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With the development of emerging intelligent traffic signal (I-SIG) system, congestion-involved security issues are drawing
attentions of researchers and developers on the vulnerability introduced by connected vehicle technology, which empowers
vehicles to communicate with the surrounding environment such as road-side infrastructure and traffic control units. A
congestion attack to the controlled optimization of phases algorithm (COP) of I-SIG is recently revealed. Unfortunately, such
analysis still lacks a timely visualized prediction on later congestion when launching an initial attack. In this paper, we argue
that traffic image feature-based learning has available knowledge to reflect the relation between attack and caused congestion
and propose a novel analysis framework based on cycle generative adversarial network (CycleGAN). Based on phase order, we
first extract four-direction road images of one intersection and perform phase-based composition for generating new sample
image of training. We then design a weighted L1 regularization loss that considers both last-vehicle attack and first-vehicle
attack, to improve the training of CycleGAN with two generators and two discriminators. Experiments on simulated traffic flow
data from VISSIM platform show the effectiveness of our approach.

1. Introduction

With the development of Internet-of-Things (IoT), transporta-
tion system is being transformed by various smart sensing
devices and connected vehicle (CV) technology [1, 2]. Based
on communication and collaboration among vehicle, road-side
unit (RSU) [3], and signal system, such intelligent transporta-
tion system shows the desirable efficiency and effectiveness of
mobility and safety. A typical case is in September 2016; a Pilot
Program [1] of CV-based intelligent transportation system
was launched by the USDOT (U.S. Department of Transpor-
tation) to firstly deploy and test in three states including
California, Florida, and New York.

Unfortunately, an algorithm-level attack on controlled
optimization of phases- (COP-) based [4, 5] intelligent signal
system (I-SIG) [6] is exposed in 2018, in which through data
spoofing of vehicle’s GPS location and speed, an attacker can
compromise the vehicle-side units of a last vehicle existing

with quite low attack cost, then mislead the traffic control
decisions at proper timing, causing unexpected heavy traffic
congestion. This worst result shows that one single attack
vehicle is able to cause total congestion of 14 times higher
[7]. This is very surprising, since the I-SIG system uses an
optimal signal control algorithm COP that can decrease the
congestion degree for an intersection. Thus, it is highly impor-
tant to analyze the traffic congestion attack caused only by one
malicious vehicle instead of lots of vehicles, helping to provide
effective defenses before wide deployment to the ground.

Although the previous work [7] reveals the existence of
congestion attack on COP and analyzes the reason of COP
decisions influence, it still lacks detailed guidance about
defense even prediction of such attack. Thus, we aim to study
the prediction of I-SIG congestion attack in this work. Com-
pared to traditional congestion prediction, the attack-based
congestion prediction is totally different, and it is because
any classical traffic flow-related theory such as traffic wave
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distribution does not well fit. Due to timing spoofing attack
to the vulnerability of COP, the congestion occurs unexpect-
edly which seems impossible in normal signal planning,
having a nonlinear traffic delay of 200% in short time. There
are several urgent questions: (1) What features can be used to
characterize the attack? (2) Is there any correlation between
the attack and congestion degree? (3) Is congestion degree
able to reflect the details of attack consequence? To the best
of our knowledge, no similar work focuses on the above ques-
tions. Thus, towards the difficulty of feature representation
and extraction for quantifying attack, we aim to realize an
approach to congestion prediction of attack, based on unsu-
pervised learning from attack image to congestion image, so
as to explore new visualized analyzing method to reveal
detailed attack results in each phase of intersection. This is
our motivation, aiming to benefit all stakeholders for I-SIG,
including experts of transportation and security.

In this work, towards I-SIG congestion attack, we are the
first to predict the congestion caused by spoofing attack
based on adversarial generative network (GAN) [8], an unsu-
pervised learning of machine learning, through directly
utilizing high-level image features of traffic, instead of basic
features such as location, speed, and delay of vehicle. We
firstly perform a phase-based image processing, through
background filtering, splitting, and joining operations to
form new image which represents a global image of intersec-
tion according to certain phase order. We then take such
image pairs of initial attack time and congestion time of 30
minutes later as batch training inputs into CycleGAN [9].
We design a weighted L1 regularization loss to learning and
distinguish fine differences between the last-vehicle attack
and first-vehicle attack. In addition, we also use the trick of
early stop to improve CycleGAN performance.

