
pe
r
de
st
in
at
io
n
IP
.

In
te
ge
r

St
at
e

T
ra
ns
ac
ti
on

st
at
e

C
at
eg
or
y

T
nP

_P
er
P
ro
to

T
ot
al
nu

m
be
r
of

pa
ck
et
s
pe
r
pr
ot
oc
ol
.

In
te
ge
r

Lt
im

e
R
ec
or
d
la
st
ti
m
e

Fl
oa
t

T
nP

_P
er
_D

po
rt

T
ot
al
nu

m
be
r
of

pa
ck
et
s
pe
r
dp

or
t

In
te
ge
r

Se
q

A
rg
us

se
qu

en
ce

nu
m
be
r

In
te
ge
r

A
R
_P

_P
ro
to
_P

_S
rc
IP

A
ve
ra
ge

ra
te
pe
r
pr
ot
oc
ol

pe
r
so
ur
ce

IP
.

(c
al
cu
la
te
d
by

pk
ts
/d
ur
)

Fl
oa
t

D
ur

R
ec
or
d
to
ta
ld

ur
at
io
n

Fl
oa
t

A
R
_P

_P
ro
to
_P

_D
st
IP

A
ve
ra
ge

ra
te
pe
r
pr
ot
oc
ol

pe
r
de
st
in
at
io
n
IP
.

Fl
oa
t

M
ea
n

A
ve
ra
ge

du
ra
ti
on

of
ag
gr
eg
at
ed

re
co
rd
s

Fl
oa
t

N
_I
N
_C

on
n_

P
_S
rc
IP

N
um

be
r
of

in
bo
un

d
co
nn

ec
ti
on

s
pe
r
so
ur
ce

IP
.

In
te
ge
r

St
dd

ev
St
an
da
rd

de
vi
at
io
n
of

ag
gr
eg
at
ed

re
co
rd
s

Fl
oa
t

N
_I
N
_C

on
n_

P
_D

st
IP

N
um

be
r
of

in
bo
un

d
co
nn

ec
ti
on

s
pe
r
de
st
in
at
io
n
IP
.

In
te
ge
r

Su
m

T
ot
al
du

ra
ti
on

of
ag
gr
eg
at
ed

re
co
rd
s

Fl
oa
t

A
R
_P

_P
ro
to
_P

_S
po

rt
A
ve
ra
ge

ra
te
pe
r
pr
ot
oc
ol

pe
r
sp
or
t

Fl
oa
t

M
in

M
in
im

um
du

ra
ti
on

of
ag
gr
eg
at
ed

re
co
rd
s

Fl
oa
t

A
R
_P

_P
ro
to
_P

_D
po

rt
A
ve
ra
ge

ra
te
pe
r
pr
ot
oc
ol

pe
r
dp

or
t

Fl
oa
t

M
ax

M
ax
im

um
du

ra
ti
on

of
ag
gr
eg
at
ed

re
co
rd
s

Fl
oa
t

P
kt
s_
P
_S
ta
te
_P

_P
ro
to
co
l_
P
_S
rc
IP

N
um

be
r
of

pa
ck
et
s
gr
ou

pe
d
by

st
at
e
of

fl
ow

s
an
d
pr
ot
oc
ol
s
pe
r
so
ur
ce

IP
.

In
te
ge
r

Sp
kt
s

So
ur
ce
-t
o-
de
st
in
at
io
n
pa
ck
et
co
un

t
In
te
ge
r

P
kt
s_
P
_S
ta
te
_P

_P
ro
to
co
l_
P
_D

es
tI
P

N
um

be
r
of

pa
ck
et
s
gr
ou

pe
d
by

st
at
e
of

fl
ow

s
an
d
pr
ot
oc
ol
s
pe
r
de
st
in
at
io
n
IP

In
te
ge
r

7Wireless Communications and Mobile Computing

In this work, we use a subset of Bot-IoT dataset, consist-
ing of approximately 3,700,000 records, which is the same as
the one used in [49].

5.2. Dataset Balancing. In the dataset, there are 9,543 normal
and 73,360,900 attack samples. The subset of the dataset is
composed of 477 normal samples and 3,668,045 attack sam-
ples. We can notice that more than 97% of the samples
belong to DoS and DDoS categories, as shown in Table 3.
In this way, the learning model will predict the majority clas-
ses and fail to spot the minority classes, which means the
model is biased.

To deal with this problem, different resampling methods
have been proposed [55] like (1) random oversampling,
which randomly replicates the exact samples of the minority
classes, and (2) oversampling by creating synthetic samples
of minority classes using techniques such as synthetic minor-
ity oversampling technique (SMOTE), synthetic minority
oversampling technique for nominal and continuous
(SMOTE-NC), and adaptive synthetic (ADASYN). In this
work, we use the SMOTE-NC technique as it is capable of
handling mixed dataset of categorical and continuous fea-
tures [56]. The minority classes such as normal and theft
are increased to 100,0000 samples in the training subset, as
shown in Table 4.

