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The electrocardiogram (ECG) signal can easily be affected by various types of noises while being recorded, which decreases the
accuracy of subsequent diagnosis. Therefore, the efficient denoising of ECG signals has become an important research topic. In
the paper, we proposed an efficient ECG denoising approach based on empirical mode decomposition (EMD), sample entropy,
and improved threshold function. This method can better remove the noise of ECG signals and provide better diagnosis service
for the computer-based automatic medical system. The proposed work includes three stages of analysis: (1) EMD is used to
decompose the signal into finite intrinsic mode functions (IMFs), and according to the sample entropy of each order of IMF
following EMD, the order of IMFs denoised is determined; (2) the new threshold function is adopted to denoise these IMFs
after the order of IMFs denoised is determined; and (3) the signal is reconstructed and smoothed. The proposed method solves
the shortcoming of discarding the first-order IMF directly in traditional EMD denoising and proposes a new threshold
denoising function to improve the traditional soft and hard threshold functions. We further conduct simulation experiments of
ECG signals from the MIT-BIH database, in which three types of noise are simulated: white Gaussian noise, electromyogram
(EMG), and power line interference. The experimental results show that the proposed method is robust to a variety of noise
types. Moreover, we analyze the effectiveness of the proposed method under different input SNR with reference to improving
SNR (SNRimp) and mean square error (MSE), then compare the denoising algorithm proposed in this paper with previous ECG
signal denoising techniques. The results demonstrate that the proposed method has a higher SNRimp and a lower MSE.
Qualitative and quantitative studies demonstrate that the proposed algorithm is a good ECG signal denoising method.

1. Introduction

ECG signals are widely used in the diagnosis of heart disease
and are commonly regarded as the most important tool for
heart disease diagnosis in clinical practice [1]. Therefore,
the analysis and processing of ECG signals is of great signif-
icance for heart disease detection. However, various types of
noise are introduced during the acquisition of ECG signals;

these include baseline drift caused by the patient’s breath,
electromyogram noise caused by the contraction and move-
ment of human muscles, motion artifacts arising due to elec-
trode movement [2, 3], channel noise caused by white
Gaussian noise introduced during channel transmission,
power line interference, and other types of noise pollution.
All these types of noise may cause distortion of the ECG
waveform, which obscures the tiny features that are most
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important for diagnosis [4]. Accordingly, various denoising
methods have been proposed to maximize the extraction of
useful information from the ECG.

Researchers have studied a number of such methods,
such as directly designing an IIR or FIR filter [5, 6]; however,
the amplitude and frequency of the ECG signal obtained by
this method are easily distorted, and the noise removal effect
is also less than ideal. Huang et al. devised a signal analysis
approach based on the time scale of the signal itself and
decomposed the signal into a series of intrinsic mode func-
tions (IMFs), which is regarded as empirical mode decompo-
sition (EMD) [7]. Donoho proposed a general threshold
method based on discrete wavelet transform (DWT) [8],
while [9] proposed a new method that removes ECG signal
noise based on both EMD and DWT. Moreover, [10] pre-
sents a power line interference removal method based on
empirical wavelet transform and adaptive filtering, while in
[11], a new method for removing noise from ECG signals
was proposed based on EMD, constrained least squares
(CLS), and DWT.

EMD is an adaptive and efficient decomposition method
capable of decomposing any complex signal into finite intrin-
sic mode functions. It is very suitable for processing nonlin-
ear and nonstationary signals, such as ECG signals [12].
One of the key elements of EMD-based denoising is to deter-
mine the noise IMF. Traditional EMD denoising often
directly discards the first IMF to achieve the removal of
high-frequency noise; however, this method not only dis-
cards some important information but also does not
completely denoise the signal. Therefore, the question of
how to more accurately determine the order of IMF which
needs to be denoised remains an active one.

