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The application of mechanical equipment in manufacturing is becomingmore andmore complicated with technology development
and adoption. In order to keep the high reliability and stability of the production line, reducing the downtime to repair and the
frequency of routine maintenance is necessary. Since machine and components’ degradations are inevitable, accurately
estimating the remaining useful life of them is crucial. We propose an integrated deep learning approach with convolutional
neural networks and long short-term memory networks to learn the latent features and estimate remaining useful life value with
deep survival model based on the discrete Weibull distribution. We conduct the turbofan engine degradation simulation dataset
from Commercial Modular Aero-Propulsion System Simulation dataset provided by NASA to validate our approach. The
improved results have proven that our proposed model can capture the degradation trend of a fault and has superior
performance under complex conditions compared with existing state-of-the-art methods. Our study provides an efficient feature
extraction scheme and offers a promising prediction approach to make better maintenance strategies.

1. Introduction

With the advance of Internet of Things (IoT) technology and
its applications to the industrial environments, data analytics
methods can be applied to the mechanical equipment health
and performance. In fact, any machine breakdown may lead
to a huge loss on production yield. However, sometimes even
a professional and experienced engineer cannot find where
the fault is and also cannot figure out the main cause of the
malfunction. In this case, the company has no choice but to
suspend the production line for the thorough examination,
which is certainly one of the disastrous situations for the
company’s business. In order to keep the high reliability
and stability of the production line, reducing the downtime
for fixing malfunction and the frequency of routine mainte-
nance is necessary. The earliest maintenance technique takes
place only when breakdown happens, which is called break-
down maintenance or run-to-failure maintenance. Later,
companies tend to have time-based preventive maintenance.
It means that engineers perform a preventive maintenance

periodically, in spite of the status of the machine even though
it is in healthy status. Preventive maintenance will cause a lot
of cost and become a major expense of many companies. In
order to save the cost, another maintenance strategy such
as condition-based maintenance (CBM) is figured out to
solve the situation. CBM proposes to reduce the number of
unnecessary regular preventive maintenance and improves
the reliability of machine by implementing maintenance only
when there is an evidence that an exception occurs [1, 2].
Because it is effective in saving the cost to the companies,
CBM has been more and more popular. The prognostics
and health management (PHM) is one of the major tasks in
CBM. The core of PHM is the estimation of the remaining
useful life (RUL) of machines based on the collected informa-
tion of the historical and ongoing degradation trends [2–4].
The flowchart of PHM contains five major processes as
shown in Figure 1, including data acquisition, signal process-
ing, diagnostic, prognostic, and maintenance decision. Data
acquisition is the first process of PHM which is composed
of sensors, data transmission, and data storage devices.
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Different kinds of sensors are used to collect different types of
data, which are related to the health condition and able to
reflect the degradation process of the monitored machine.
Signal processing’s task is to extract useful information from
the data acquired from the previous step. Diagnostic is a pro-
cess to divide the machine’s whole lifetime into different
health status. Prognostic is aimed at estimating the time
length from current time to when it requires repair or
replacement, which is also the definition of RUL. Mainte-
nance decision is the final process in PHM and is used for
analyzing the outputs from diagnostics and prognostics. If
we can predict RUL, we are able to propose a strategy about
scheduling maintenance, avoiding unplanned downtime,
and optimizing operating efficiency and frequency to save
the most cost. However, knowing that the machine and com-
ponents’ degradation are inevitable, the challenge of proper
scheduling grows with the complexity of machines. One of
the key problems in predictive maintenance is the prediction
of the equipment failures should be early enough so that the
proper maintenance could be scheduled before it happens.
Therefore, predictive maintenance is based on the continual
monitoring of the equipment in order to determine the right
maintenance actions at the right times. The organization of
this paper is as follows. Related works on RUL prediction is
introduced in Section 2. Our proposed deep learning
approach with a survival model is described in Section 3. In
Section 4, the experimental results and evaluations are com-
pared with existing state-of-the-art methods and show the
effectiveness of the proposed approach. We conclude the
contributions and limitations of our approach in Section 5.

2. Related Works

Generally, the methods of the RUL estimation problems can
be categorized into model-based, data-driven, and hybrid
approaches. Model-based prediction applies a physical
model of the system for degradation [5]. This approach can
be further divided into microlevel models [6] and macrolevel

models [7]. Microlevel models need to consider the assump-
tions and simplifications in uncertain environments. A
macrolevel model is constructed under different operational
conditions of the physical system which includes the rela-
tionships among input variables, state variables, and system
outputs. However, model-based methods require a large
amount of prior knowledge. The physical models are difficult
to build under many components which limit the effective-
ness of the methods. The data-driven approaches detect the
state of the system via large number of sensor monitoring,
which are more suitable for the complex system and do not
require a comprehensive understanding of the physical
understanding [8]. Currently, high-dimensional data col-
lected in real-life PHM applications makes it difficult to
directly discover the trends for the prognostic algorithm.
There are various operational conditions and health states
in the same type of the system which may cause different deg-
radation processes as well as unit-to-unit variability (UtUV)
[9]. This situation brings difficulty to RUL estimation. Javed
et al. contributed a data-driven prognostics approach based
on extreme learning machine (ELM), which is able to model
degrading states without assuming a homogeneous pattern
[10]. Liu and Chen combined indirect health indicator (HI)
and the smooth monotonic signals from sensory data and
multiple Gaussian process regression (GPR) models to
achieve the RUL prediction [11]. Previous works constructed
a model based on Box–Cox transformation (BCT) and
Monte Carlo (MC) simulation to predict the battery RUL
[12]. Khelif et al. developed a procedure to estimate the
RUL directly from sensor values using the support vector
regression method which models the direct relationship
among sensor values or health indicators [13]. However,
the dramatic changes and variations of the indicators make
a well-trained prediction model that may not be suitable for
the practical applications. The traditional feature extraction
method is hard to get high-level representations from mea-
surements, and the poor prognostic performance may be
achieved. Therefore, capturing hidden patterns from high-
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Figure 1: Flowchart of PHM processes.
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dimensional data efficiently is a necessary procedure in the
feature extraction procedure [14]. Hybrid approaches are to
complement the superiority of model-based and data-
driven methods [15]. However, it still remains a challenging
work to utilize the advantages and to avoid the disadvantages
of both approaches.