We implement the I-SIG and experiment through visual-
ized simulation in PTV VISSIM [10]. The experiment shows
the effectiveness of our approach compared to the pix2pix
[11] framework. In condition of fixing 200-epoch trainingwith
0.0002 learning rate, our CycleGAN-based approach output
visualized results with satisfied prediction compared to real
values: MAE and RMSE of capacity ratio are 0.0267 and
0.0340, respectively, andMAE andRMSE of congestion degree
are 1.1250 and 1.5882, respectively. For common use, we
suggest to set 200 epochs and 0.0002 learning rate to train as
a baseline reference without more tuning efforts. In dynamic
training of different epochs from 200 to 500, we find that 200
epochs can effectively prevent the training’s mode collapse,
and we have the best results when starting a linear learning
rate decay at the 150th epoch: MAE and RMSE of capacity
ratio are 0.0114 and 0.0134, respectively, andMAE and RMSE
of congestion degree are 0.5333 and 0.6245, respectively.

We summarize our contributions as follows:

(i) We perform the first study to predict the congestion
caused by spoofing attack based on adversarial gen-
erative network (GAN), through directly utilizing
high-level image features of traffic. This is a novel
visualized approach towards I-SIG congestion attack
to reveal the relation between the attack and conges-
tion of 30 minutes later

(ii) We propose a CycleGAN-based prediction approach,
in which we design a weighted L1 regularization loss
to learning and distinguish fine differences between
the last-vehicle attack and first-vehicle attack. Such
approach not only enables a prediction from attack
to corresponding consequence but also provides an
explanation from congestion to the initial traffic of
attack phase

(iii) We evaluate our approach empirically from real COP
algorithm through VISSIM and collect 4476 image
samples of high quality for experiment, which shows
the effectiveness of our approach compared to ground
truth.We also find that 200 epochs can effectively pre-
vent the training’s mode collapse in our approach and
have a satisfied performance as a baseline.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the backgrounds. In Section 3, we propose
our CycleGAN-based prediction approach. Experiments and
detailed analysis are reported in Section 4. Section 5 discusses
the related works. Finally, we conclude the paper in Section 6.

2. Backgrounds

2.1. Dataflow of I-SIG. The dataflow of the I-SIG system is
revealed in Figure 1. Each on-board unit (OBU) [3] of vehicles
sends basic safety messages (BSM) [3] to the RSU for a trajec-
tory collection in real time. Then, such data will be
preprocessed to form an arrival table as an input to signal plan-
ning which has COP and estimation of location and speed
(EVLS) [5] modules. If penetration rate (PR) of OBU for vehi-
cles is less than 95%, the arrival table will be sent to EVLS for
update. Otherwise, it will be directly sent to COP for plan-
ning. According to the results of COP, a downward signalling
command will be transferred to the phase signal controller.
After each stage of signal control, the next status of signal will
be returned as a feedback for continuous COP planning.

As shown in Figure 1, there are 8 phases in the I-SIG
environment, and the EVLS fills the blank monitoring area
of the monitoring segment on each phase and inserts the
estimated vehicle data between equipped vehicles. The key
is to estimate the queued vehicles; it is critical to estimate
the queue length based on Wiedemann’s car following
model. Since it is assumed that a queue always begins at the
stop bar, the last vehicle in queue needs to be found to deter-
mine the queue length. However, while having an effective
support in low penetration rate, such estimation also intro-
duces a new threat of data spoofing attack to COP.

2.2. Threat Model. In I-SIG congestion attack, there is a
threat model which characterizes the spoofing attack as
input, the congestion as output, and studies corresponding
causal relation. Based on the attack goal of creating conges-
tion in the intersection, the data spoofing attack has been
experimentally proved feasible on CV-based intelligent
transportation system. As shown in Figure 1, dataflow of
the I-SIG system involves data from both vehicle-side devices
(the OBUs) and infrastructure-side device (RSUs and signal
controllers). Ghena et al. [12] have pointed out the weakness
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of the infrastructure-side device. In comparison, without
considering the weakness of the infrastructure-side device,
we aim to realize the attack from vehicle-side devices (the
OBUs), in which the attacker sends malicious BSM messages
to the OBUs to disrupt signal plan.

More specifically, we focus on single intersection, and the
attacker is able to run the ISIG system on a personal
computer with a general configuration. Assuming that the
attacker has a prior investigation of the system structure
and road conditions, after obtaining a set of BSM messages,
the attacker can run the I-SIG system to get the prior and
subsequent signal planning by COP algorithm. To maximize
the realism of the threat model, we mainly explore the effec-
tiveness of attack by a single attack vehicle which is a chal-
lenging task as the signal planning of the I-SIG system
based on all vehicles in an intersection.