5.3. Feature Space Reduction. One of the main objectives of
this work is to develop a lightweight IDS for IoT environ-
ment. Therefore, it is important to improve the efficiency of
the detection models by reducing the feature space and noise
in the dataset, as well as reducing the memory usage and
computation complexity. By using the full set of features,
2.9GB of memory is used. Feature space reduction decreases
the processing complexity and speeds up the training and
detection processes. The following steps are applied to the

dataset, which successfully decrease the memory consump-
tion to 668MB, i.e., 77% reduction.

(i) Conversion of object data type into categorical data
type: Table 5 shows the data types and the number
of features encoded for each type. As shown in the
table, there are 9 memory-consuming features that
are encoded as objects, which are “flgs,” “proto,”
“saddr,” “sport,” “daddr,” “dport,” “state,” “cate-
gory,” and “subcategory.” As category datatype is
more efficient, object features are converted into cat-
egory datatype [57].

(ii) Conversion of Int64 data type into Int32 data type: by
default, the 22 integer features in the dataset, as
shown in Table 2, are stored as Int64 (8-bytes) type.
After checking these features, we find out that they
do not exceed the capacity of Int32 (4-bytes) type.
Therefore, all the values of Int64 type are encoded
into Int32 type, which incurs half of the memory
consumption that is incurred by the Int64 type.

(iii) Removing unnecessary features: in the dataset, we
exclude some useless features such as the following:

(1) “pkSeqID”: it has the same role as the automati-
cally generated index.

(2) “stime” and “ltime”: they are captured in the
“dur” feature, which computes the duration
between “stime” and “ltime”.

5.4. Feature Transformation.We describe how the numerical
features and categorical features are transformed. After the
dataset is split into training, validation, and testing subsets,
the transformation is only applied on the training subset.
Then, the same transformation is reapplied on the validation
and the testing subsets.

(1) Numerical feature transformation: the dataset con-
tains 31 numerical features, including both discrete
and continuous values. There are two discrete fea-
tures, i.e., “spkts” and “dpkts,” and are represented
by a finite number of values. So, they do not require
any feature engineering.

Table 3: Bot-IoT dataset statistics.

Normal/attack Category Subcategory
Number of
records

Attack

Reconnaissance
(2.48%)

Service
scanning

1,463,364

OS
fingerprinting

358,275

DoS (52.25%) TCP 19,547,603

UDP 18,965,106

HTTP 19,771

DDoS (44.98%) TCP 12,315,997

UDP 20,659,491

HTTP 29,706

Information theft
(0.22%)

Keylogging 1,469

Data
exfiltration

118

Normal
(0.13%)

9,543

Total 73,370,443

Table 4: Training dataset: left: original dataset, and right:
oversampling dataset.

DDoS 1541299 DDoS 1541299

DoS 1320208 DoS 1320208

Reconnaissance 72865 Normal 100000

Normal 382 Theft 100000

Theft 63 Reconnaissance 72865

Table 5: Data type of features.

Data type Int64 Float64 Object

features 22 15 9

8 Wireless Communications and Mobile Computing

There are 29 continuous features in the dataset, which are
“pkts,” “bytes,” seq, dur,, mean, stddev, sum, min, max, spkts,
dpkts, sbytes, dbytes, rate, srate, drate, TnBPSrcIP,
TnBPDstIP, TnP_PSrcIP, TnP_PDstIP, TnP_PerProto,
TnP_Per_Dport, AR_P_Proto_P_SrcIP, AR_P_Proto_P_
DstIP, N_IN_Conn_P_DstIP, N_IN_Conn_P_SrcIP, AR_
P_Proto_P_Sport, AR_P_Proto_P_Dport, Pkts_P_State_P_
Protocol_P_DestIP, and Pkts_P_State_P_Protocol_P_SrcIP.
Figure 5 shows the histograms of 4 features. As shown in
the figure, the continuous features are not normally distrib-
uted, which usually affects the performance of linear models.
To this end, log transformation and standard scaler are
applied to the continuous features to be Gaussian-like distri-
bution as follows:

(i) Log transformation: the new value of the feature x′
= log10x, where x is the original value of the feature.

(ii) Standard scaler: it computes the mean μ and stan-
dard deviation σ on a training set. Then, the fea-
tures are normalized to Gaussian distribution. For
each x′, we compute the normalized value x′′ =
x′ − μ/σ

5.5. Dataset Splitting. Conventional splitting and cross-
validation are the main approaches used to split datasets.
Cross-validation is mainly used in legacy machine learning
to overcome the overfitting problem. When a large dataset is
used with deep learning, cross-validation increases the train-
ing cost. In this work, the dataset is split using the conven-
tional three-way split into: training, validation, and testing
subsets. In addition, regularization is applied to deal with the
overfitting if it appears [58]. Also, a stratified split is used to
ensure that there is a portion of each class in each split [59].