Recently, data-driven prediction methods focused on the
flexible deep learning models to capture useful information
from high-dimensional data efficiently. Zhang et al.
employed a multiobjective evolutionary algorithmwith tradi-
tional deep belief networks (DBN) for RUL estimation in
prognostics [16]. Sequence learning methods such as the hid-
den Markov model (HMM) were applied to capture time
series information from the sensory data [17–19]. In the
model, each state can only depend on the immediately previ-
ous state and the hidden states must be drawn from the dis-
crete space. However, modeling long time dependencies may
lead to high computational complexity while the set of the
hidden stages grows larger. Recurrent neural network
(RNN) can model time sequence data as well, and some work
applied it to estimate RUL [20]. But RNN has its limitation to
capture the long-term time dependencies, the gradients
propagated over many hidden layers tend to either vanish
or explode [21]. Long short-term memory (LSTM) network
is a significant branch of RNN, can learn long-term depen-
dencies, and avoid gradient disappearance and explosion in
long sequence training. Previous studies have shown that
LSTM networks can expose hidden patterns from the
sequential sensor data with multiple operating conditions,
fault, and degradation models [22, 23]. Some new approaches
based on LSTM, such as bidirectional long short-term mem-
ory (BLSTM) network [24] and vanilla LSTM [25], were pro-
posed. Wang et al. proposed a transfer learning algorithm
based on BLSTM networks, which can be first trained on
the datasets and fine-tuned the model with a different but
related dataset [26]. Recent works also enhanced LSTM net-
works with attention mechanism and generative adversarial
network (GAN) to improve the interpretability and accuracy
of the deep networks [27–29]. The convolutional neural net-
work (CNN) architecture has been proven to be effective for
extracting abstract information on multichannel sequential
sensor data [30–32]. Although LSTM networks enable us to
build and capture long-term time dependencies, its feature
extraction capabilities are marginally lower than CNN [33].
CNN can extract the spatial feature while LSTM can learn
temporal features. Therefore, it is better to learn temporal
features from the slow inherently long-term degradation pro-
cess by combing those two structures. Recent paper proposed
a deep neural network structure using both LSTM and CNN
which can be combined in a serial or parallel manner to
improve the accuracy of the RUL prediction of the equip-
ment [34, 35].

Most of the prior works have focused on the RUL predic-
tion problem which present one numeric RUL value only.
However, it is nearly impossible to find an approach that
can predict RUL exactly the same as the real one. If the vari-
ance is large, it is hard to have confidence on the predicted
result. The RUL prediction problem is also similar to the sur-
vival analysis which is commonly used to model time-to-

death events in the healthcare domain [34]. For example,
the model predicts the failure will happen in 8 days with
80% probability is much better than predict 10 days until
the failure. Martinsson proposed the Weibull time-to-event
recurrent neural network, which is a simple framework for
time series prediction of the time to the next event applicable
[36]. Aggarwal et al. used the Weibull distribution assump-
tion on the time-to-failure event with a linear hazard rate
corresponding to the linear degradation model that most of
the literature makes [34].

Due to the complicated environments in real-life PHM
applications, monitoring sequential sensor data is subjected
to the operating conditions and fault modes for the prognos-
tic algorithm. The existing data-driven methods often rely on
the sensor measurements as a whole data for training that
may cause less effect and bias. To cope with this issue, there
is a great potential to improve the RUL estimation by extract-
ing latent patterns from partial information that is a neces-
sary procedure to capture useful information from high-
dimensional sequential sensor data. It is also valuable to esti-
mate how much time is left of the equipment and the proba-
bility of a failure together. Therefore, we integrate CNN and
LSTM with a deep survival model to enhance the ability of
feature extraction and capture the degradation trend of a
fault with a reasonable prediction horizon.

3. Materials and Methods

The overall workflow of our approach is shown in Figure 2.
Different sensors may have different physical meanings and
numerical ranges. In order to eliminate the influence of
ranges of value, we first apply a min-max normalization
method as feature scaling to adjust the range of sensor values
between 0 and 1. Second, the training data and test data are
prepared with a sliding time window (TW) to generate the
sequential samples. Third, we use 1D temporal convolutions
to learn hidden patterns in those sequential samples without
any interference from the other sensor values. Forth, the
extracted temporal patterns from the 1D convolution would
be fed into LSTM networks to learn the long short-term time
dependencies. Fifth, we use both regression and survival
analyses with the discrete Weibull distribution to estimate
the RUL and failure probability in the training phase. Finally,
we can predict the RUL and the probability of a failure with
test data in the trained model in the testing phase.

