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The car-following model describes the microscopic behavior of the vehicle. However, the existing car-following models set the
drivers’ reaction time to a fixed value without considering its dynamics. In order to improve the accuracy of car-following
model, this paper proposes Deep Feature Learning-based Car-Following Model (DeepCF), a car-following model based on
fatigue driving and Generative Adversarial Networks (GAN). The model is composed of the drivers’ reaction time model and
the car-following decision algorithm. First, we regard driving fatigue as the starting point to study the influence of driving time
and the acceleration of the preceding vehicle on the drivers’ reaction time, and develop a coarse-grained drivers’ reaction time
model. Secondly, considering the impact of fatigue driving on car-following decisions, we utilize GAN to generate a driving
decision database based on reaction time and use Euclidean distance as a decision search indicator. Finally, we conduct
experiments on a real data set, and the results indicate that our DeepCF model is superior to baseline models.

1. Introduction

Vehicle following, the most common drivers’ behavior in
traffic, exerts more important influence on many factors
including traffic flow characteristics, traffic safety, and traffic
simulation results. The car-following model serves as a basic
algorithm of traffic simulation tools (such as SUMO and VIS-
SIM) and an indispensable control algorithm for automated
vehicles [1, 2]. The model is aimed at replicating drivers’
car-following behavior. The kinematics-based car-following
model attempts to describe the kinematic mechanism of
vehicle-following maneuver [3–12]. Most of the parameters
have obvious physical meaning. The output of the model
can be easily controlled by adjusting the model parameters,
so as long as the appropriate parameters, it can perform bet-
ter in car safety. As the car-following model based on
machine learning attempts to learn the human drivers’

vehicle-following motion from a large number of human
drivers’ vehicle-tracking data [13–17], this category of model
has a high accuracy in simulating the human drivers’ vehicle
following.

However, as the existing car-following models have
become increasingly accurate in predicting driving decisions,
they overlook the dynamic time for the drivers to execute the
decision [18]. They set the drivers’ reaction time to a fixed
value [19]. This setting will greatly affect the car-following
simulation performance. For example, in the car-following
case, the front car brakes suddenly, causing the rear drivers
to decide to slow down [20]. If this decision is 1.3 seconds
late, it is likely to collide with the car ahead. Khodayari
et al. use the performance characteristics of the drivers’ stim-
ulus and reaction while driving to calculate the drivers’ reac-
tion time in NGSIM data [21]. And they add the reaction
time as known information to the existing car-following
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model for simulation experiments [22]. Finally, they con-
firmed that the drivers’ reaction time existing in the car-
following model will greatly improve the accuracy of the
model simulation. However, they failed to build a model
capable of calculating the drivers’ reaction time. In addition,
in predicting the driving behavior of the drivers, the existing
car-following model does not involve two crucial factors.
One is the impact of driving fatigue on driving decisions;
the other is that driving fatigue causes the drivers’ sensitivity
and judgment to decline [23]. For example, driving for 1 hour
continuously, a driver who faces the sudden acceleration of
the vehicle ahead may be inclined to follow the same behav-
iour. However, when driving continuously for 3 h, in the face
of the same scenario, the drivers’ decision may be conserva-
tive acceleration, that is, the throttle will be much lighter than
that before 2 h.

In this paper, we propose Deep Feature Learning-based
Car-Following Model (The model frame diagram is shown
in Figure 1). First, we study the influence of driving time
and the acceleration of the preceding vehicle on the drivers’
reaction time and establish a coarse-grained drivers’ reaction
time model. Secondly, grounded in the impact of driving
time on car-following decisions, we generate a driving deci-
sion database based on GAN and use Euclidean distance as
a decision indicator. Then, the decision search algorithm is
proposed. Finally, we conduct contrast experiments on a real
trajectory data, and the performance of DeepCF is evaluated.