2.3. Congestion Attack on I-SIG. In this paper, two attack
strategies of data spoofing have been proposed in I-SIG,
one is direct attack on arrival table without considering pen-
etration rate, and the second one is indirect attack on EVLS
when penetration rate is less than 95% called the “last-
vehicle attack.” In the second attack strategy, an attacker adds
a spoofing vehicle with speed v = 0 at the end of a phase as
Figure 2(a) shows. The purpose of this strategy is to extend
the queue length estimated by the EVLS algorithm through
changing the location and speed values in BSM message.
The last-vehicle spoofing can cause the EVLS to have a max-
imum wrong estimation of queuing length. Such attack
further causes an increment of the duration of green light
allocated by COP algorithm for the current phase. As a result,
it eventually delays the next start time of green light of all the
phases and increases the delay for vehicles to pass. As shown
in Figure 2(b), the last-vehicle attack causes heavy traffic
congestion after just 30 minutes, and the traffic delay has
been increased 200%.

Accordingly, we experiment the “first-vehicle attack” as
shown in Figure 2(c), in which attacker adds a spoofing vehi-
cle with speed v > 0 in front of the original vehicle queue to

minimize the queue length. This attack causes the minimum
estimating queue length by EVLS and further causes a reduc-
tion of the duration of green light allocated by COP algo-
rithm for the current phase and finally increases the delay
for vehicles to pass. For all the follow-up phases, it causes
early start of the green light. In real simulation on VISSIM,
the first-vehicle attack also causes a traffic congestion in the
intersection shown in Figure 2(d).

3. CycleGAN Framework Construction

3.1. Sample Image Processing. Figure 3 shows the process to
produce samples to form GAN’s training dataset, including
three main steps: (a) collecting original traffic images from
VISSIM; (b) extracting road traffic by background filtering;
and (c) forming novel rectangle image of road traffic by split
joint. According to the phase order from phase(4,7),
phase(8,3), phase(2,5), phase(6,1), joint above four images
from top to down to form one sample image.

There are two domains X and Y , ∀x ∈ X refers to proc-
essed original traffic image at the spoofing time, and ∀y ∈ Y
are real congestion traffic images that correspond to domain
X 30 minutes later.

3.2. CycleGAN Framework. Figure 4 illustrates the architec-
ture of CycleGAN framework. One training sample is a pair
of images x and y to form (x, y), x ∈ X and y ∈ Y . Here, X
and Y denote the source domain and target domain of the
framework, x refers to the processed traffic image at the
spoofing time, and y is the processed traffic image of conges-
tion 30 minutes later that corresponds to x.

The CycleGAN framework is composed of two generators
(G and F) and twodiscriminators (DX andDY ). In the forward
direction, the generatorG generates fake image ~Y similar to Y
given real image x, i.e.,G : X⟶ Y . F generates fake image ~Y
similar to X, i.e., F : Y ⟶ X. The adversarial discriminator
DX aims at distinguishing whether the input image is real
and outputs corresponding probability PðxÞ as a decision.
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Figure 1: Dataflow of the I-SIG system.
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Similarly, DY aims at discriminating whether the input image
is real and outputs corresponding probability PðyÞ.

The CycleGAN framework has two transform directions
to compose a cycle. For x ∈ X, x⟶GðxÞ⟶ FðGðxÞÞ ≈ x is
called forward cycle consistency. Similarly, for y ∈ Y , y⟶
FðyÞ⟶GðFðyÞÞ ≈ y is called backward cycle consistency.
Thus, there are two kinds of losses in the original CycleGAN
framework: adversarial loss and cycle-consistency loss.

3.2.1. Adversarial Loss. In the forward direction, based on
generator G : X⟶ Y and discriminator DY , the adversarial
loss can be calculated as follows:

LGAN G,DY , X, Yð Þ = Ey∼pdata yð Þ log DY yð Þ½ �
+ Ex∼pdata xð Þ log 1 −DY G xð Þð Þð Þ½ �:

ð1Þ

DYðyÞ is responsible for determining the probability of y’s
belonging to real Y , and the generator G is used to generate
fake image close to the real one. Thus, we have the objective
min
G

max
DY

LGANðG,DY , X, YÞ to train generator G and

discriminator DY .
Similarly, for the backward direction, we have loss and

corresponding objective function as following:

LGAN F,DX , Y , Xð Þ = Ex∼pdata xð Þ log DX xð Þ½ �
+ Ey∼pdata yð Þ log 1 −DX F yð Þð Þð Þ½ �,

F∗,DX
∗ =min

F
max
DX

LGAN F,DX , Y , Xð Þ, ð2Þ

whereDXðxÞ is responsible for determining the probability of
x’s belonging to real X, and the generator F is used to gener-
ate fake image close to the real one.