3.1. Data Preparation with Time Window. The input sequen-
tial sensor data from an engine are assumed to be a matrix
XðnÞ = ½x1, x2,⋯, xLs � with k sensors (measurements), where
n denotes engine ID and Ls denotes the last observed cycle or
the cycle that fault occurs in Figure 3. A sliding time window
strategy is adopted to generate the temporal sequence data
except sampled at a single time step which may conduct bet-
ter feature extraction efficiently. Taking XðnÞ as an input and
extracting sequential XiðnÞ as Equation (1) by sliding the
fixed time window (TW) with lengthm, this can be presented
in Figure 3:
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Figure 2: The workflow of our approach.
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Xi nð Þ = xt:t+m−1 = xt , xt+1, xt+2,⋯, xt+m−1� �
, ð1Þ

where xt = ½xt1, xt2,⋯, xtk� represents a k-dimensional array of
measurements at time (cycle) t through a TW size of m.
Therefore, the size of each array extracted each time by TW
is m × k (TW × numbers of sensors), and the number of
arrays is Ls-m (lifetime cycles-TW).

3.2. Temporal Convolutional Layer. To deal with sequential
information more effectively, a CNN layer can be used to
extract abstract and high-level features before LSTM layers.
The temporal convolutional layer consists of three layers,
starting with 1D-convolution, 1D-max-pooling, and
followed by activation function. 1D convolution represents
a filtering window length and moves towards the depth
across the data. We consider that the input data matrix size
is m × k array in XiðnÞ, and there are d kinds of the feature
detectors with w kernel size. So, each feature detector has to
move ðm −wÞ + 1 times and generates the set of feature
detector regionsXdw. Then, we add 1D-convolution weight
kernel w* and bias b so the convolution operation is shown as

Ci = f Xdw⨂ w* + b
� �

: ð2Þ

Where⨂ denotes the Hadamard product (element-wise
product) and f represents the nonlinear activation function,
ReLu. Accordingly, the output feature maps of a 1D-
convolution layer will be the size of ððm −wÞ + 1Þ ∗ d. Since
we have multiple temporal convolution layers, we let Cðl−1Þ

and CðlÞ be the input and output of the lth layer, respectively.

We denote the jth feature map of layer l asCðlÞ
j which can be

computed by

C lð Þ
j = f 〠

i

C l−1ð Þ
i ⨂w*

lð Þ
i,j + b lð Þ

j

 !
: ð3Þ

3.3. Long Short-TermMemory. LSTM cell state relies on three
control gates: input gate, forget gate, and output gate. Input
gate controls the extent to which incoming data flows into
the cell. Forget gate judges which data from the foregoing cell
state to be taken in consideration or be ignored. Output gate
decides whether the value in the cell is used to compute the
output. In the LTSM layer, it performs multiple internal
equations as described below as

f l = σ Wf ∙ hl−1, C
lð Þ
j

h i
+ bf

� �
, ð4Þ

il = σ Wi∙ hl−1, C
lð Þ
j

h i
+ bi

� �
, ð5Þ

fZl = tanh Wc∙ hl−1, C
lð Þ
j

h i
+ bc

� �
, ð6Þ

Zl = f l ⊗ Zl−1 + il ⊗fZl , ð7Þ

ol = σ Wo∙ hl−1, C
lð Þ
j

h i
+ bo

� �
, ð8Þ

hl = ol ⊗ tanh Zlð Þ, ð9Þ

where f l denotes the forget gate, and its main function is
to neglect the data from the previous LSTM cell state. σð Þ is
an activation function sigmoid.Wf is the weight matrix of the
forgot gate, hl−1 denotes the short-term state of previous layer

in the LSTM cell, the feature map of layer CðlÞ
j is the input of

LSTM cell, and bf is the bias vector of forget gate. The input
gate is composed of two parts, il is a vector that determines
which data in the short-term state hl−1 is used to update the

new cell state. After being selected by il,fZl will be added to
the long-term cell state and tan h is an activation function.
Wi and Wc denote the weight matrixes and both bi and bc
denote the bias vectors of the input gate. Then, the forget gate
and the input gate will be used to update the long-term state
of the previous LSTM cell. The output gate ol is also com-
posed of variables where Wo denotes the weight matrixes
and bo denote the bias vectors.

Finally, the LSTM layer connects to the fully connected
layer for estimating the output target RUL value. Dropout
technique is a regularization technique which randomly
drops the hidden nodes with a given probability during train-
ing. It forms neural networks with different architectures in
parallel and then takes an ensemble of them to prevent coad-
aptation. In order to alleviate the overfitting problems, the
dropout is used between the final LSTM layer and the first
fully connected layer [37].

3.4. Loss Function. Survival analysis is also called time-to-
event analysis that is a subfield of statistics for analyzing the
expected time duration until one or more events happen
[38]. This approach calculates the probability of the subject
to ‘survive’ the number of days or cycles [39]. One of the
most commonly used distributions in the survival analysis
is the discrete Weibull distribution which can be presented
as Equation (10). The time-to-failure is modeled with a ran-
dom variable T giving the probability of failure time between
t and t + 1. The probability mass function (PMF) of a discrete
random variable is characterized by two parameters: alpha (α)
is a scale parameter that denotes that the expected value and
mode of the distribution are positioned in time, while the
parameter beta (β) is an indicator of the shape as well as the
variance of our prediction.