Another signal denoising method in widespread use is
threshold denoising. The traditional soft and hard threshold
functions invented by Donoho and Johnstone [13, 14] are the
most commonly used threshold denoising approaches. How-
ever, these two functions have some defects in theory that
affect the denoising performance. The traditional hard
threshold function in the mean square error sense is better
than the soft threshold method, because the principle of the
hard threshold method involves setting a fixed threshold;
however, coefficients higher than the threshold value remain
unchanged, while coefficients lower than the threshold value
are set to zero. While this processing method can completely
retain the information larger than the threshold value, the
resulting signal will exhibit additional oscillations and jump
points and will not have the smoothness of the original sig-
nal. For its part, the soft threshold method proposes to shrink
the coefficients that exceed the threshold value and set all
coefficients less than the threshold value to zero. The effect
after processing is as follows: the coefficients near the thresh-
old value are continuous, and the signal after denoising is
smooth, but due to the compression of the signal, some errors
will occur, which will affect the degree of approximation
between the denoised signal and the original signal.

Accordingly, an improved threshold denoising function
is presented in the present work, which improves on the
existing EMD-based denoising methods. By calculating the
sample entropy of each IMF after the decomposition of

EMD, it is possible to judge the IMF order that needs to be
denoised, after which the new threshold function denoising
is carried out for these IMFs. The main contributions are as
follows:

(1) Determine the IMF order that needs to be denoised
by calculating the sample entropy value of the IMF
after EMD

(2) A new threshold denoising function is proposed,
which overcomes the large difference between the
coefficients processed by the traditional soft thresh-
old function and the coefficient before processing
and the shortcomings of the traditional hard thresh-
old function being not continuous

(3) Further smoothing the signal after denoising

The rest of this work is organized as follows. In Section 2,
the empirical mode decomposition and sample entropy are
introduced. Section 3 then introduces the steps of the algo-
rithm proposed in this work. Section 4 presents the experi-
mental results along with their qualitative and quantitative
comparative analyses. Finally, Section 5 summarizes the
methods and results of this paper.

2. Background Knowledge

2.1. Empirical Mode Decomposition. EMD is a new signal
analysis method proposed by Huang et al. [7]. EMD is an
adaptive and efficient decomposition method capable of
decomposing any complex signal into a finite number of
intrinsic mode functions and has many advantages when it
comes to the processing of nonlinear and nonstationary
signals.

EMD is actually a method of signal decomposition, which
is consistent with the core idea of Fourier transform and
wavelet transform, and involves the decomposition of the sig-
nal into the superposition of each independent component.
However, EMD does not need the basis function but instead
decomposes the signal through its own time scale, meaning
that it has self-adaptability. Since EMD does not need a basis
function, it is suitable for any type of signal and especially for
the decomposition of nonlinear and nonstationary signals.

The purpose of EMD is to decompose the signal into a
finite number of intrinsic mode functions (IMFs). The
instantaneous frequency at any point of the intrinsic mode
function is meaningful. Huang et al. considered that any sig-
nal is composed of several intrinsic mode functions. IMF is a
function that satisfies the following two conditions:

(1) The numbers of zeros and poles in the whole data
segment are equal or differ by one at most

(2) At each time point, the mean value of the envelope
determined by the local maximum value and the
envelope determined by the local minimum value is
zero

The steps in the screening process are as follows:
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(1) Determine all the maximum and minimum values of
the signal SðtÞ, then use the cubic spline method to fit
the upper envelope SuðtÞ and the lower envelope Sdð
tÞ of the signal SðtÞ

(2) Subtract the average value of these two envelope lines
from the signal m1ðtÞ = ðSuðtÞ + SdðtÞÞ/2 and get f1ð
tÞ = SðtÞ −m1ðtÞ

(3) Because f1ðtÞ is still not an IMF component
sequence, we need to repeat the above process until
the signal meets IMF standards. In this way, we
obtain the first IMF component c1ðtÞ

(4) The first IMF component c1ðtÞ contains the highest
frequency component of the signal. Separate c1ðtÞ
from SðtÞ to obtain a difference signal r1ðtÞ with the
high-frequency components removed, i.e., r1ðtÞ = Sð
tÞ − c1ðtÞ