5.6. Deep Learning Models. All deep learning models are built
using Keras API on top of TensorFlow. Different Keras pack-
ages are used, including preprocessing, models, layers, opti-
mizers, and callback. The same activation functions are
used in all models. To model nonlinear relationships between
input and output in each layer, relu activation function is
used. The output layer activation function is softmax; a gen-
eralized logistic regression activation function is used. The
number of output units in softmax is equivalent to the num-
ber of attack categories in addition to the normal class [60].
The deep learning architectures of TCNN, LSTM, and
CNN are shown in Figure 6, and their hyperparameters are
shown in Table 6.

3500000

3000000

2500000

2000000

N
um

be
r o

f r
ec

or
ds

1500000

1000000

500000

0
0 1 2 3 4 5 6 7

1e7Bytes

Bytes

(a)

3500000

3000000

2500000

2000000

N
um

be
r o

f r
ec

or
ds

1500000

1000000

500000

0
0 200000 400000 600000 800000 1000000

Rate

Rate

(b)

3500000

3000000

2500000

2000000

N
um

be
r o

f r
ec

or
ds

1500000

1000000

500000

0
0 10000 20000 30000 40000 50000 7000060000

pkts

pkts

(c)

3000000

2500000

2000000
N

um
be

r o
f r

ec
or

ds

1500000

1000000

500000

0
0 20 40

N_IN_Corn_P_DstIP

N_IN_Corn_P_DstIP

60 80 100

(d)

Figure 5: Histogram of some continuous feature before transformation.

9Wireless Communications and Mobile Computing

To deal with overfitting, some techniques such as Global
maximum pooling, Batch normalization, and dropout are
used. To adjust the weights, Adam optimizer is selected since
it outperforms the other optimizers, such as SGD and
AdaGrad.

6. Evaluation

We evaluate the performance of TCNN and compare it with
two legacy machine learning algorithms, i.e., logistic regres-
sion (LR) and random forest (RF), and two deep learning
models, i.e., LSTM, and CNN.

6.1. Performance Metrics. The multiclass detection models
are evaluated with respect to the following metrics:

(i) Effectiveness metrics: we measure how the detection
model is effective in distinguishing between the dif-
ferent classes of network traffic. To this end, we use
the following metrics:

(i) Accuracy = TP + TN/TP + TN + FP + FN

(ii) Precision = TP/TP + FP

(iii) Recall = TP/TP + FN

(iv) F1 − score = 2ðPrecision × RecallÞ/Precision +
Recall

where TP, TN, FP, and FN denote the true positives, true
negatives, false positives, and false negatives, respectively.

(ii) Log loss (cross-entropy loss): it measures the perfor-
mance of the classification model whose output is a
probability value. A perfect model would have a log
loss of 0, and it increases as the predicted probability
diverges from the actual label. Formally,

logloss = −
1
C
〠
C

i=1
yi log pi + 1 − yið Þ log 1 − pið Þð Þ

ð1Þ

where C is the number of classes.

Conv1d_8_input: InputLayer

Conv1d_8: Conv1D

Conv1d_9: Conv1D

Global_max_pooling1d_4: GlobalMaxPooling1D

Batch_normalization_5: BatchNormalization

Dense_10: Dense

Dropout_4: Dropout

Dense_11: Dense

Activation_5: Activation

(a) TCNN

1stm_5_input: InputLayer

1stm_5: LSTM

Batch_normalization_11: BatchNormalization

1stm_6: LSTM

Batch_normalization_12: BatchNormalization

Dense_20: Dense

Dense_21: Dense

Activation_10: Activation

(b) LSTM

Conv1d_input: InputLayer

Conv1d: Conv1D

Conv1d_1: Conv1D

Global_max_pooling1d: GlobalMaxPooling1D

Batch_normalization_2: BatchNormalization

Dense_1: Dense

Dropout_1: Dropout

Dense_2: Dense

Activation_1: Activation

(c) CNN

Figure 6: Deep learning models.

10 Wireless Communications and Mobile Computing

(iii) Training time: it measures the required time to build
the classification model

6.2. Evaluation of Legacy Learning Models. Logistic regres-
sion and random forest are evaluated under original and
rebalanced datasets, and their results are shown in Table 7.
Training and testing scores are almost similar for all the
experiments, which confirm the absence of overfitting. As
for logistic regression, SMOTE-NC oversampling leads to
an improvement in precision, recall, and F1-score, which
means that there is improvement in detecting minority clas-
ses. On the other hand, the oversampling does not improve
the effectiveness of random forest.