Pr t ≤ T ≤ t + 1ð Þ = e− t/αð Þβ − e− t+1ð Þ/αð Þβ : ð10Þ

We have to utilize a special log-likelihood as loss-function,
called the discrete Weibull distribution log-likelihood [34].
The discrete Weibull distribution log-likelihood punishes the
model for predicting high probabilities of failures occurring
during the lifetime without failures for all samples. In addition,
the discrete Weibull distribution log-likelihood will reward
distributions that give high probabilities of the event happen-
ing at that point in time for samples where the failure time is
known. The discrete Weibull distribution log-likelihood can
be defined as follows:
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d yð Þ =Λ y + 1ð Þ −Λ yð Þ = y + 1
α

� �β

−
y
α

� �β
, ð11Þ

log Ldð Þ = �u∙log ed yð Þ − 1
� �

−Λ y + 1ð Þ = y + 1
α

� �β

−
y
α

� �β
= α−β y + 1ð Þβ − yβ

� �
,

ð12Þ

where y denotes the time-to-event value (cycle) and u denotes
either a 0 or 1 machinery health event indicator. Since it is an
average value, we express it by �u. In each training step, we
apply two types of loss functions. We apply linear activation
function for the output value in regression analysis approach
and use mean squared errors (MSE), whichmeasures the aver-
age squared difference between the estimated RUL values and
the true RUL value as loss function. On the other hand, the
activation layer of the discrete Weibull distribution is a cos-
tumed function that is set to use an exponential function for
alpha and softplus function for beta [34]. We use the discrete
Weibull distribution log-likelihood as loss function in failure
probability in the survival analysis approach and estimate
Weibull parameters be the outputs of the layer giving us a dis-
tribution of the training data.

3.5. Performance Evaluation. For the sake of comparability
with other existing state-of-the-art methods, the same met-
rics are used to evaluate the performance. While using the
model to predict the RUL with regression and survival anal-
ysis approaches, there is an error between the predicted RUL
and the actual RUL called root mean square error (RMSE) as
Equation (13). The late prediction might delay the schedule
of the proper maintenance operations, and too early predic-
tion might not be harmful but still wastes more maintenance
resources. Since the key aspect is to avoid the failure, early
prediction is generally more desirable than late prediction.
The scoring function as Equation (14) penalizes late predic-
tions more than early predictions to evaluate the model. In
addition, we also calculate MAE as Equation (15) and R2 (R
squared) coefficient of determination which is a statistical
measure of how well the predictions approximate the real
data points for more comparison between the two analysis
approaches. The higher R2 value means more information
about the fit of a model can be explained.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∙〠

N

i=1
RULTrue − RULPredictedð Þ2

vuut , ð13Þ

score = 〠
N

j=1

e− RULTrue−RULPredictedð Þ/13 − 1, if RULTrue − RULPredictedð Þ < 0,

e− RULTrue−RULPredictedð Þ/10 − 1, if RULTrue − RULPredictedð Þ ≥ 0,

(

ð14Þ

MAE =
1
N
∙〠

N

i=1
RULTrue − RULPredictedj j: ð15Þ

4. Results and Discussion

4.1. Datasets. We adopt the dataset from the Commercial
Modular Aero-Propulsion System Simulation (CMAPSS)
dataset provided by NASA [40]. The CMAPSS dataset is well
known in the PHM community and has been widely used for
evaluating predictive performance. The dataset consists of
simulated degradation data of turbofan engines generated
with the thermodynamical simulation model. This dataset
includes four subdatasets with different operating conditions
and fault modes. A description of four subdatasets is shown
in Table 1. A fleet of engines in the FD001 dataset suffered
the high-pressure compressor failure under a single operat-
ing condition. For FD002, the sample suffered the high-
pressure compressor failure under six operating conditions.
In the FD003 situation, the sample suffered high-pressure
compressor and fan degradations under a single operating
condition, while in FD004, the sample suffered under six
operating conditions. There are 26 columns in each subdata-
set, including engine unit number, number of cycle, three
operational settings, and 21 sensor measurements. Each sub-
dataset is divided into a training set, a testing set, and actual
RUL corresponding to the test data. The different subsets
have different numbers of engines with various operational
cycles. As the operating time increases, the engines start to
degrade until a failure occurs in the training datasets, while
the degradation in the test datasets ends prior to the occur-
rence of a failure. The purpose of the proposed algorithm is
to predict the RULs of the test datasets, and the true RUL
targets of the test datasets are also provided to calculate the
prognostic performance.

4.2. Performance of Regression and Survival Analyses. We
randomly select 80 percent of the samples from the training
set to train the models and the remaining 20 percent of the
instances is used as the validation set to select the parameters
in the training phase. We predict the RUL from the test data
using a trained model and denote the performance compar-
ing with state-of-the-art methods in Table 2. In Table 2, the
italicized numbers denote the top 3 ranked results among
those methods. The first three are regression-related
algorithms including the multilayer perception (MLP) [41],
support vector regression (SVR) [42], and relevance vector
regression (RVR) [43], and the others are deep neural net-
work related. The deep learning methods show better perfor-
mance than the traditional machine learning methods. Our
proposed approach achieves the lowest RMSE values and
scoring function based either on regression analysis or on
the discreteWeibull distribution for the FD002 and has supe-
rior performance for scoring function in FD004. We perform
significantly reduce 5.19 and 0.15 in terms of RMSE and
show improvement 1:75∗103 and 1:11∗103 in terms of
scoring function, for FD002 and FD004, respectively. The
samples working in multimodal switching in FD002 and
FD004 datasets are more challenging for obtaining accurate
prediction results. Our proposed network structure is able
to find hidden patterns, and the prediction capability of the
proposed method is better than the existing RUL prediction
methods under the complex conditions. According to the
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defining of RMSE in Equation (13), the extrapolated RUL
value as shown in FD001 and FD003 leads to little larger
RMSE in the results. Although those subsets did not reach
the best performance in RMSE, the score values are close to
the best one. The experimental results also show that the
integrated deep learning-related methods such as DAG and
our method get better performance than previous single
CNN or LSTM methods. Based on the comparison of the
scoring function evaluation criteria, it can be seen that our
proposed method appears in the top 3 ranked results among
all four benchmark datasets, but the DAG method get three
out of four in the experimental results. It shows that our pro-
posed method can avoid failure with the early prediction.