(5) Repeat steps (1)-(4) with r1ðtÞ as the new data until
all IMFs have been extracted. The filtering process
is terminated when the nth residual signal rnðtÞ sat-
isfies a given termination condition (usually making
rnðtÞ a monotone function). Therefore, the original
data SðtÞ can be represented as the sum of the decom-
posed IMF and obtained rnðtÞ:

S tð Þ = 〠
n

i=1
ci tð Þ + rn tð Þ, ð1Þ

where n is the number of IMFs and ciðtÞ is the ith-
order IMF, while rnðtÞ is the residual signal.

2.2. Sample Entropy. Sample entropy is a method used to
measure the complexity of a time series. It is an improvement
of approximate entropy. In this study, sample entropy is used
to determine the noisy IMF order. The detailed calculation
method of sample entropy is as follows.

Given the time series X = fx1, x2, x3,⋯,xngwith lengthN
, the entropy calculation process of the sample is as follows:

(1) Construct a set of m-dimensional vectors fxmð1Þ,
xmð2Þ,⋯,xmðN −m + 1Þg, where xmðiÞ = fxðiÞ, xði +
1Þ,⋯,xði +m − 1Þg ð1 ≤ i ≤N −m + 1Þ

(2) The absolute value of the maximum value of the dif-
ference between the corresponding elements of xmðjÞ
and xmðlÞ is defined as the distance between vectors
xmðjÞ and xmðlÞ and is set as d½xmðjÞ, xmðlÞ�. In short
d½xmðjÞ, xmðlÞ� =maxk=0,⋯,m−1ðjxðj + kÞ − xðl + kÞjÞ

(3) For a given xmðjÞ, count the number of l for which the
distance between xmðjÞ and xmðlÞ is less than or equal
to r, record this as Bj, and calculate the ratio of Bj to
the total distance: Bm

j ðrÞ = ð1/ðN −mÞÞBj

(4) Calculate the average of all j as BmðrÞ = ð1/ðN −mÞÞ
∑N−m

j=1 Bm
j ðrÞ

(5) Increase the dimension m to m + 1 and repeat steps
(1) to (4):

Am+1
j rð Þ = 1

N −m + 1Aj,

Am+1 rð Þ = 1
N −m + 1 〠

N− m+1ð Þ

j=1
Am+1

j rð Þ:
ð2Þ

(6) The sample entropy of the time series is thus defined
as

SampEn N ,m, rð Þ = lim
N→∞

−ln Am+1 rð Þ
Bm rð Þ

� �� �
: ð3Þ

As the actual signal cannot approach infinity, we estimate
the sample entropy as follows:

SampEn N ,m, rð Þ = − ln Am+1 rð Þ
Bm rð Þ

� �
: ð4Þ

In this paper, we take m = 2 and r = 0:25 ∗ stdðXÞ, where
stdðXÞ is defined as the standard deviation of the initial data
X.

3. Proposed Methods

In this paper, the EMD of ECG signals was firstly carried out
in order to obtain multiple IMF components. In the next
step, the sample entropy of each IMF was used to determine
the IMF components requiring denoising; the new and
improved threshold denoising function developed in this
article was then used to process these IMFs, after which the
signal was reconstructed to obtain the denoised ECG signals.
Figure 1 presents the flow chart of the algorithm proposed in
this paper, which will be explained in more detail in the fol-
lowing sections.

3.1. EMD of the Signal. First, the ECG signal is decomposed
via EMD to obtain multiple IMF components. The decom-
posed IMFs have the following two characteristics: (1) the
mean time scale of the IMF increases with the increase of
the IMF order; and (2) the time scale contained in each
IMF varies over time (i.e., is not the same throughout). The
fundamental principle of noise reduction using EMD
involves discarding the part of the IMF that contains noise,
then using the sum of the other IMFs to form the denoised
signal. Although many methods have been proposed to iden-
tify noisy IMF [15], when these are directly applied to ECG
denoising, the performance achieved is unsatisfactory.
Therefore, there is significant room for improvement regard-
ing how to select IMFs with noise, how to denoise IMFs with
noise, and how to improve the quality of the denoised signal.