6.3. Evaluation of Deep Learning Models.We conduct a series
of experiments with different hyperparameter values (e.g.,
learning rate, batch size, number of layers, and number of
units in each layer) in order to get the best performance. Dif-
ferent learning rates of the optimizer are tested. The best per-
formance is achieved when the learning rate is 0.001. Also,
different number of epochs 10, 15, 20, 50, and 100 and differ-
ent batch sizes 100, 256, 512, and 1024 are tested. We can
notice that increasing the number of epochs will slow down

the learning process. Similarly, using a smaller batch size
does not improve the performance. The number of epochs
and the batch size for TCNN are set to 15 and 1024,
respectively.

Figure 7 shows the accuracy and log loss of TCNN for
multiclass classification during the training and validation
phases. TCNN reaches high performance in the first epochs,
which emphasizes that 15 epochs would be enough. Addi-
tionally, the training and validation results show the absence
of overfitting. The log loss results of LSTM and CNN are
shown in Figure 8. We can observe that TCNN outperforms
LSTM and CNN in terms of log loss.

Tables 8–10 show the performance of TCNN, LSTM, and
CNN, respectively. We can observe that deep learning
models perform better than LR and RF, as some accuracy
results exceed 99.99%. The accuracy results are very close
but TCNN slightly outperforms LSTM and CNN in terms
of effectiveness metrics. We can also observe that the deep
learning models show good results even without applying
dataset balancing. By applying, SMOTE-NC oversampling,
we record an insignificant and very slight decrease in the
effectiveness of TCNN and LSTM. On the other hand, the
effectiveness of CNN slightly increases after applying

Table 6: Hyperparameters of deep learning models.

Hyperparameters Value Activation function

TCNN

First 1D causal convolution layer #filters = 64, filter size = 3 ReLU

Second 1D causal convolution layer #filters = 128, filter size = 3 ReLU

Fully connected dense layer #neurons = 128, dropout = 0. 3 ReLU

Fully connected dense layer #neurons = 5 Softmax

CNN

First 1D convolution layer #filters = 64, filter size = 3 ReLU

Second 1D convolution layer #filters = 128, filter size = 3 ReLU

Fully connected dense layer #neurons = 128, dropout = 0. 3 ReLU

Fully connected dense layer #neurons = 5 Softmax

LSTM

First LSTM layer #neurons = 20, recurrent dropout = 0.2 ReLU

Second LSTM layer #neurons = 20, recurrent dropout = 0.2 ReLU

Fully connected dense layer #neurons = 128 ReLU

Fully connected dense layer #neurons = 5 Softmax

Optimizer Adam with learning rate = 0.001 /

Batch size 1024 /

Epochs 15 /

Table 7: Performance of machine learning models.

Detection model Oversampling Phase Log loss Accuracy Precision Recall F1-score Training time (s)

LR

None Training 0.055841 97.0861% 59.8890% 81.2382% 52.1265% 511

Testing 0.057109 97.0598% 59.9419% 82.6940% 52.1741%

SMOTE-NC Training 0.075336 99.2955% 75.2781% 99.2496% 79.6344% 709

Testing 0.077694 99.2858% 74.5496% 98.6987% 78.9640%

RF

None Training 0.200992 97.4837% 80.4852% 98.8858% 86.8911% 191

Testing 0.20116 97.4586% 77.8298% 98.8643% 84.4592%

SMOTE-NC Training 0.195178 96.6396% 79.8083% 98.5854% 86.3145% 197

Testing 0.195124 96.6341% 75.8464% 98.5543% 82.6850%

11Wireless Communications and Mobile Computing

SMOTE-NC oversampling. CNN also incurs lower training
time compared to TCNN and LSTM. TCNN offers a good
trade-off between effectiveness and efficiency, as it is the clos-
est competitor to CNN with respect to training time, and it
records the best accuracy result.

6.4. Comparison with Related Work Tested under Bot-IoT
Dataset. In Table 11, we compare the performance of our
work with other state-of-the-art methods that are tested
under Bot-IoT dataset. The comparison is conducted with
respect to accuracy, precision, recall, F1-score, training time,
and classification task. According to the table, we can identify
the following classification tasks:

(i) Binary classification task: it aims to distinguish
between normal and attack records.

(ii) Normal/one-attack classification task: it aims to dis-
tinguish between normal records and one type of
attacks.

(iii) Multiclass classification: it aims to attribute a record
to its correct class among the five classes, i.e., one
normal class and four attack classes.

It is known that multiclass classification is the most chal-
lenging task, whereas the normal/one-attack classification is
the easiest one as the dataset only contains one type of attack,
which means less diversity within the dataset, and easy

0 2 4 6
Epoch

Model accuracy

8 10 12 14

1000

0.999

0.998

0.997A
cc

ur
ac

y

0.996

0.995

Train
Val

(a)

0 2 4 6
Epoch

Model loss

8 10 12 14

0.0200

0.0175

0.0150

0.0125

0.0100

Lo
ss

0.0075

0.0050

0.0025

0.0000

Train
Val

(b)

Figure 7: Accuracy and log loss of TCNN vs. number of epochs.