One engine unit may have its own historical sensor data,
and we apply the fixed sliding time window to scan the his-
torical data to generate the several sequential sensor data.
We estimate the RUL and its probability of failure corre-
sponding to each sequential data and then construct the
Kaplan-Meier survival curve. Figure 4 shows the predicted
and the actual degradation process of the four randomly
selected engines in each subdataset from the test data with
Kaplan-Meier curve. We can find that the engines have
20% probability to keep running after 100 cycles, namely,
the engines have 80% probability that it will have failure after
operating 100 cycles in Figure 4(a). The survival probability
of these engines decreases by 10%~20% after every 20 cycles.

From FD002 in Figure 4(b) and FD004 in Figure 4(d), the
degradation trends have a fast decrease at the beginning
and become steady when left 10% probability of availability,
which is very close to failure. As for FD003 in Figure 4(c),
there is a plateau in the right extrapolated tail of the
Kaplan-Meier curve and it may cause the error between the
predicted and true values to become bigger with cycles. This
is the reason that RMSE of FD003 cannot surpass other
approaches.

We describe the difference of our7 approach based on the
discrete Weibull distribution and regression analysis with the
linear model to predict the failure cycle. In Figures 5–8, we
randomly selected four engines in each subdataset as
examples and showed Kaplan-Meier curve with confidence
intervals and probabilities based on the discrete Weibull dis-
tribution and RUL value based on linear regression analysis
under time cycles. The results in Figures 5–8(b) have more
variance and more error at the beginning of the estimation
in the regression analysis approach, especially when the con-
ditions become more complicated. It is easy to find that the
prediction errors are greater in the early stage of degradation
than in the late stage of degradation in the regression analysis
approach. Due to the late stage with more sequential infor-
mation comparing to the early stage, the predicted results
can get better performance. The traditional RUL methods
based on the regression analysis might lead to inconsistent

Table 1: The description of the CMAPSS dataset.

Subdataset FD001 (training/test) FD002 (training/test) FD003 (training/test) FD004 (training/test)

Engines 100/100 260/259 100/100 249/248

Operating condition 1 6 1 6

Fault mode 1 1 2 2

Table 2: The performance comparing our approach and state-of-the-art methods.

Methods
FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

MLP [41] 37.56 1:80 × 104 80.03 7:80 × 106 37.39 1:74 × 104 77.37 5:62 × 106

SVR [42] 20.96 1:38 × 103 42.00 5:90 × 105 21.05 1:60 × 103 45.35 3:71 × 105

RVR [43] 23.80 1:50 × 103 31.30 1:74 × 104 22.37 1:43 × 103 34.34 2:65 × 104

CNN [31] 18.45 1:29 × 103 30.29 1:36 × 104 19.82 1:60 × 103 29.16 7:89 × 103

LSTM [22] 16.14 3:38 × 102 24.49 4:45 × 103 16.18 8:52 × 102 28.17 5:55 × 103

ELM [10] 17.27 5:23 × 102 37.28 4:98 × 105 18.47 5:74 × 102 30.96 1:21 × 105

DBN [15] 15.21 4:18 × 102 27.12 9:03 × 103 14.71 4:42 × 102 29.88 7:95 × 103

MODBNE [16] 15.04 3:34 × 102 25.05 5:59 × 103 12.51 4:22 × 102 28.66 6:56 × 103

RNN [19] 13.44 3:39 × 102 24.03 1:43 × 104 13.36 3:47 × 102 24.02 1:43 × 104

DCNN [32] 12.61 2:74 × 102 22.36 1:04 × 104 12.64 2:84 × 102 23.31 1:25 × 104

BiLSTM [26] 13.65 2:95 × 102 23.18 4:13 × 103 13.74 3:17 × 102 24.86 5:43 × 103

Aug+CNN+LSTM [30] 23.57 1:22 × 103 20.45 3:10 × 103 21.17 1:30 × 103 21.03 4:00 × 103

DAG [35] 11.96 2:29 × 102 20.34 2:73 × 103 12.46 5:35 × 102 22.43 3:37 × 103

CNN+LSTM w/regression 14.04 3:10 × 102 15.15 1:08 × 103 14.62 3:25 × 102 21.92 2:26 × 103

CNN+LSTM w/Weibull 13.98 2:31 × 102 15.77 9:79 × 102 15.55 6:72 × 102 23.05 3:67 × 104
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Figure 4: Results of the discrete Weibull distribution with Kaplan-Meier curve for all engines in each subdataset.
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Figure 5: Result of engine ID 58 in FD001 (a) based on the Weibull distribution and (b) based on regression.
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predictions that are posing a dilemma for the maintenance
decision. Instead, the survival analysis based on the discrete
Weibull distribution has a smoother trend with Kaplan-
Meier curve in Figures 5–8(a). On the other hand, previous
works based on the regression analysis only evaluate the per-
formance at the last time step of each engine for RUL estima-
tion and do not achieve confidence intervals for the
corresponding RUL prediction. Our model based on the dis-
crete Weibull distribution represents the probabilities of the
failure and the trustworthy confidence intervals for the inher-
ent uncertainties with the degradation process.

4.3. Performance with Different Time Windows. We apply
more reference to compare the performance with different
TW lengths based on two analysis approaches for each sub-
dataset in Tables 3–6. The italicized numbers denote the best
results among different TW under two analyses. As for MAE
and RMSE, regression analysis approach usually has better
performance than the Weibull distribution. As for R2, it

shows that the discrete Weibull distribution is much more
explainable and also denotes that the degradation trends of
the turbofan engines are more similar to the Weibull
distribution.