3.2. Judging IMF Components with Noise. The calculation of
sample entropy is independent of the length of the sequence;
only short data is needed to get a robust estimate. This
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approach can be used for mixed signals composed of random
components and deterministic components; moreover, the
analysis effect obtained is superior to that of simple statistical
parameters such as mean, variance, and standard deviation
[16, 17]. The more complex the sequence, the higher the
sample entropy and the lower the self-similarity of the
sequence, while, by contrast, the higher the self-similarity of
the sequences, the lower the sample entropy [18]. Based on
this theory, we judge the noisy IMF component by going
through the following steps:

(1) First, the first-order IMF was taken as the noise series
X and its sample entropy was calculated, where the
order of IMF was m = 1

(2) Let m =m + 1, after which the mth IMF and noise
sequence X are reconstructed. The reconstructed
sequence is regarded as a new noise sequence X,
and its sample entropy is calculated

(3) If the sample entropy of the noise sequence increases,
continue to repeat step (2); if the sample entropy
decreases, the judgment is stopped. We regard the
IMF before the current orderm as the noisy IMF; that
is, IMFkðk = 1,⋯,mÞ is the noise IMF

As the set noise sequence becomes more and more com-
plex, its sample entropy will gradually increase [19]. Subse-
quently, if IMFs continue to be added, more useful signals
will also be included; this will result in the noise being over-
whelmed by the useful signals, meaning that the sample
entropy of the noise sequence will be reduced.

3.3. New Threshold Function Denoising and
Signal Reconstruction

3.3.1. Threshold Denoising for Noisy IMFs. After the noisy
IMFs are determined, the next step is to perform threshold

denoising on these IMFs. In this paper, improvements are
made to the traditional soft and hard threshold methods
and a novel, superior threshold denoising function is
proposed.

Recall that the principle of the hard threshold method
involves setting a fixed threshold value, such that coefficients
larger than the threshold value remain unchanged, while
coefficients smaller than the threshold value are set to zero;
this processing method enables information larger than the
threshold value to be retained but produces additional oscil-
lations and jump points in the signal so that it lacks the
smoothness of the original. Moreover, the soft threshold
method proposes shrinking coefficients larger than the
threshold value and setting coefficients smaller than the
threshold value to zero. The coefficients around the threshold
are therefore continuous, while the resulting signal is smooth
after denoising; however, some errors will also arise due to
the compression of the signal, which will affect the degree
of approximation between the denoised signal and the origi-
nal signal. In order to preserve the original signal to the great-
est extent possible, a new threshold processing method is
proposed as follows:

D = d ∗
2 ∗ arctan dj j − Tð Þ ∗ λ½ �

π
,  dj j ≥ T ,

0,  dj j < T:

8<
: ð5Þ

Here, d is the coefficient that requires threshold process-
ing, T is the threshold,D is the coefficient after threshold pro-
cessing, λ is the adjustment factor, and λ is used to control
the size of D.

When d→ ±∞, there is D = lim
d→±∞

d ∗ ð2 ∗ arctan ∞/πÞ
= d.

When d→ ±T , there is D = lim
d→±T

d ∗ ð2 ∗ arctan 0/πÞ = d.

As can be seen from the above, when the absolute value of
the coefficient continues to increase, the coefficient after the
threshold value treatment will be closer to the coefficient
before treatment; this overcomes the problem of the large dif-
ference between the coefficients before and after traditional
soft threshold function treatment. When the absolute value
of the coefficient approaches the threshold value, the coeffi-
cient after treatment is close to 0; this indicates that the
threshold processing function is continuous at the threshold
point, which improves the discontinuity of the traditional
hard threshold function.