The main contributions of this paper are listed as follows:

(1) A car-following decision algorithm based on Genera-
tive Adversarial Networks is proposed, and a method
for establishing a driving decision database based on
Euclidean distance as a decision index is proposed

(2) We design the framework based on the evidence that
driving for a longer time will lead to a longer reaction
time of the drivers

(3) Analyze the model using China’s online car-hailing
trajectory data

The paper is organized as follows: Section 2 introduces
the related work of the car-following model. Section 3 designs
the car-following model. Section 4 provides experimental

results and compares them with traditional regression
models. Section 5 summarizes the whole article.

2. Related Work

In this section, we first introduce the existing car-following
model based on kinematics and the car-following model
using machine learning algorithms. Then, we illustrate that
the fatigue state will affect the drivers’ reaction time.

2.1. Car-Following Model. Car-following models can be
divided into kinematics-based models and models with
machine learning algorithms. In the kinematics-based car-
following models, Chandler et al. [3] first proposed the Gen-
eral Motors (GM) model. This model puts forward the rela-
tive speed of the front and rear vehicles to calculate the
acceleration of the rear vehicle [4, 5]. The Gipps model takes
the safety distance into account [6]. The optimal speed model
obtains the expected rear vehicle speed based on the distance
between the front and rear car heads [7, 8]. The action point
model divides car following into different stages and sets
space or speed thresholds separately [11, 12]. The car-
following models based on machine learning algorithms are
data-driven models. Wewerinke [13] uses neural networks
to model the car-following behavior and achieves high per-
formance. Khodayari et al. [14] propose an improved neural
network car-following model with response time as input
and verified it using NGSIM data [21]. The results show that
the error is significantly less than other neural network
models. Wei et al. [16] established a car-following model
based on least squares support vector machine (LS-SVR)
and used the microscopic traffic simulation system dataset
[17] to verify the model. The experimental results show that
LS-SVR car-following model is more accurate than the Gipps
car-following model [6] and neural network car-following
model.

2.2. Drivers’ Reaction Time. In driving tasks, the drivers’
brain nerve activity caused by exogenous stimuli is correlated
with the drivers’ reaction time [24], and there are many fac-
tors that can significantly affect the drivers’ reaction time.
Weng [23] divide the drivers’ reaction behavior into three
stages of perception, determination, and action. And this
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Figure 1: The framework of DeepCF model.
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paper verified that the drivers’ sensitivity and judgment abil-
ity would weaken on a long road under fatigue state, and it
would take longer time to make driving decisions. Visual dis-
traction can further cause drivers to lose their attention on
the road and affect their reaction time [25, 26]. Ru et al.
[27] confirm that the subjective conditions that interfere with
the drivers’ response include driving experience, mental and
physical conditions, and adaptability. Petermeijer et al. [28]
explore the interaction between nondriving task types and
take-over request methods. The test experiment of 101 vol-
unteers confirm that nondriving tasks will increase the
response time of the corresponding take-over request, and
the initial response time of tactile and auditory take-over
requests is lower than that of visual. In a traffic accident sce-
nario, the drivers’ reaction is related to the speed of obstacles
before the accident [29], and the drivers’ reaction time is lin-
early related to the collision time [30]. Xue et al. [31] analyze
the simulation data of 47 volunteers in simulated car-
following scenarios and found that in the case of high traffic
flow density, the response time of drivers is usually shorter
than that of low to medium traffic density [32, 33], while
the response time of male and nonprofessional drivers tends
to be slightly longer [34].

3. Methodology

This section introduces the DeepCF model in detail, includ-
ing driver reaction time model and car-following decision
algorithm based on GAN.

3.1. Drivers’ Reaction Time Model Based on Fatigue Driving
Phase Combination Model. It is intuitively obvious that the
drivers’ reaction time of fatigue driving is longer than that
of normal driving. And in the assumption of this paper, the
car-following decision is closely related to the drivers’ reac-
tion time. We need to reveal the relationship between the
drivers’ reaction time and driving time to build drivers’ reac-
tion time model. The reaction time model can quantitatively

represent the relationship between driving time and reaction
time. They investigate 294 drivers and test their reaction time
[35]. The final statistical results showed a strong correlation
between duration of driving and reaction time. On the basis
of their experimental results, we use the cubic function to
fit the relationship between duration of driving and the slow-
est reaction time. Our experiments show that cubic polyno-
mials are the best choice to fit this relation. Due to the lack
of original experimental data, the accuracy of the fitted
function remains to be verified. The formulas are shown in
Equation (1) and function visualization is shown in Figure 2.