5. Conclusions

With the growth of smart manufacturing in the industry,
more and more data will be collected and deep learning
models will be extremely applied to estimate the health state-
ment of a machine for the maintenance strategy. The predic-
tive maintenance can bring advantages for proposing
strategies to optimize the maintenance schedule with a goal
of reducing unplanned downtime, as well as needless preven-
tive maintenance to save the most cost for the company. We
propose an integrated deep learning approach with convolu-
tional neural networks and long short-term memory net-
works to learn the latent features and estimate remaining
useful life value with deep survival model based on the
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Figure 6: Result of engine ID 64 in FD002 (a) based on the Weibull distribution and (b) based on regression.
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Figure 7: Result of engine ID 14 in FD003 (a) based on the Weibull distribution and (b) based on regression.
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Figure 8: Result of engine ID 202 in FD004 (a) based on the Weibull distribution and (b) based on regression.

Table 3: Results of FD001 with two analyses and different TW.

Loss function (regression) Loss function (Weibull)
TW MAE RMSE R2 Score MAE RMSE R2 Score

20 17.26 23.13 0.65 3,737 20.24 28.64 0.84 12,492

30 15.06 19.06 0.73 1,065 15.08 21.50 0.91 2,324

40 12.81 17.89 0.79 994 14.14 19.91 0.91 2,164

50 11.29 14.90 0.86 431 13.14 19.23 0.91 5,861

60 10.20 14.04 0.88 310 13.69 20.36 0.90 31,427

70 10.80 14.33 0.87 254 13.98 20.01 0.90 5,888

80 10.32 14.14 0.86 198 11.63 15.45 0.93 325

90 10.36 14.15 0.87 200 10.50 13.98 0.94 231

100 9.99 13.98 0.79 190 11.17 15.02 0.91 254

110 9.91 13.81 0.77 183 11.03 15.43 0.90 389

120 9.44 13.85 0.86 161 9.79 13.73 0.93 206

Table 4: Results of FD002 with two analyses and different TW.

Loss function (regression) Loss function (Weibull)
TW MAE RMSE R2 Score MAE RMSE R2 Score

20 23.85 32.58 0.50 44,982 22.88 33.89 0.81 46,493

30 24.09 33.36 0.59 41,297 21.94 30.90 0.84 29,696

40 22.22 31.75 0.63 36,752 20.86 28.92 0.86 21,125

50 18.94 27.62 0.70 12,390 18.24 25.60 0.88 7,232

60 16.04 22.42 0.81 4,696 17.31 24.60 0.89 5,494

70 13.98 20.34 0.84 3,232 16.11 21.87 0.90 3,497

80 13.43 20.03 0.80 5,478 15.19 20.12 0.90 2,293

90 10.71 15.15 0.87 1,085 13.57 17.58 0.91 1,349

100 10.37 15.32 0.84 1,476 11.70 15.77 0.91 979

110 9.96 15.13 0.84 1,414 13.53 17.97 0.88 1,701

120 9.64 14.27 0.84 790 12.69 16.39 0.88 1,810

Table 5: Results of FD003 with two analyses and different TW.

Loss function (regression) Loss function (Weibull)
TW MAE RMSE R2 Score MAE RMSE R2 Score

20 14.41 20.20 0.79 2,437 33.45 49.28 0.52 4,598,400

30 11.79 17.12 0.85 1,700 24.94 37.87 0.65 139,633

40 11.01 16.02 0.83 1091 15.86 24.33 0.88 9,330

50 11.24 15.41 — 679 14.45 21.82 0.90 8,597

60 10.80 14.62 0.86 325 14.69 23.57 0.87 32,361

70 12.08 15.94 0.80 401 14.11 22.73 0.88 22,581

80 11.87 16.54 0.82 379 13.69 23.01 0.87 30,087

90 12.25 17.25 0.79 353 14.00 23.42 0.86 39,985

100 11.88 17.53 0.78 366 14.60 25.52 0.83 30,360

110 12.58 19.41 0.76 463 12.21 20.98 0.89 11,536

120 13.45 21.20 — 625 9.81 15.55 0.93 672

Table 6: Results of FD004 with two analyses and different TW.

Loss function (regression) Loss function (Weibull)
TW MAE RMSE R2 Score MAE RMSE R2 Score

20 27.81 36.39 0.54 58,522 28.69 38.56 0.78 345,533

30 27.44 35.89 0.52 65,319 27.36 36.75 0.76 580,301

40 22.77 30.32 0.64 17,827 23.16 31.59 0.84 41,486

50 21.16 29.17 0.68 13,305 20.87 28.67 0.84 10,035

60 19.41 26.37 0.73 11,064 21.59 29.99 0.84 51,971

70 19.83 27.56 0.73 6,999 18.11 26.05 0.88 11,148

80 18.59 24.55 0.78 4,652 18.85 27.68 0.86 120,754

90 18.41 24.93 0.77 4,832 16.90 24.36 0.89 75,231

100 17.78 23.69 0.77 3,448 15.71 23.05 0.89 36,726

110 16.11 21.97 0.81 2,726 16.95 24.98 0.87 96,205

120 16.29 21.92 0.82 2,260 16.75 25.09 0.88 122,440
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discrete Weibull distribution. Our works can not only esti-
mate RUL but also learn the failure probability. We can pro-
vide reference for making a decision about when and how
often the replacement should be implemented. In particular,
our approach does well on the harder task under the complex
conditions with a subtle drop on the error and scoring func-
tion compared with other existing state-of-the-art methods.
The improved results have proven that our proposed model
can capture the degradation trend of a fault under complex
conditions and avoid failure with the early prediction. The
limitation of our approach is that our model relies on the spe-
cific probability distributions corresponding to a mixture of
the two-parameter discrete Weibull distributions that may
not be suitable for every degradation process. There are still
some available distributions that can be implemented in the
survival analysis approach. The data-driven deep learning
approach depends on the quality of the data and strongly
requires large labeled training datasets in the supervised
learning. But getting sufficient run-to-failure data for train-
ing process is very difficult, especially for new systems. For
further improvements, it may be possible to use a generative
adversarial network for data augmentation or generation for
the future research. Since the data condition and fault mode
are different between subdatasets, further optimization via
transfer learning method is still necessary to improve the sta-
bility of the method and then efficiently apply to solve other
problems.