Figure 2 presents a comparison between the proposed
improved threshold function and the traditional soft and
hard threshold functions (for simplicity’s sake, only the first
quadrant image is drawn in this figure). Here, the threshold
value is set to 3, while λ is 50. As can be seen from the figure,
the hard threshold function is nonsequence at the threshold
point, and there is a constant difference between D after the
soft threshold function processing and the coefficient d
before the processing. The improved threshold function is
continuous at the threshold point; moreover, as the coeffi-
cient d continues to increase, the coefficient D after the

�e signal was decomposed by EMD to obtain 
IMF components of each order

By calculating the sample entropy of IMF, the 
order of noisy IMF can be determined

Improved threshold 
denoising for noisy IMF

Reconstruct the noise-free IMF and the 
denoised IMF and residuals to obtain the 

reconstructed ECG signal

+

Noise 
IMF

IMF without 
noise

Further smooth denoising

ECG signal a�er denoising

Noise ECG signal

Figure 1: Flow chart of the proposed algorithm.
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threshold continues to be close to d, which eliminates the
problem of difference in the soft threshold context.

The threshold selection in this paper uses a fixed thresh-
old. Generally speaking, the fixed threshold value is T = σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log N
p

, where σ is the standard deviation of the whole
noise and N is the signal length. Therefore, the T obtained
by this method is of a fixed size. The IMF coefficients of each
layer are different, but the threshold T of each layer is the
same, meaning that the denoising effect obtained is not good.
Therefore, in order to ensure that the threshold is adaptively
adjusted depending on the different decomposition levels,
this paper adopts the following hierarchical threshold selec-
tion method; the formula is as follows:

T = σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log N

p
ln i + 1ð Þ , ð6Þ

Here, T is the threshold value, N is the number of sam-
ples, i is the current order of IMF, and σ is the standard devi-
ation of noise. Moreover, in order to select different
thresholds according to the IMF coefficients of different
layers, the noise standard deviation is calculated according
to the IMF coefficients of each order:

σ = median IMFi, kj jð Þ
0:6745 : ð7Þ

IMFi, k represents the coefficient of the ith-order IMF,
while medianðÞ is the median calculation.

3.3.2. Signal Reconstruction. Finally, the processed IMF and
the untreated IMF as well as the residual are reconstructed
to obtain the denoised ECG.

3.3.3. Signal Smoothing Processing. After the above denoising
processing is complete, some noise often remains in the sig-
nal. Accordingly, to further eliminate noise, we smooth the
reconstructed signal [20]. First, we calculate the maximum
value (lmax) in the signal minimum value and the minimum
value (upmin) in the maximum value. The signal in this part

needs to be smoothed. The reconstructed signal starts from
the second point:

(1) i = 2
(2) Determine whether the signal point sðiÞ needs to be

smoothed. If yes, go to step (3); if not, go to step (4)

(3) Consider the former point sði − 1Þ and the latter
point sði + 1Þ of the signal point sðiÞ. If the two points
are between lmax and upmin at the same time, then
sðiÞ = ðsði − 1Þ + sðiÞ + sði + 1ÞÞ/3; if only sði − 1Þ or s
ði + 1Þ is between lmax and upmin, then sðiÞ = ðsði
− 1Þ + sðiÞÞ/2 or sðiÞ = ðsðiÞ + sði + 1ÞÞ/2. Next, go to
step (4)

(4) i + +, then go to step (2)

4. Results and Discussion

In this chapter, we conduct several experiments to prove the
denoising feasibility of the proposed method. In order to
demonstrate the denoising effect more persuasively, we con-
ducted experiments on the MIT-BIH arrhythmia database
[21]. The signal length in this database is 650,000 samples,
with a sampling rate of 360Hz and a resolution of 11 BPS.
All experiments in this paper are carried out on MATLAB
2018.

The method is evaluated both qualitatively and quantita-
tively to prove its superiority. In this experiment, after com-
prehensive empirical testing, we set the adjustment factor λ
of the improved threshold function to 500.