According to the results of our experiment, in Equation
(1), α3 is -0.067, α2 is 0.9769, α1 is 15.27 and, α0 is 434.4.
These parameters can fit the duration of time and drivers’
reaction time well. And there is no overfitting in this model.

τ xð Þ = α3x
3 + α2x

2 + α1x + α0: ð1Þ

3.2. Car-following Decision Algorithm Model Based on
Generative Adversarial Network. We need to design the
drivers’ car-following decision algorithm. First, we need to
establish a decision library. We will use GAN (Generative
Adversarial Network) to generate the decision library rules.
GAN, an unsupervised deep learning model, is composed
of two parts: generator and discriminator. The generator gen-
erates data close to the characteristics of the training set as
much as possible, and the discriminator should attempt to
determine the authenticity of the generator. It can find out
the internal statistical law of the given observation data and
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Figure 2: Drivers’ reaction time function. Reaction time is positively correlated with driving duration.

Table 1: Training set data structure for GAN.

Attribute
name

Speed difference
between front
and rear cars

Rear
vehicle
speed

Front
and rear
distance

Acceleration of
rear car after
reaction time

Unit Km/h Km/h m m/s2

3Wireless Communications and Mobile Computing



can generate brand new data similar to the observation data
based on the obtained probability distribution model. The
target formula is shown in Equation (2).

min
G

max
D

V G,Dð Þ = Ex~Pdata xð Þ log D xð Þð Þ½ �
+ Ez~Pz zð Þ log 1 −D G zð Þð Þð Þ½ �,

ð2Þ

where G is the differentiable function of the generator, D is
the differentiable function of the discriminator, Pdata is a real
sample, x is the sample taken from Pdata, and DðxÞ means to
distinguish x; we hope that the result of this discrimination is
closer to 1, as possible the bigger the loss function log ðDðxÞÞ.
Pz is the sample generated by G, z is the sample taken from
PG, and DðGðzÞÞmeans to distinguish GðzÞ; we hope that
the smaller the result, as possible the bigger the loss function
log ð1 −DðGðzÞÞÞ. The structure of the training set is shown
in Table 1.

The network is divided into two parts: generator and dis-
criminator. The generator is composed of input layer, hidden
layer, activation layer, and output layer. The dimension of the
input and output layers is 1 ∗ 4. The hidden layer contains
2 ∗ 2 ∗ 11 neural network units. The activation layer is com-
posed of the Maxout activation function and sets the k value
to 2. Maxout has a strong fitting ability; it can fit any convex
function. Maxout has the advantages of ReLU, such as no
linear saturation, but also does not have the disadvantage that
the ReLU unit is fragile and may die.

Let the distribution generated by the generator (G) be
PGðx ; θÞ, where θ is the parameter of the distribution. And
let xi be derived from the true distribution in the generator
to calculate the likelihood PGðxi ; θÞ as shown in Formula (3).

L =
Y1
m

PG xi ; θ
� �

: ð3Þ

Then, you need to find a θ∗ to maximize the likelihood, as
shown in Formula (4).

θ∗ = arg min
θ

KL Pdata xð Þð Þ∣ PG x ; θð Þj : ð4Þ

The discriminator (D) is composed of an input layer, a
hidden layer, an activation layer, and an output layer. The
activation function is the sigmoid function. The discrimina-
tor’s data consists of two parts, the first part is the real data
set Pdata, and the second part is the fake data PG generated
by the generator. If x comes from Pdata, DðxÞ should be as
close to 1 as possible. If x comes from PG, DðxÞ should be
as close to 0 as possible. The pseudocode of GAN algorithm
is shown in Algorithm 1. The structure diagram of Algo-
rithm 1 is shown in Figure 3.