Abbreviations

XðnÞ: Matrix including cycles and sensor measurements of
nth engine

k: Types of sensor measurements (features)
Ls: Last observed cycle or the cycle that fault occurs
m: Time window (TW) length
xt : k-dimensional array at cycle t of an engine
XiðnÞ: Sequential data extracted from XðnÞ with size m × k
xtk: The value at cycle t and sensor measurement k in xt

d: Kinds of the sliding windows (feature detector) in
CNN

Xdw: Set of feature detector regions with w kernel size w in
CNN

CðlÞ: Convolutional lth layer
f l: Forget gate’s activation vector of the layer l in LSTMfZl : Cell input activation vector of the layer l in LSTM

Zl: Cell state vector of the layer l in LSTM.
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https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-
repository/.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machin-
ery diagnostics and prognostics implementing condition-
based maintenance,” Mechanical Systems and Signal Process-
ing, vol. 20, no. 7, pp. 1483–1510, 2006.

[2] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery
health prognostics: a systematic review from data acquisition
to RUL prediction,”Mechanical Systems and Signal Processing,
vol. 104, pp. 799–834, 2018.

[3] R. Zhao, Z. Chen, K. Mao, P. Wang, and R. X. Gao, “Deep
learning and its applications to machine health monitoring:
A surve,” 2016, https://arxiv.org/abs/1612.07640.

[4] D. Wang, K.-L. Tsui, and Q. Miao, “Prognostics and health
management: a review of vibration based bearing and gear
health indicators,” IEEE Access, vol. 6, pp. 665–676, 2018.

[5] P. C. Paris, M. P. Gomez, and W. E. Anderson, “A rational
analytic theory of fatigue,” Trend Eng, vol. 13, pp. 9–14, 1961.

[6] W. K. Yu and T. A. Harris, “A new stress-based fatigue life
model for ball bearings,” Tribology Transactions, vol. 44,
no. 1, pp. 11–18, 2001.

[7] J. Luo, K. R. Pattipati, Liu Qiao, and S. Chigusa, “Model-based
prognostic techniques applied to a suspension system,” IEEE
Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, vol. 38, no. 5, pp. 1156–1168, 2008.

[8] A. Mosallam, K. Medjaher, and N. Zerhouni, “Data-driven
prognostic method based on Bayesian approaches for direct
remaining useful life prediction,” Journal of Intelligent
Manufacturing, vol. 27, no. 5, pp. 1037–1048, 2016.

[9] N. Li, Y. Lei, T. Yan, N. Li, and T. Han, “A wiener-process-
model-based method for remaining useful life prediction con-
sidering unit-to-unit variability,” IEEE Transactions on Indus-
trial Electronics, vol. 66, no. 3, pp. 2092–2101, 2019.

[10] K. Javed, R. Gouriveau, and N. Zerhouni, “A new multivariate
approach for prognostics based on extreme learning machine
and fuzzy clustering,” IEEE Transactions on Cybernetics,
vol. 45, no. 12, pp. 2626–2639, 2015.

[11] J. Liu and Z. Chen, “Remaining useful life prediction of
lithium-ion batteries based on health Indicator and Gaussian
process regression model,” IEEE Access, vol. 7, pp. 39474–
39484, 2019.

[12] Y. Zhang, R. Xiong, H. He, and M. G. Pecht, “Lithium-ion bat-
tery remaining useful life prediction with box–cox transforma-
tion and Monte Carlo simulation,” IEEE Transactions on
Industrial Electronics, vol. 66, no. 2, pp. 1585–1597, 2019.

[13] R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili,
F. Fnaiech, and N. Zerhouni, “Direct remaining useful life esti-
mation based on support vector regression,” IEEE Transac-
tions on Industrial Electronics, vol. 64, no. 3, pp. 2276–2285,
2017.

[14] S. Hong, E. Z. Zhou, K. Zio, and K. Hong, “Condition assess-
ment for the performance degradation of bearing based on a
combinatorial feature extraction method,” Digital Signal Pro-
cessing, vol. 27, pp. 159–166, 2014.

[15] Y. Lei, Intelligent Fault Diagnosis and Remaining Useful Life
Prediction of Rotating Machinery, Butterworth-Heinemann,
2016.

[16] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective
deep belief networks ensemble for remaining useful life estima-
tion in prognostics,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 10, pp. 2306–2318, 2017.

11Wireless Communications and Mobile Computing

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://arxiv.org/abs/1612.07640


[17] S. J. Wu, N. Gebraeel, M. A. Lawley, and Y. Yih, “A neural net-
work integrated decision support system for condition-based
optimal predictive maintenance policy,” IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 37, no. 2, pp. 226–236, 2007.

[18] P. Baruah and R. B. Chinnam, “HMMs for diagnostics and
prognostics in machining processes,” International Journal of
Production Research, vol. 43, no. 6, pp. 1275–1293, 2005.

[19] A. Malhi, R. Yan, and R. X. Gao, “Prognosis of defect propaga-
tion based on recurrent neural networks,” IEEE Transactions
on Instrumentation and Measurement, vol. 60, no. 3,
pp. 703–711, 2011.