4.1. Qualitative Evaluation. In order to verify the proposed
algorithm’s robustness to different types of noise, we ran-
domly selected signals with different numbers from the
MIT-BIH database, then added three different forms of ana-
log noise to these signals, specifically white Gaussian noise,
EMG noise, and power line interference. The EMG signal
noise is simulated by generating random noise, while the
power line interference is simulated by adding a 50Hz sinu-
soidal signal.
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Figure 3 presents the effect diagram of the signal no. 119
record after adding power line interference and denoising.
There are ectopic complexes in the signal no. 119 record.
We can clearly see that while the denoising signal reduces
most of the noise, the ectopic complexes still exist; thus, it
can be concluded that during the denoising process, the
method still retains the morphological characteristics of the
original signal, which contain important diagnostic
information.

We next added the EMG noise to the signal no. 113
record; here, we simulate the EMG interference by adding
random noise (where μ = 0 and σ = 0:15). As shown in
Figure 4, the algorithm has good robustness for the removal
of EMG noise.

Figure 5 adds 20dB white Gaussian noise to the signal no.
122 record and uses the proposed algorithm to conduct
denoising. As can be seen from the figure, this algorithm
has a good denoising effect for white Gaussian noise, while
the denoised signal is relatively smooth and exhibits less
distortion.

4.2. Quantitative Evaluation. In this paper, the performance
of the denoising signal and the quality of the reconstructed sig-
nal are analyzed by improving SNR (SNRimp) and mean
square error (MSE). SNRimp andMSE are evaluation parame-
ters widely used in the signal denoising context [22, 23]. The
signal-to-noise ratio (SNR), which refers to the ratio of signal
to noise, can quantify the signal quality from the perspective of
energy; moreover, improving signal-to-noise ratio (SNRimp)
refers to the increase of SNR following signal denoising. Gen-
erally speaking, a high SNR indicates that the signal contains
less noise. MSE is a measure that reflects the degree of differ-
ence between the original signal and the denoised signal. A
lower MSE value indicates that the denoised signal is better
able to retain the details of the original signal.

The formula for SNRimp is defined as follows:

SNRimp = 10 log10
∑N

i=1 y ið Þ − x ið Þð Þ2
∑N

i=1 s ið Þ − x ið Þð Þ2
 !

: ð8Þ

500

A
m

pl
itu

de
 (m

v)

0
–2

0

2

1000 1500
Sample

2000 2500 3000

(a)

A
m

pl
itu

de
 (m

v)

–2

0

2

5000 1000 1500
Sample

2000 2500 3000

(b)

A
m

pl
itu

de
 (m

v)

–2

0

2

5000 1000 1500
Sample

2000 2500 3000

(c)

Figure 3: Denoising results after adding 50Hz power line interference to the signal no. 119 record in the MIT-BIH database. (a) Original
signal. (b) The signal with power line noise added. (c) The denoised signal.
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The formula for MSE is as follows:

MSE = 1
N
〠
N

i=1
x ið Þ − s ið Þð Þ2: ð9Þ

Here, xðiÞ represents the original clean signal, yðiÞ is the
signal after adding noise to the original signal, sðiÞ is the sig-
nal after denoising, and N is the signal length.

Table 1 presents the improved SNR results of ECG sig-
nals with 20 dB white Gaussian noise added. We chose the
ECG signals numbered 100, 104, 105, 106, 115, and 215

because these were used in Reference [24]. In practical appli-
cation, the algorithm presented in this paper is effective for
all ECG data signals in the database. The denoising results
are further compared with the EMD soft threshold [25],
wavelet soft threshold [26], and EMD wavelet [27]. It can
be observed from Table 1 that the algorithm presented in this
paper has a high SNRimp for different ECG signals when the
specific input SNR is 20 dB, so it can be seen that this algo-
rithm can remove more noise. Under the condition of the
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Figure 5: Denoising results of the signal no. 122 record in the MIT-BIH database after Gaussian noise is added. (a) Original signal. (b) The
signal after adding Gaussian noise. (c) Signal after denoising.