12 Wireless Communications and Mobile Computing

0 2 4 6
Epoch

Model loss

8

0.08

0.06

0.04

Lo
ss

0.02

Train
Val

(a) LSTM

0 2 4 6
Epoch

Model loss

8 10 12 14

0.010

0.008

0.006

0.004

Lo
ss

0.002

0.000

Train
Val

(b) CNN

Figure 8: Log loss of LSTM and TCN vs. number of epochs.

Table 8: Performance of TCNN model.

Oversampling Log loss Accuracy Precision Recall F1-score Training time (s)

None 0.000072 99.9986% 99.9974% 97.4975% 98.6641% 424

SMOTE-NC 0.000101 99.9978% 97.1379% 94.9972% 95.9961% 447

Table 9: Performance of LSTM model.

Oversampling Log loss Accuracy Precision Recall F1-score Training time (s)

None 0.002027 99.9654% 99.9443% 84.5703% 89.3016% 762

SMOTE-NC 0.002131 99.9643% 84.0246% 99.5169% 88.5303% 746

13Wireless Communications and Mobile Computing

learning for the detection model. From Table 11, we can
observe that [51] achieves 100% effectiveness. However,
this result can be explained by the fact that [51] aims to
distinguish between normal traffic and only one type of
attack, i.e., DDoS. The three deep learning models, TCNN,
LSTM, and CNN, outperform the rest of related work,
although they are evaluated under multiclass classification
task. We can also observe that TCNN, LSTM, and CNN
incur the best results in terms of training time. This is
due to the adopted feature engineering that reduces the
computation complexity and due to the use of simple deep
learning architectures with larger batch size and less num-
ber of layers.

7. Conclusion and Future Work

In this paper, we have identified five design principles for
the development of an effective and efficient deep
learning-based intrusion detection system for the Internet
of Things (IoT). By adopting these principles, we have
designed and implemented Temporal Convolution Neural
Network (TCNN), which combines Convolution Neural
Network (CNN) and causal convolution. TCNN is inte-
grated with SMOTE-NC data balancing and efficient fea-
ture engineering, which consists of feature space
reduction and feature transformation.

TCNN has been evaluated on Bot-IoT dataset and
compared with logistic regression, random forest, LSTM,
and CNN. Evaluation results show that TCNN achieves a
good trade-off between effectiveness and efficiency. It out-
performs the state-of-the-art deep learning IDS methods,
which were tested under Bot-IoT dataset, by recording
an accuracy of 99.9986% for multiclass traffic detection.
Also, it shows a very close performance to CNN with

respect to training time. As part of future work, it would
be interesting to consider another design principle, i.e.,
testing the resiliency of IDS against adversarial attacks,
which can confuse the deep learning model to produce
wrong predictions.

Data Availability

We used the Bot-IoT, which is a publicly accessed dataset
(https://www.unsw.adfa.edu.au/unsw-canberra-cyber/
cybersecurity/ADFA-NB15-Datasets/bot_iot.php), for the
evaluation of the proposed IDS.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors extend their appreciation to the Deanship of Sci-
entific Research at King Saud University for funding this
work through research group No (RG-1439-021).

References

[1] H. Belkhiri, A. Messai, M. Belaoued, and F. Haider, “Security
in the internet of things: recent challenges and solutions,” in
International Conference on Electrical Engineering and Control
Applications, pp. 1133–1145, Constantine, Algeria, 2019.

[2] Palo alto networks, “2020 unit 42 iot threat report,” 2020,
https://unit42.paloaltonetworks.com/iot-threat-report-2020/.

[3] M. Antonakakis, T. April, M. Bailey et al., “Understanding the
mirai botnet,” in 26th USENIX Security Symposium (USENIX
Security17), pp. 1093–1110, Vancouver, BC, Canada, 2017.

Table 10: Performance of CNN model.

Oversampling Log loss Accuracy Precision Recall F1-score Training time (s)

None 0.000094 99.9973% 95.1360% 97.0783% 96.0500% 419

SMOTE-NC 0.000118 99.9984% 99.9952% 94.9975% 97.1392% 490

Table 11: Comparison with related work tested on Bot-IoT dataset.