The decision index is used to evaluate the similarity of the
input features and the data of the decision database, that is, to
calculate the similarity of the two feature vectors. There are
many ways to calculate vector similarity, such as Pearson cor-
relation coefficient, cosine similarity, and Manhattan dis-
tance. The decision index is mainly used to calculate the

Input:
Training set data distribution PdataðxÞ; random noise distribution PgðzÞ; Total training times epochs; the number of iterations of the
discriminator k; the learning rate of the discriminator s1; the learning rate of the generator s2; the amount of training data per batch n.
Output:
The network parameters of the discriminator θd ; network parameters of the generator θg.
Begin
1. Initialize θd ,
2. For epochs do
3. For k do
4. Sample n samples fzðjÞgnj=1 from the random noise distribution PgðzÞ
5. Sample n samples fxðjÞgnj=1 from the real data distribution PdataðxÞ
6. Update θd by boosting the stochastic gradient:
7. ∇θd

ð1/nÞ∑n
j=1½log DðxðjÞÞ + log ð1 −DðGðzðjÞÞÞÞ�

8. End for
9. Sample n samples fzðjÞgnj=1 from the random noise distribution PgðzÞ
10. Update ∇θg

with gradient by decreasing:

11. ∇θd
ð1/nÞ∑n

j=1½log DðxðjÞÞ + log ð1 −DðGðzðjÞÞÞÞ�
12. End

Algorithm 1. Minibatch stochastic gradient descent training algorithm for generating adversarial networks.

Sample

Sample

PG

Pdata

Generator

Update ∇Q

Discrimi‑
nator

Figure 3: Structure diagram of Algorithm 1.
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distance between two feature vectors, so this paper uses
Euclidean distance. The index formula is shown in Formula
(5). The purpose of the retrieval algorithm of this machine
is to search the decision database for the decision plan (the
fourth feature of Table 1) that is closest to the current driving
state (the first three features of Table 1) to reach the goal of
driving decision-making.

s x, yð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
3

j=1
xj − yj

� �2
vuut , ð5Þ

where y represents a feature vector in the decision library, x
represents the input feature vector, and the first three features
of x and y correspond to the first three features of the data
structure shown in Table 1.

Due to the relatively large amount of rule data in the deci-
sion database, traversing the entire decision database to find
the most similar vectors may affect the algorithm perfor-
mance, so the retrieval of the decision database should be
optimized. The statistics show that, aside from extreme cases,
the value range of y1 is approximately [-5,10], the value range
of y2 is approximately [0,70], and the value range of y3 is
[1,80]. Then, there are about 80,000 combinations of these
three feature vectors. The following defines the retrieval
algorithm s¯su:

3.3. Deep Feature Learning-Based Car-Following Model. The
driver reaction time model and the car-following decision
algorithm have been obtained above, then we propose Deep

Feature Learning-based Car-Following Model (DeepCF)
here. Equations (6) and (7) describe the model details.

τn = τ xð Þ, ð6Þ

ax t + τð Þ = Ssu D, xð Þ, ð7Þ
where x is the feature vector.

4. Experiments

This chapter mainly introduces the experimental part, first
introduces the comparative experiment, then defines the
modulus evaluation index, and finally, analyzes the experi-
mental results.

4.1. Experiment Data. The data set used in this article is the
trajectory data of Didi drivers in Xi’an on October 26 and
27, 2016, provided by Didi Travel (please visit: https://
outreach.didichuxing.com/research/opendata/).

The data set tracks approximately 18,000 vehicles,
including the vehicle number, location, and time. The trajec-
tory tracking time interval is 1 s. We screened the vehicles
driving continuously for more than 3h between 4:00-22:00,
and finally extracted 5748 following scenes. The car-
following duration is 9 s. We further add attributes such as
speed, acceleration, driving duration, and distance to each
piece of data. We divided the data set into two groups, the
first group is the following vehicles in the scene where the
driving time of the rear vehicle is less than two hours, and
the second group is the vehicle that exceeds two hours.