Table 1: SNRimp comparison of signal denoising results of the MIT-
BIH database with WGN (20 dB) added.

ECG
signal

EMD soft
threshold

Wavelet soft
threshold

EMD
wavelet

Proposed
method

100 1.8 5.7 5.6 6.0

104 1.4 4.5 5.5 5.4

105 0.8 4.3 4.4 6.7

106 1.2 3.5 3.4 4.2

115 0.1 4.4 4.7 5.2

215 0.5 4.6 4.7 5.1

Average 0.96 4.5 4.71 5.43

Table 2: MSE comparison of signal denoising results of the MIT-
BIH database with WGN (20 dB) added.

ECG
signal

EMD soft
threshold

Wavelet soft
threshold

EMD
wavelet

Proposed
method

100 0.009 0.0026 0.0026 0.0024

104 0.0141 0.0042 0.0036 0.0026

105 0.0228 0.0030 0.0031 0.0021

106 0.0356 0.0013 0.0012 0.0020

115 0.0094 0.0035 0.0030 0.0029

215 0.0105 0.0029 0.0029 0.0028

Average 0.0169 0.0029 0.0027 0.0024

Table 3: The mean SNRimp comparison of several denoising
methods with different input SNR.

Input
SNR

EMD soft
threshold

Wavelet soft
threshold

EMD
wavelet

Proposed
method

6 dB 3.6 5.0 6.2 8.38

10 dB 3.3 5.8 6.1 7.23

15 dB 2.3 5.1 5.15 6.25

20 dB 0.96 4.5 4.7 5.43
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Figure 6: The meanMSE comparison of several denoising methods
with different input SNR.
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high-input signal-to-noise ratio (20 dB), this demonstrates
the robustness of this method in terms of its ability to
improve signal quality by reducing noise. Furthermore,
Table 2 shows the mean square error results of ECG signals
with 20 dB white Gaussian noise added. As can be clearly
seen from the figure, the algorithm proposed in this paper
has a lower MSE after denoising; thus, following denoising
via the proposed method, the resultant signal retains more
details of (and can thus better estimate) the original signal.

Table 3 lists the improved SNR under a wide range of
input SNR. We conducted multiple experiments on the sig-
nals numbered 100, 104, 105, 106, 115, and 215 and took
the average values of all the signals as the results in order to
make the experimental data more objective. As can be intui-
tively seen from the table, compared with the EMD soft
threshold, wavelet soft threshold, and EMD wavelet, the
method proposed in this paper achieves a higher SNR
improvement in any input SNR, and for a lower input SNR,
this method can also produce a higher SNR improvement.

Figure 6 illustrates the mean square error of the denoised
ECG signal when the input signal-to-noise ratio is 6~20dB.
As shown in the figure, at each input signal-to-noise ratio
level, the mean square error of this method is smaller than
other methods, revealing that the denoising algorithm can
estimate the original ECG signal with minimal error. There-

fore, the proposed method is better than other schemes at
reducing both ECG signal noise and signal distortion.

In addition, we compare the proposed method with NLM
[28] and CEEMDAN [29]. To fully prove the usability of the
algorithm, we carried out experiments on all signals in MIT-
BIH. The SNR improvement values obtained by different
algorithms when the input SNR is 10 dB are listed in
Table 4. It can be seen from the table that the improved
SNR of the algorithm proposed in this paper is the highest
for all signals; since SNRimp refers to the increase of SNR fol-
lowing signal denoising, a high SNR indicates that the signal
contains less noise indicating that this algorithm can remove
more noise and, accordingly, that this method achieves the
best denoising effect.