The traffic at the beginning of last-vehicle attack Attack results 30 minutes later(b)(a)

𝜐 > 0 → 𝜐 = 0

(d)(c) Attack results 30 minutes laterThe traffic at the beginning of first-vehicle attack

𝜐 = 0 → 𝜐 > 0

Figure 2: Illustration of first-vehicle attack and last-vehicle attack.

Collect original traffic
images from VISSIM(a) (b) (c) (d)Extract road traffic by

background filtering
Form novel rectangle

image of road traffic by
Produce datasets for
CycleGAN by split

Figure 3: Process of traffic image preprocessing.
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The complete adversarial loss function is defined as

LGAN G, F,DX ,DYð Þ =LGAN G,DY , X, Yð Þ +LGAN F,DX , Y , Xð Þ:
ð3Þ

3.2.2. Cycle-Consistency Loss. Cycle-consistency loss is
designed to push G and F to be consistent with each other,
denoted as FðGðxÞÞ ≈ x and GðFðyÞÞ ≈ y. The cycle-
consistency loss can be calculated as follows:

Lcyc G, Fð Þ = Ex∼pdata xð Þ F G xð Þð Þ − xk k1
� �

, ð4Þ

in which k∙k1 is the 1-norm calculation.

3.2.3. Weighted L1 Regularization Loss. For samples of the
first-vehicle attack and the last-vehicle attack, we divide proc-
essed datasetsX, Y into two parts that can be denoted as X
= fx1, x2g, Y = fy1, y2g. For ∀a, b ∈ x1 and ∀c ∈ x2, the goal
of generator G and F is to minimize the difference between
a and b as well as to maximize the difference between a and
c. The object can be denoted as arg min

F,G
L sðF,GÞ max

F,G
LdðF,GÞ . Weighted L1 regularization loss can be calcu-
lated as follows:

Lsep G, Fð Þ = αL s F,Gð Þ − βLd F,Gð Þ,
L s F,Gð Þ = Ea,b∼pdata x1ð Þ F G að Þð Þ − F G bð Þð Þk k1

� �
,

Ld F,Gð Þ = E a∼pdata x1ð Þ
c∼pdata x2ð Þ

F G að Þð Þ − F G cð Þð Þk k1
� �

,
ð5Þ

in which L sðF,GÞ reflects the image difference of same
attack type and LdðF,GÞ reflects the image difference of
different attack type. α and β are weights.

The whole objective of our CycleGAN framework is
defined as follows:

L G, F,DX ,DYð Þ =LGAN G, F,DX ,DYð Þ + λLcyc G, Fð Þ
+ μLsep G, Fð Þ,

ð6Þ

where λ and μ are parameters, which control the relative
importance of different objectives, λ ≥ 1 and μ ∈ ð0, 1�.

The optimal G∗, F∗ can be achieved as follows.

G∗, F∗ = arg min
G,F

max
Dx ,DY

L G, F,DX ,DYð Þ: ð7Þ

3.3. Build Generator and Discriminator. Figure 5 illustrates
the architecture of structures of generator and discriminator.
The two generators G, F share the same structure. Specifi-
cally, a generator network contains encoder, transformer,
and decoder. The encoder network includes one 7 × 7
Convolution-InstanceNorm-ReLU layer and two 3 × 3
Convolution-InstanceNorm-ReLU layers. Transformer net-
work has 9 residual blocks for 256 × 256 images that contains
two 3 × 3 convolutional layers. Decoder network consists of
two 3 × 3 fractional-strided-Convolution-InstanceNorm-
ReLU layers and one 7 × 7 Convolution-InstanceNorm-
ReLU layer.

The two discriminators DX ,DY have the same structure.
The discriminator networks use the architecture of 70 × 70
PatchGANs [11], and the discriminator architecture includes
four 4 × 4 Convolution-InstanceNorm-LeakyReLU, which
transforms the input image into a set of feature maps and
finally outputs a 1-dimension decision.

3.4. Training Process. There are two training directions in
CycleGAN framework; Adam (Adaptive Moment Estima-
tion) [13] is chosen as the optimizer of training. It is an adap-
tive optimization method that dynamically updates network

DecisionDecision

Forward cycle consistency

Backward cycle consistency

x∊X

y∊Y

G

G

DY DX

F

F

X
~

Y
~

y
‸

x
‸

Figure 4: CycleGAN Framework.
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Discriminator DX, DY

Generator G, F

Encoding Transformation Decoding

Resnet block (2*9) Conv layerDeConv layer

Decision [0,1]

Conv layer

Conv layer

Figure 5: The structures of generator and discriminator.