Ref Model Task Accuracy Precision Recall F1-score Training time (s)

[49] RNN Binary 99.7404% 99.9904% 99.7499% — 8035

LSTM Binary 99.7419% 99.9910% 99.7508% — 10482.19

[61] Ensemble learning Binary 99.97% — — — —

[25] RNN with BPTT Multiclass 99.912% — — — 2012

[50] DeepDCA Multiclass 98.73% 99.17% 98.36% 98.77% —

[51] ANN Normal/DDoS 100% 100% 100% 100% —

[52] FNN Multiclass 99.02% — — — —

Our TCNN Multiclass 99.9986% 99.9974% 97.4975% 98.6641% 424

Work

LSTM 99.9654% 99.9443% 84.5703% 89.3016% 762

CNN 99.9973% 95.1360% 97.0783% 96.0500% 419

LR 99.2858% 74.5496% 98.6987% 78.9640% 709

RF 97.4586% 77.8298% 98.8643% 84.4592% 191

14 Wireless Communications and Mobile Computing

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php
https://unit42.paloaltonetworks.com/iot-threat-report-2020/

[4] S. Fadilpasic, “Researchers discover iot botnet capable of
launching various ddos attacks,” April 2020, https://www
.itproportal.com/news/researchers-discover-iot-botnet-
capable-of-launching-various-ddos-attacks/.

[5] J. Vijayan, “New malware family assembles iot botnet,” April
2020, https://www.darkreading.com/iot/new-malware-family-
assembles-iot-botnet–/d/d-id/1337578.

[6] A. Derhab, M. Guerroumi, A. Gumaei et al., “Blockchain and
random subspace learning-based ids for sdn-enabled indus-
trial iot security,” Sensors, vol. 19, no. 14, p. 3119, 2019.

[7] M. Imran, M. H. Durad, F. A. Khan, and A. Derhab, “Toward
an optimal solution against denial of service attacks in software
defined networks,” Future Generation Computer Systems,
vol. 92, pp. 444–453, 2019.

[8] B. Du, H. Peng, S. Wang et al., “Deep irregular convolutional
residual lstm for urban traffic passenger flows prediction,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 3, pp. 972–985, 2020.

[9] E. Bou-Harb, M. Debbabi, and C. Assi, “Big data behavioral
analytics meet graph theory: on effective botnet takedowns,”
IEEE Network, vol. 31, no. 1, pp. 18–26, 2017.

[10] E. M. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“Scalable and robust unsupervised android malware finger-
printing using community-based network partitioning,” Com-
puters & Security, vol. 96, article 101932, 2020.

[11] M. Marjani, F. Nasaruddin, A. Gani et al., “Big IOT data ana-
lytics: architecture, opportunities, and open research chal-
lenges,” IEEE Access, vol. 5, pp. 5247–5261, 2017.

[12] A. Aldweesh, A. Derhab, and A. Z. Emam, “Deep learning
approaches for anomaly-based intrusion detection systems: a
survey, taxonomy, and open issues,” Knowledge-Based Sys-
tems, vol. 189, article 105124, 2020.

[13] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke,
“Deep learning for cyber security intrusion detection:
approaches, datasets, and comparative study,” Journal of Infor-
mation Security and Applications, vol. 50, article 102419, 2020.

[14] S. Mahdavifar and A. A. Ghorbani, “Application of deep learn-
ing to cybersecurity: A survey,” Neurocomputing, vol. 347,
pp. 149–176, 2019.

[15] Z. Ning, P. Dong, X. Wang et al., “Mobile edge computing
enabled 5g health monitoring for internet of medical things:
a decentralized game theoretic approach,” IEEE Journal on
Selected Areas in Communications, pp. 1–16, 2020.

[16] Z. Ning, P. Dong, X. Wang et al., “Partial computation offload-
ing and adaptive task scheduling for 5g-enabled vehicular net-
works,” IEEE Transactions on Mobile Computing, 2020.

[17] Z. Ning, K. Zhang, X. Wang et al., “Intelligent edge computing
in internet of vehicles: a joint computation offloading and
caching solution,” IEEE Transactions on Intelligent Transpor-
tation Systems, 2020.

[18] Z. Ning, K. Zhang, X. Wang et al., “Joint computing and cach-
ing in 5g-envisioned internet of vehicles: a deep reinforcement
learning-based traffic control system,” IEEE Transactions on
Intelligent Transportation Systems, 2020.

[19] T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, “A
secure iot service architecture with an efficient balance dynam-
ics based on cloud and edge computing,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4831–4843, 2018.

[20] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning
for pervasive edge computing: a decentralized computation

offloading algorithm,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 32, no. 2, pp. 411–425, 2020.

[21] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning
enabled task scheduling for online vehicular edge computing,”
IEEE Transactions on Mobile Computing, 2020.

[22] A. Derhab, M. Belaoued, M. Guerroumi, and F. A. Khan,
“Two-factor mutual authentication offloading for mobile
cloud computing,” IEEE Access, vol. 8, pp. 28956–28969, 2020.

[23] A. Boulemtafes, A. Derhab, and Y. Challal, “A review of
privacy-preserving techniques for deep learning,” Neurocom-
puting, vol. 384, pp. 21–45, 2020.