Input:
Decision library D; Searched feature vector x
Output:
The fourth feature of the most similar variable y4
Begin
1. Standardized D and x

Set the threshold
2. Brush the database according to the feature vector x
3. Pick out the vector set V within the threshold
4. for i in V
5. use the decision index algorithm to calculate the distance between x and i, c1 = sðx, iÞ
6. Sort the vector in V according to c1
7. Output the fourth feature of the closest vector
End

Algorithm 2. Decision database retrieval algorithm s_su.

Table 2: Data attributes.

Field Type of data Example Remarks

Driver ID String glox.jrrlltBMvCh8nxqktdr2dtopmlH Data encryption processing

Order ID String jkkt8kxniovIFuns9qrrlvst@iqnpkwz Data encryption processing

Timestamp String 1501584540 Unix timestamp, in seconds

Longitude String 104.04392 GCJ-02 coordinate system

Latitude String 30.6863 GCJ-02 coordinate system
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Besides that, we select 100 follow-up scenes in each group as
the test set. Data attribute list refers to Table 2.

4.2. Comparative Experiment. T. Cover and P. Hart pro-
posed k-nearest neighbor in 1967. The working principle
is there is a sample data set, and each data in the sample
set has a label, that is, we know the correspondence
between each data in the sample set and its classification.
After inputting new data without labels, we compare each
feature of the new data with the features corresponding to
several types of data in the sample, and then, the algo-
rithm extracts the classification label of the most similar
data (nearest neighbor) of the sample. It uses the following
Formula (8) to calculate the distance D. x and y are the
two features that need to be calculated.

D =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x2ð Þ2 + y1 − y2ð Þ2

q
: ð8Þ

Random forest is a model composed of many decision
trees. In the training process, each tree in the random for-
est will learn from randomly sampled data points. The
idea is to train each tree on different samples. Although
for a specific training data set, the variance of each tree
may be high, but in general, the variance of the entire for-
est will be very low without increasing the offset. In the
test, predictions are made by averaging the predictions of
each decision tree. This process of training a single learner
on different self-sampled data subsets and averaging
predictions is called bagging. The cart tree is used in the
random forest algorithm in Sklearn.

The Gini index reflects the probability that two samples
are randomly selected from the data set, and their category
labels are inconsistent. Therefore, the smaller the Gini index,
the higher the purity of the data set. The Gini index (Formula
(9)) can be used to measure any uneven distribution. It is a
number between 0 and 1.0 that is completely equal, and 1 is
completely unequal.

Gini D ∣ Að Þ = 〠
K

K=1

Ckj j
Dj j 1 − Ckj j

Dj j
� �

, ð9Þ

where k represents the category.
The CART classification tree uses the size of the Gini

coefficient to measure the division points of features. In
the regression model, we adopt the common sum variance
measurement method. For any partition feature A, the
corresponding arbitrary partition point s is divided into
data sets D1 and D2 on both sides, and the mean square
error of each set of D1 and D2 is minimized. The feature
and feature value division point corresponding to the min-
imum sum of mean square error of D1 and D2. The
expression is Formula (10):

yi − c1ð Þ min
a,s

min
c1

〠
xi∈D1

yi − c1ð Þ2 + min
c2

〠
xi∈D2

yi − c2ð Þ2
" #

:

ð10Þ
Among them, c1 is the sample output average of the

D1 data set, and c2 is the sample output average of the
D2 data set.
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4.3. Model Evaluation. In this paper, mean absolute error
(MAE), mean squared error (MSE), and root mean squared
error (RMSE) are used for measurement and evaluation
[36]. The indicator formulas are shown in Equations (11),
(12), and (13).