Input: original state image set X0, target congestion image set Y0.
Output: trained model with optimized parameters.
Initialization. initialize network parameters θg, θf , θdx , θdy , learning rate α = 0:002, λ = 10, μ = 1, number of training iterations M.

1: while θg and θf has not converged do
2: for t = 1 to M do
3: //Forward cycle
4: Generate fake image GðxÞ and recommend image FðGðxÞÞ.
5: Calculate G, F loss.
6: Update the gradient of G, F: θg ⟵ θg − α∇θg

LðG, F,DX ,DYÞ
θf ⟵ θf − α∇θf

LðG, F,DX ,DYÞ
7: Discriminate fake image DYðGðxÞÞ and real imageDYðxÞ.
8: Calculate DY loss.
9: Update the gradient of DY : θdy ⟵ θdy − α∇θdy

LðG, F,DX ,DY Þ
10: //Backward cycle
11: Generate fake image FðyÞ and recommend image GðFðyÞÞ.
12: Calculate G, F loss.
13: Update the gradient of G, F: θg ⟵ θg − α∇θg

LðG, F,DX ,DYÞ
θf ⟵ θf − α∇θf

LðG, F,DX ,DYÞ
14: Discriminate fake image DXðFðyÞÞ and real imageDXðyÞ.
15: Calculate DX loss.
16: Update the gradient of DX :θdx

⟵ θdx
− α∇θdx

LðG, F,DX ,DYÞ.
17: end for
18:end while

Algorithm 1: Iterative training of CycleGAN.
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weights, which have better convergence performance. The
training process is illustrated in Algorithm 1.

4. Experiment

4.1. Setup.We run the I-SIG System and VISSIM simulations
to get the original image datasets X0, Y0. The platform and
experimental environment configuration are shown in
Table 1.

4.2. Datasets and Initial Network. Both of the training and
test datasets are composed of two parts: the processed traffic
image dataset X at the spoofing time and corresponding
congestion image dataset Y . Table 2 shows the sample data-
sets for training and test. The size of all the image is 256 ×
256 pixels.

In addition to CycleGAN parameters described in above
section, we also set up a comparable GAN model named
pix2pix [11], and its parameters are described as Table 3.

5. Evaluation

Actually, our method can be directly compared to
NDSS2018’s work for the same I-SIG system. In addition,
there are also some similar work to discuss. Reporting road
traffic congestion can be challenging as there is no standard
way of measurement fit for each specific occasion. A series
of methods have been proposed to evaluate traffic congestion.
Lu and Cao [14], proposed a method based in which level of
congestion is considered a continuous variable from free flow
to traffic jam, since the source domain and the target domain
of our visualized prediction method are both composed of
traffic images, and it is hard to extract the high-level image
features using traditional text features such as location,
speed, and delay of vehicles. Pongpaibool et al. [15] proposed
a method based on deep network using image processing
technology to deal with the whole image. In comparison,
we aim to explore the effectiveness of different attack strate-
gies which need an accurate analyze on each phase instead
of the whole region; the former traditional methods are not
suitable. Thus, we propose a phase-based evaluation method

Table 1: Experimental platform and configuration.

Platform Experimental configuration

VISSIM

Operating system: Windows 10

CPU: AMD Ryzen 5 3550H with Radeon Vega Mobile Gfx 2.10GHz

RAM: 16G

Version: PTV VISSIM 4.30

Interface: VISSIM Component Object Model (COM)

CycleGAN

Operating system: Ubuntu 16.04.6 LTS

CPU: Intel(R) Core(TM) i7-9700F CPU @ 3.00GHz

RAM: 32G

GPU: MSI GeForce RTX 2070 VENTUS

Graphic memory: 151MiB

Framework: TensorFlow_gpu-1.14.0

Table 2: Datasets of training and testing.

Name Sample size

Training dataset

X
Traffic images of initial spoofing

First vehicle: 1119
Last vehicle: 1119

Y
Congestion images 30 minutes later

First vehicle: 1119
Last vehicle: 1119

Test dataset

X
Traffic images of initial spoofing

First vehicle: 500
Last vehicle: 500

Y
Congestion images 30 minutes later

First vehicle: 500
Last vehicle: 500

Table 3: Experimental parameter settings.

Parameters Value

CycleGAN
framework

λ 10.0

μ 1.0

Initial learning rate 0.0002

Optimizer Adam

Batch size 1

Dropout rate No dropout

Net D Basic

Net G Resnet_9blocks

pix2pix framework

Weight for L1 loss 100.0

Initial learning rate 0.0002

Optimizer
Minibatch SGD,

Adam

Batch size 1

Dropout rate 0.5

Net D Basic

Net G U-Net

7Wireless Communications and Mobile Computing



to quantitatively analyze the congestion results. We first
define the evaluation metrics, and we further evaluate them
based on the mean absolute error (MAE) and root mean
squared error (RMSE), respectively.