In order to compare the denoising effect of several algo-
rithms more intuitively, we selected the signals with data
numbers of 100, 101, 103, 105, 106, 115, and 220 from the
MIT-BIH database, added 10 dB white Gaussian noise, and
denoised them. Figures 7 and 8 present a comparison of the
SNRimp and MSE values of different methods following
denoising (these signals were chosen for our experiments
because they were also selected in Reference [28]). In a prac-
tical application scenario, the algorithm presented in this
paper can be seen to be effective for all ECG data signals in
the database. It can be further observed from Figures 7 and
8 that the method proposed in this paper not only improves

Table 4: SNRimp comparison of different methods when the input SNR is 10 dB.

Dataset Proposed NLM CEEMDAN Dataset Proposed NLM CEEMDAN

100 7.75 6.84 6.04 201 8.65 6.61 6.36

101 7.84 6.56 6.02 202 9.32 7.70 7.59

102 7.93 5.94 5.31 203 5.62 4.53 3.44

103 7.58 7.59 5.67 205 7.86 6.23 5.08

104 8.16 6.55 5.77 207 9.73 8.22 6.72

105 8.78 7.07 3.82 208 8.41 6.32 5.05

106 7.04 5.86 4.99 209 7.01 6.08 4.45

107 7.98 7.45 6.92 210 8.56 7.17 4.96

108 9.46 6.29 4.35 212 7.63 5.93 4.61

109 9.50 7.56 7.55 213 7.71 7.13 4.87

111 9.15 6.20 5.47 214 8.42 7.46 4.70

112 8.91 6.68 5.68 215 7.52 6.11 5.44

113 6.83 7.35 5.22 217 7.72 6.11 5.64

114 9.97 5.37 4.88 219 7.61 7.72 4.37

115 7.63 7.50 6.67 220 6.78 6.65 6.97

116 6.57 6.82 3.65 221 8.18 6.67 5.16

117 8.77 6.50 7.97 222 8.34 5.90 5.20

118 7.41 6.07 5.77 223 8.33 7.54 7.16

119 7.59 7.50 6.27 228 8.75 6.75 6.03

121 9.11 7.59 4.63 230 7.21 6.37 5.84

122 8.11 7.04 7.10 231 7.62 7.22 6.15

123 7.68 7.03 6.09 232 8.70 3.74 3.66

124 8.52 7.37 6.85 233 8.40 6.50 6.30

200 8.26 6.63 5.84 234 7.53 7.01 6.289
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the SNR but also has the lowest MSE after denoising, since a
lower MSE value indicates that the denoised signal is better
able to retain the details of the original signal, which proves
the advantages of this method in terms of reducing ECG sig-
nal noise and signal distortion.

5. Conclusion

This paper proposes an effective ECG denoising method
based on EMD, sample entropy, and improved threshold
function. The main purpose of this work is to combine
EMD and sample entropy in order to determine the order
of IMFs that need to be denoised, as well as to denoise these
IMFs with the threshold function proposed in this paper.
While traditional EMD denoising often discards the first
IMF directly in order to remove high-frequency noise, this
approach not only results in some important information
being discarded but also does not completely denoise the sig-
nal. In this paper, different types of noise are added to prove
the robustness of the proposed denoising method. At the
same time, the effectiveness of the proposed method is eval-
uated by means of improving SNR and MSE. The technique

is compared with ECG denoising methods based on the
EMD soft threshold [25], wavelet soft threshold [26], EMD
wavelet [27], NLM [28], and CEEMDAN [29]. From the sim-
ulation study and detailed analysis, it can be seen that the
proposed ECG denoising method is better than the existing
technology. In-depth qualitative and quantitative analyses
reveal that the proposed method can better reduce the noise
of ECG signals while also retaining more details of the origi-
nal signal, meaning that it is a good ECG signal denoising
method. In the future work, we can further feature extraction
of ECG signals and research on the computer-based auto-
matic diagnosis system. Moreover, many video/image pro-
cessing methods [30–34] will be adopted to denoise ECG
signals. We will also try to apply deep learning [35–40] and
network optimization [41–43] methods to process ECG sig-
nals. Furthermore, we will use the big data processing
approaches [44–48] to process a large number of ECG
signals.
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