[24] A. A. Diro and N. Chilamkurti, “Distributed attack detection
scheme using deep learning approach for internet of things,”
Future Generation Computer Systems, vol. 82, pp. 761–768,
2018.

[25] M. A. Ferrag and L. Maglaras, “DeepCoin: a novel deep learn-
ing and blockchain-based energy exchange framework for
smart grids,” IEEE Transactions on Engineering Management,
vol. 67, no. 4, pp. 1285–1297, 2020.

[26] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and
J. Lloret, “Network traffic classifier with convolutional and
recurrent neural networks for internet of things,” IEEE Access,
vol. 5, pp. 18042–18050, 2017.

[27] Y. Otoum, D. Liu, and A. Nayak, “DL‐IDS: a deep learning–
based intrusion detection framework for securing IoT,” Trans-
actions on Emerging Telecommunications Technologies, no. -
article e3803, 2019.

[28] M. Kumar, Deep learning approach for intrusion detection sys-
tem (ids) in the internet of things (iot) network using gated
recurrent neural networks (gru), Wright State University, 2017.

[29] M. Roopak, G. Y. Tian, and J. Chambers, “Deep learning
models for cyber security in IoT networks,” in 2019 IEEE 9th
annual computing and communication workshop and confer-
ence (CCWC), pp. 452–457, Las Vegas, NV, USA, 2019.

[30] M. Roopak, G. Y. Tian, and J. Chambers, “An intrusion detec-
tion system against ddos attacks in iot networks,” in 2020 10th
Annual Computing and Communication Workshop and Con-
ference (CCWC), pp. 562–567, Las Vegas, NV, USA, 2020.

[31] B. Roy and H. Cheung, “A deep learning approach for intru-
sion detection in internet of things using bi-directional long
short-term memory recurrent neural network,” in 2018 28th
International Telecommunication Networks and Applications
Conference (ITNAC), pp. 1–6, Sydney, NSW, Australia, 2018.

[32] G. Thamilarasu and S. Chawla, “Towards deep-learning-
driven intrusion detection for the internet of things,” Sensors,
vol. 19, no. 9, article 1977, 2019.

[33] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” 2016, https://arxiv.org/abs/1609.04747.

[34] S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: a deep
learning framework for android malware detection based on
linux kernel system call graphs,” in 2016 IEEE/WIC/ACM
International Conference on Web Intelligence Workshops
(WIW), pp. 104–111, Omaha, NE, USA, 2016.

[35] E. M. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“Maldozer: automatic framework for android malware detec-
tion using deep learning,” Digital Investigation, vol. 24,
pp. S48–S59, 2018.

[36] T. G. Kim, B. J. Kang, M. Rho, S. Sezer, and E. G. Im, “A mul-
timodal deep learning method for android malware detection
using various features,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 3, pp. 773–788, 2019.

15Wireless Communications and Mobile Computing

https://www.itproportal.com/news/researchers-discover-iot-botnet-capable-of-launching-various-ddos-attacks/
https://www.itproportal.com/news/researchers-discover-iot-botnet-capable-of-launching-various-ddos-attacks/
https://www.itproportal.com/news/researchers-discover-iot-botnet-capable-of-launching-various-ddos-attacks/
https://www.darkreading.com/iot/new-malware-family-assembles-iot-botnet--/d/d-id/1337578
https://www.darkreading.com/iot/new-malware-family-assembles-iot-botnet--/d/d-id/1337578
https://arxiv.org/abs/1609.04747

[37] S. Ni, Q. Qian, and R. Zhang, “Malware identification using
visualization images and deep learning,” Computers & Secu-
rity, vol. 77, pp. 871–885, 2018.

[38] G. Sun and Q. Qian, “Deep learning and visualization for iden-
tifying malware families,” IEEE Transactions on Dependable
and Secure Computing, p. 1, 2018.

[39] Z. Wang, J. Cai, S. Cheng, andW. Li, “Droiddeeplearner: iden-
tifying android malware using deep learning,” in 2016 IEEE
37th Sarnoff Symposium, pp. 160–165, Newark, NJ, USA, 2016.

[40] S. M. Kasongo and Y. Sun, “A deep learning method with
wrapper based feature extraction for wireless intrusion detec-
tion system,” Computers & Security, vol. 92, article 101752,
2020.

[41] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “TSDL: a
two-stage deep learning model for efficient network intrusion
detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.

[42] Z. Li, Q. Zheng, P. Shen, and L. Jiang, “Intrusion detection
using temporal convolutional networks,” in International Con-
ference on Neural Information Processing, pp. 168–178, Syd-
ney, NSW, Australia, 2019.

[43] W.-H. Lin, P. Wang, B.-H. Wu, M.-S. Jhou, K.-M. Chao, and
C.-C. Lo, “Behaviorial-based network flow analyses for anom-
aly detection in sequential data using temporal convolutional
networks,” in Advances in E-Business Engineering for Ubiqui-
tous Computing. ICEBE 2019, pp. 173–183, Springer, 2019.