5.1. Evaluation Metric

(1) Vehicle capacity ratio (CR). Cmax
k is the maximum

vehicle capacity of each phase, in which k denotes
the kth phase, and Cmax

k is a constant. For a 300-
meter-long road in any phase, the maximum vehicle
capacity is 75 assuming that the average vehicle length
is 3meters.Cmax

total is used to compute the vehicle capac-
ity of all 8 phases; it can be denoted as Cmax

total =∑8
k=1

Cmax
k , and it is also a constant with value 600. For total

vehicles of all 8 phases at an intersection, the vehicle
capacity ratio can be calculated as follows.

CR = ∑8
k=1Nk

Cmax
total

, ð8Þ

in which the Nk is the vehicle number of the kth phase

(2) Phase congestion degree (PCD). PCD reflects the ratio
of queuing length to normal queuing length. For the
kth phase, its PCDk can be calculated by

PCDk =
Qk

Qnormal
, ð9Þ

where the Qk is the vehicle number of queuing and Qnormal is
a constant that we set Qnormal = 10

(3) Intersection congestion degree (ICD). ICD reflects the
global congestion degree for an intersection, and it
can be calculated by

ICD = 〠
8

k=1
PCDk: ð10Þ

For N samples testing, we will further evaluate the CR,
PCD, and ICD from a statistical view based on the mean
absolute error (MAE) and root mean squared error (RMSE),

CycleGAN framework pix2pix framework

Sample 1

Sample 3

Sample 2

Sample 4

Input x Generated
G(x) Input y Input x Generated

G(x) Input y

Figure 6: Visualized CycleGAN and pix2pix output compared to the ground truth.

Table 4: MAECR , RMSECR , MAEICD, and RMSEICD of CycleGAN and pix2pix under different epochs.

Epoch 50 100 200 500 1000
Framework CycleGAN pix2pix CycleGAN pix2pix CycleGAN pix2pix CycleGAN pix2pix CycleGAN pix2pix

MAECR 0.1461 0.1638 0.0317 0.1607 0.0267 0.0929 0.0190 0.1070 0.0137 0.0862

RMSECR 0.1470 0.1642 0.0342 0.1674 0.0340 0.0985 0.0250 0.1160 0.0177 0.0870

MAEICD 5.5000 6.5500 2.4167 5.8000 1.1250 2.3250 0.7800 6.7000 0.7000 1.4000

RMSEICD 5.5675 6.5799 2.6176 6.0027 1.5882 2.7051 0.9623 6.7134 0.9930 1.4509
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respectively. We have MAE and RMSE of CR as follows:

MAECR =
1
N
〠
N

i=1
CRi −gCRi
��� ���,

RMSECR =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
CRi −gCRi

� �2
,

vuut
ð11Þ

in which CRi is the real value and gCRi is the estimated value.
Similarly, we have MAEPCDk

, RMSEPCDk
, MAEICD, and

RMSEICD.

5.2. Visualization Results. Figure 6 shows congestion traffic
images generated by CycleGAN and pix2pix, respectively.
The first column is the original image x, the second column
is the generated congestion image GðxÞ, and the real conges-
tion image y is given in the third column. The comparison of
generated GðxÞ indicates that our approach has a more satis-
fied generator of training than pix2pix, having a higher accu-
racy compared to the ground truth.

5.3. Quantitative Analysis. We quantitatively analyze the
performance of CycleGAN and pix2pix. Tables 4–6 show
the MAE and RMSE values of CycleGAN and pix2pix under
different settings of epoch and learning rate.

As Table 4 shows, when epoch = 1000, CycleGAN and
pix2pix both have the best performance of CR and ICD
prediction that has very small MAE and RMSE values: for
CycleGAN, we have MAECR = 0:0137, RMSECR = 0:0177,
MAEICD = 0:7000, and RMSECR = 0:9930. Respectively, and
for pix2pix, they are 0.0862, 0.0870, 1.4000, and 1.4509,
respectively.

Figure 7(a) shows the trend of the MAE and RMSE
values of capacity ratio for both CycleGAN and pix2pix,
and Figure 7(b) shows the trend of the MAE and RMSE
values of intersection congestion degree. We can see that
when epoch = 200, both CycleGAN and pix2pix gain a
good performance, and performance improvement is not
obvious when epoch = 1000. Thus, considering the balance
between performance and training cost, we suggest a 200-
epoch early stop.