[20] F. O. Heimes, “Recurrent neural networks for remaining useful
life estimation,” in 2008 International Conference on Prognos-
tics and Health Management, Denver, CO, USA, October
2008.

[21] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Transac-
tions on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

[22] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-
termmemory network for remaining useful life estimation,” in
2017 IEEE International Conference on Prognostics and Health
Management (ICPHM), Dallas, TX, USA, June 2017.

[23] J. Zhang, P. Wang, R. Yan, and R. X. Gao, “Long short-term
memory for machine remaining life prediction,” Journal of
Manufacturing Systems, vol. 48, pp. 78–86, 2018.

[24] A. Elsheikh, S. Yacout, and M.-S. Ouali, “Bidirectional hand-
shaking LSTM for remaining useful life prediction,” Neuro-
computing, vol. 323, pp. 148–156, 2019.

[25] Y. Wu, M. Yuan, S. Dong, L. Lin, and Y. Liu, “Remaining use-
ful life estimation of engineered systems using vanilla LSTM
neural networks,” Neurocomputing, vol. 275, pp. 167–179,
2018.

[26] J. Wang, G. Wen, S. Yang, and Y. Liu, “Remaining useful life
estimation in prognostics using deep bidirectional LSTM neu-
ral network,” in 2018 Prognostics and System Health Manage-
ment Conference (PHM-Chongqing), pp. 1037–1042,
Chongqing, China, October 2018.

[27] T. A. Shifat and H. J. Wook, “Remaining useful life estimation
of BLDC motor considering voltage degradation and
attention-based neural network,” IEEE Access, vol. 8,
pp. 168414–168428, 2020.

[28] W. Bao, X. Miao, H. Wang, G. Yang, and H. Zhang, “Remain-
ing useful life assessment of slewing bearing based on spatial-
temporal sequence,” IEEE Access, vol. 8, pp. 9739–9750, 2020.

[29] X. Li, W. Zhang, H. Ma, Z. Luo, and X. Li, “Data alignments in
machinery remaining useful life prediction using deep adver-
sarial neural networks,” Knowledge-Based Systems, vol. 197,
article 105843, 2020.

[30] L. Jayasinghe, T. Samarasinghe, C. Yuenv, J. C. N. Low, and
S. S. Ge, “Temporal convolutional memory networks for
remaining useful life estimation of industrial machinery,” in
2019 IEEE International Conference on Industrial Technology
(ICIT), pp. 915–920, Melbourne, Australia, February 2019.

[31] G. S. Babu, P. Zhao, and X. L. Li, “Deep convolutional neural
network based regression approach for estimation of remain-
ing useful life,” in International Conference on Database
Systems for Advanced Applications, Springer, 2016.

[32] X. Li, Q. Ding, and J. Q. Sun, “Remaining useful life estimation
in prognostics using deep convolution neural networks,” Reli-
ability Engineering & System Safety, vol. 172, pp. 1–11, 2018.

[33] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of
generic convolutional and recurrent networks for sequence
modeling,” 2018, https://arxiv.org/abs/1803.01271.

[34] K. Aggarwal, O. Atan, A. K. Farahat, C. Zhang, K. Ristovski,
and C. Gupta, “Two birds with one network: unifying failure
event prediction and time-to-failure modeling,” in 2018 IEEE
International Conference on Big Data (Big Data), Seattle,
WA, USA, December 2018.

[35] J. Li, X. Li, and D. He, “A directed acyclic graph network com-
bined with CNN and LSTM for remaining useful life predic-
tion,” IEEE Access, vol. 7, pp. 75464–75475, 2019.

[36] E. Martinsson, Wtte-Rnn: Weibull Time to Event Recurrent
Neural Network, Chalmers University of Technology & Uni-
versity of Gothenburg, 2016.

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting, 7e,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[38] E. T. Lee and J. W. Wang, Statistical Methods for Survival Data
Analysis, Wiley Series in Probability and Statistics Copyright ©
2003 John Wiley & Sons, Inc., Third edition, 2003.

[39] P. Wang, Y. Li, and C. K. Reddy, “Machine learning for sur-
vival analysis: a survey,” ACM Computing Surveys (CSUR),
vol. 51, no. 6, pp. 1–36, 2019.

[40] A. Saxena and K. Goebel, Turbofan Engine Degradation Simu-
lation Data Set, NASA Ames Prognostics Data Repository,
NASA Ames Research Center, Moffett Field, CA, USA, 2008.

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature,
vol. 323, no. 6088, pp. 533–536, 1986.

[42] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vec-
tor machines,” ACM transactions on intelligent systems and
technology (TIST), vol. 2, no. 3, pp. 1–27, 2011.

[43] M. E. Tipping, “The relevance vector machine,” in NIPS'99:
Proceedings of the 12th International Conference on Neural
Information Processing Systems, pp. 652–658, Denver, CO,
USA, November 1999.

12 Wireless Communications and Mobile Computing

https://arxiv.org/abs/1803.01271

	Developing Deep Survival Model for Remaining Useful Life Estimation Based on Convolutional and Long Short-Term Memory Neural Networks
	1. Introduction
	2. Related Works
	3. Materials and Methods
	3.1. Data Preparation with Time Window
	3.2. Temporal Convolutional Layer
	3.3. Long Short-Term Memory
	3.4. Loss Function
	3.5. Performance Evaluation

	4. Results and Discussion
	4.1. Datasets
	4.2. Performance of Regression and Survival Analyses
	4.3. Performance with Different Time Windows

	5. Conclusions
	Abbreviations
	Data Availability
	Conflicts of Interest