[44] E. Min, J. Long, Q. Liu, J. Cui, andW. Chen, “Tr-ids: anomaly-
based intrusion detection through text-convolutional neural
network and random forest,” Security and Communication
Networks, vol. 2018, 9 pages, 2018.

[45] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning
approach to network intrusion detection,” IEEE transactions
on Emerging Topics in Computational Intelligence, vol. 2,
no. 1, pp. 41–50, 2018.

[46] Q. Zhou, J. Wu, and L. Duan, “Recommendation attack detec-
tion based on deep learning,” Journal of Information Security
and Applications, vol. 52, article 102493, 2020.

[47] J. C. Bansal, H. Sharma, S. S. Jadon, and M. Clerc, “Spider
monkey optimization algorithm for numerical optimization,”
Memetic Computing, vol. 6, no. 1, pp. 31–47, 2014.

[48] M. Kumar and C. Guria, “The elitist non-dominated sorting
genetic algorithm with inheritance (i-NSGA- II) and its jump-
ing gene adaptations for multi-objective optimization,” Infor-
mation Sciences, vol. 382-383, pp. 15–37, 2017.

[49] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull,
“Towards the development of realistic botnet dataset in the
internet of things for network forensic analytics: bot-iot data-
set,” Future Generation Computer Systems, vol. 100, pp. 779–
796, 2019.

[50] S. Aldhaheri, D. Alghazzawi, L. Cheng, B. Alzahrani, and
A. Al-Barakati, “Deepdca: novel network-based detection of
iot attacks using artificial immune system,” Applied Sciences,
vol. 10, no. 6, p. 1909, 2020.

[51] Y. N. Soe, P. I. Santosa, and R. Hartanto, “Ddos attack detec-
tion based on simple ann with smote for iot environment,”
in 2019 Fourth International Conference on Informatics and
Computing (ICIC), pp. 1–5, Semarang, Indonesia, 2019.

[52] M. Ge, F. Xiping, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly,
“Deep learning-based intrusion detection for iot networks,” in
2019 IEEE 24th Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 256–25609, Kyoto, Japan,
2019.

[53] A. L.-H. Muna, N. Moustafa, and E. Sitnikova, “Identification
of malicious activities in industrial internet of things based
on deep learning models,” Journal of Information security
and applications, vol. 41, pp. 1–11, 2018.

[54] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of
generic convolutional and recurrent networks for sequence
modeling,” 2018, https://arxiv.org/abs/1803.01271.

[55] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling
imbalanced datasets: a review,” GESTS International Transac-
tions on Computer Science and Engineering, vol. 30, no. 1,
pp. 25–36, 2006.

[56] N. V. Chawla, K.W. Bowyer, L. O. Hall, andW. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal
of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[57] W. McKinney, Pydata development team pandas: powerful
python data analysis toolkit, 2019.

[58] I. Goodfellow, Y. Bengio, and A. Courville,Deep learning, MIT
press, 2016.

[59] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data
preprocessing for supervised leaning,” International Journal
of Computer Science, vol. 1, no. 2, pp. 111–117, 2006.

[60] M. Al-Zewairi, S. Almajali, and A. Awajan, “Experimental
evaluation of a multi-layer feed-forward artificial neural net-
work classifier for network intrusion detection system,” in
2017 International Conference on New Trends in Computing
Sciences (ICTCS), pp. 167–172, Amman, Jordan, 2017.

[61] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and
A. Alazab, “A novel ensemble of hybrid intrusion detection
system for detecting internet of things attacks,” Electronics,
vol. 8, no. 11, p. 1210, 2019.

16 Wireless Communications and Mobile Computing

https://arxiv.org/abs/1803.01271

	Intrusion Detection System for Internet of Things Based on Temporal Convolution Neural Network and Efficient Feature Engineering
	1. Introduction
	2. Key Design Principles for Deep Learning IDS in IoT
	3. Related Work
	3.1. Key Finding
	3.2. Comparison with Related Work

	4. Proposed Framework
	4.1. Basic Principles
	4.2. Overall Architecture
	4.3. Training and Optimization of TCNN Framework

	5. Implementation
	5.1. Bot-IoT Dataset
	5.2. Dataset Balancing
	5.3. Feature Space Reduction
	5.4. Feature Transformation
	5.5. Dataset Splitting
	5.6. Deep Learning Models

	6. Evaluation
	6.1. Performance Metrics
	6.2. Evaluation of Legacy Learning Models
	6.3. Evaluation of Deep Learning Models
	6.4. Comparison with Related Work Tested under Bot-IoT Dataset

	7. Conclusion and Future Work
	Data Availability
	Conflicts of Interest
	Acknowledgments