Table 5 shows the performance under different learning
rate settings. For example, 400/100 means that in the first
400 epochs, LR is kept with 0.0002, and in the following
100 epochs, we perform a linear decay. We can see that when
the learning rate is 50/150, CycleGAN has the best perfor-
mance of CR and ICD prediction has quiet small MAE and
RMSE values: MAECR = 0:0114, RMSECR = 0:0134, MAEICD
= 0:5333, and RMSECR = 0:6245. While for pix2pix, when
the learning rate is 100/100, pix2pix has the best perfor-
mance: MAECR = 0:0929, RMSECR = 0:0985, MAEICD =
2:4750, and RMSECR = 2:9441.The CycleGAN with 50/150
LR is better than the pix2pix 100/100 LR.

Figure 8(a) shows the trend of theMAE and RMSE values
of capacity ratio for both CycleGAN and pix2pix, and
Figure 8(b) shows the trend of the MAE and RMSE values
of intersection congestion degree. Through different compo-

sitions within total 100, 200, and 500 epochs, we can see that
for CycleGAN, the LR has relative small influence, while for
pix2pix, the LR’s influence is bigger and the best setting is
within 200 epochs.

We further reveal the detailed values of each phase for
MAE and RMSE of congestion degree in Table 6. We set
training epoch as 200, and the LR settings for CycleGAN
and pix2pix are 50/150 and 100/100, respectively. We can
see that through comparing the values based on 8 phases of
CycleGAN and pix2pix; for CycleGAN, the best results occur
at k = 3, which have the lowest values (0.1500, 0.1958) of
MAE and RMSE. Similarly, for pix2pix, the best results are
at k = 3 with values 0.2250 and 0.2398 of MAE and RMSE.

We also give bar charts for MAE and RMSE of 8-phase
congestion degree by Figure 9. In Figure 9(a), the smaller
average value of MAE is for CycleGAN with value 0.3438.
In Figure 9(b), we have similar results of RMSE; the average
value of CycleGAN and pix2pix are 0.3845 and 1.5507,
respectively. The MAE and RMSE of CycleGAN are smaller
than those of pix2pix; this indicates a better robustness of
CycleGAN compared with pix2pix.

6. Defense Discussion

For the relationship between the evaluation metric and the
defense of attack, we have the following suggestions.

6.1. Attack Strategy Detection. In the signal planning stage of
I-SIG system, the COP algorithm generates reasonable green
light duration based on the queuing length of each phase esti-
mated by the EVLS algorithm. As shown in our evaluation,
the vehicle capacity ratio (CR) reflects the total number of
the intersection. In the significance of defense, comparing
the estimated queuing length by EVLS with the immediate
evaluation metric CR is an efficient way to determine
whether the attack vehicle is placed in corresponding phase.
For instance, if the phase has long estimate queuing line with
low CR index, a last-vehicle attack may occur; on the con-
trary, if the phase has small estimate queuing line with high
CR index, a first-vehicle attack may occur. This can bring
feasible defense and improve system robustness.

Table 6: MAEPCD and RMSEPCD of CycleGAN and pix2pix.

MAEPCD RMSEPCD
CycleGAN pix2pix CycleGAN pix2pix

k = 1 0.3833 2.3500 0.4378 2.3611

k = 2 0.2500 0.5750 0.2550 0.7697

k = 3 0.1500 0.2250 0.1958 0.2398

k = 4 0.1833 1.5750 0.2550 2.4418

k = 5 0.4167 2.1500 0.4743 2.2383

k = 6 0.3167 0.8000 0.3719 0.8307

k = 7 0.8667 3.2500 0.8907 3.2550

k = 8 0.1833 0.2250 0.1958 0.2693
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6.2. Robust Algorithm Design. As the CV-based intelligent
transportation system are proved to be vulnerable to data
spoofing attack, a notable problem is the lack of data check
in the EVLS algorithm. For defense, a validity check proce-
dure should be added to improve the robustness of the algo-
rithm, in which suspicious data will be excluded from the
arrival table, e.g., removing the vehicle at the end of the queu-
ing line to defend the detected last-vehicle attack. Consider-
ing the long-term application of the CV-based intelligent
transportation system, this is a future direction.