MAE = 1
N
〠
N

i=1
xi − x̂ið Þj j, ð11Þ

MSE = 1
N
〠
N

i=1
xi − x∧ið Þ2, ð12Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
xi − x∧ið Þ2

vuut , ð13Þ

where N is the total number of samples, xi represents real
data value of car i, and x̂i means the predicted value of the
model.

5. Results and Discussion

This paper proposes a car-following model based on driving
fatigue and generative confrontation network, namely,
dynamic car-following model (DeepCF). We use 474 real
car-following scenes for experiments, and the experiments
combine the DeepCF model proposed in this article with
the regression model regression tree (RT), polynomial kernel
function (PKF), radial basis kernel function (RBKF), boost
tree (BT), extreme forest (EF), linear kernel (LK), k-nearest
neighbor (KNN), and random forest (RF) for comparison.
We use MAE, MSE, and RMSE as evaluation indicators.
We use 474 real car-following scenes as the test set.

First, we use all real 8000 car-following scenes as a deci-
sion library. Besides, we adopt the decision database retrieval
algorithm s¯su; the acceleration of the following vehicle after
the reaction time is matched according to the speed of the
following vehicle, the distance between the front and rear
vehicles, and the speed difference between the front and rear
vehicles in the test set. And we calculate the evaluation index
of the comparison between the real car-following scene and
the matching result (for the convenience of subsequent
experiments, we will name the experiment CF here). Then,
we use the above regression model to obtain the acceleration
of the following vehicle after the reaction time. It also calcu-
lates the evaluation index comparing the real car-following
scene with the regression result. Finally, we compare the eval-
uation index of the matching result with the evaluation index
of the regression result. The results are shown in Figures 4, 5,
and 6.

According to Figures 3, 4, and 5, we can find that when
using a limited number of real car-following scenes as the
decision-making database, using the decision-making data-
base retrieval algorithms, the matching results are better than
RT, EF, KNN, and other regression models. However, com-
pared with RBKF, LK, and other regression models, there is
still a certain gap.

We use 8000 real car-following scenes as raw data to use
the GAN to generate 80,000 car-following scenes, and com-
bine the real and generated car-following scenes as a decision

0.0
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Figure 7: DeepCF compared with CF.
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as an evaluation index.

0.0
RT EF KNN RF BT PKF RBKF LK

0.2

0.4

0.6M
SE

0.8

1.4

1.0

1.2

DeepCF

Figure 9: Comparison of DeepCF and regression model with MSE
as an evaluation index.
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library. Using the decision database retrieval algorithm s¯su,
the acceleration of the following vehicle after the reaction
time is matched according to the speed of the following vehi-
cle, the distance between the front and rear vehicles, and the
speed difference between the front and rear vehicles in the
test set. And we calculate the evaluation index of the compar-
ison between the real car-following scene and the matching
result (our model DeepCF). We compare the evaluation indi-
cators obtained after the DeepCF model experiment with the
above CF model Figure 7.

We find that after using the GAN to expand the decision-
making database, the matching results are significantly better
than before data generation. This proves the necessity of
using GAN to generate car-following scenes.

We compare the evaluation indicators obtained after the
DeepCF model experiment with the regression model, and
the results are shown in Figures 8, 9, and 10.

In the premise of using the confrontation generation net-
work to generate 80,000 car-following scenes with 8000 real
car-following scenes as raw data, combining the real and gen-
erated car-following scenes as a decision-making database
and adopting the decision-making database retrieval algo-
rithms, the matching data performs better than most data
in the regression model. Thus, the effectiveness of our
DeepCF model is proved.

6. Conclusions

In view of the fact that existing car-following models fail to
consider the impact of driving fatigue on driver reaction time
and decision-making, this paper proposes a car-following
model (DeepCF) based on driving fatigue and generating a
confrontation network. A car-following decision algorithm
based on a generative confrontation network is proposed,
and we build a driving decision database with GAN. Besides
a comparative experiment, we further conduct a comparative
evaluation of the model. The results demonstrate that our
car-following model (DeepCF) is closer to the real scene than
the regression model.
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