7. Related Work

7.1. Spoofing Attack Analysis. I-SIG is exposed to a data
spoofing attack causing heavy congestion. Such attack
belongs to position faking attack of GPS spoofing, but differ-
ent with tunnel attack. In tunnel attack, each vehicle of a
vehicular ad hoc network (VANET) [16–18] is equipped with
a positioning system (receiver), and then the attack can be
achieved using a transmitter generating localization signals
stronger than those generated by the real satellites [19, 20];
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then, the victim could be waiting for a GPS signal after leav-
ing a physical tunnel or a jammed-up area. In comparison,
the position spoofing attack to I-SIG refers to that authenti-
cated vehicle only sends wrong position to affect the COP
algorithm, which has lower attack cost and easier implemen-
tation. In such attack, the spoofing is just a causing factor,
while the mechanism of COP algorithm is the key. In
comparison, for GPS spoofing attack, our work focuses on
the revealing of algorithm-level security analysis caused by
spoofing, not the security of GPS spoofing or context-aware
sensing [21–24] itself.

The previous work [7] mainly reveals the existence of
such congestion attack on COP, analyzes the reason of
COP decisions influence called last-vehicle advantage, and
also explains how to use the data spoofing to launch an
attack. However, it lacks consideration about the potential fea-
tures and the quantified correlation between the attack and
congestion degree. In comparison, we demystify the attack to
I-SIG and corresponding congestion from machine learning
perspective, through exploring different kinds of features
based on unsupervised learning from attack image to conges-
tion image via image search [25, 26], so as to explore new
visualized analyzing method to reveal detailed attack results
in each phase of intersection. In addition, as the first utiliza-
tion of image feature in congestion attack, our work can pro-
vide a visualization for better understanding.

7.2. Congestion Prediction. Traffic congestion prediction has
been studied a lot. Traditional traffic feature-based methods
[27–29] are generally used in traffic congestion prediction,
in which the traffic scenario is usually illustrated by manually
set features such as location, speed, and delay of vehicle. Early
researches are focused on single-site prediction based on
one-dimensional traffic time series such as the ARIMA
model [30] and the nearest neighbour method [31]. Recently,
the trend has been shifted to prediction based on spatial tem-
poral correlations between traffic flows [32–34], for instance,

the vector ARMAmodel incorporating both spatial and tem-
poral correlations, and the spatial econometrics models
focused on congestion propagation over adjacent links. The
core of the existing methods is as follows: They try to predict
traffic congestions at one site based on the spatially and tem-
porally correlated information from the sensors distributed
on nearby roads, where the number of such sensors contrib-
uting to the prediction is referred to as data dimensionality.
Recently, a LSTM model-based approach [35] was proposed
for region-wide congestion prediction. In comparison, the
attack-based congestion prediction is totally different, and it
is because any classical traffic flow-related theory of spatial
and temporal correlation does not well fit. Thus, this work
does not focus on traditional traffic features. Even for image
feature, we perform phase-based reprocessing and produce
novel image for training; this is a different method for I-
SIG congestion prediction towards a COP attack.

8. Conclusion

Towards the spoofing to connected vehicle technology, a
congestion attack has been revealed on the COP algorithm
of I-SIG. Due to the lack of visualized congestion analysis
and attack phase explanation, we focus on the prediction of
congestion attack. Compared to traditional congestion pre-
diction, such attack-based congestion prediction is totally
different, and it is because any classical traffic flow-related
theory of spatial and temporal correlation does not well fit.
We perform the first study to predict the congestion caused
by spoofing attack based on adversarial generative network,
through directly utilizing high-level image features of traffic.

In this paper, we propose a CycleGAN-based prediction
approach, in which we design a weighted L1 regularization
loss to learning and distinguish fine differences between
last-vehicle attack and first-vehicle attack. We evaluate our
approach empirically from real COP algorithm through VIS-
SIM, and collect 4476 image samples of high quality for

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

1.3938

0.3438

0

0.5

1

1.5

2

2.5

3

3.5

PCD (pix2pix)
PCD (CycleGAN) PCD (CycleGAN)

PCD (pix2pix)

(a) Bar chart of MAEPCD

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
0

0.5

1

1.5

2

2.5

3

3.5

0.3845

1.5507

PCD (pix2pix)
PCD (CycleGAN) PCD (CycleGAN)

PCD (pix2pix)

(b) Bar chart of RMSEPCD

Figure 9: Bar chart of MAEPCD and bar chart of RMSEPCD:

12 Wireless Communications and Mobile Computing



experiment, which shows the effectiveness of our approach
compared to ground truth. We also find that 200 epochs
can effectively prevent the training’s mode collapse in our
approach and have a satisfied performance as a baseline.

This work is expected to inspire a series of follow-up
studies on security of I-SIG, including but not limited to (1)
more machine learning-based approaches and (2) more mul-
timodal feature fusion for visualized congestion analysis
caused by spoofing attack.
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