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In a cognitive radio (CR), opportunistic secondary users (SUs) periodically sense the primary user’s (PU’s) existence in the network.
Spectrum sensing of a single SU is not precise due to wireless channels and hidden terminal issues. One promising solution is
cooperative spectrum sensing (CSS) that allows multiple SUs’ cooperation to sense the PU’s activity. In CSS, the misdetection of
the PU signal by the SU causes system inefficiency that increases the interference to the system. This paper introduces a new
category of a malicious user (MU), i.e,, a lazy malicious user (LMU) with two operating modes such as an awakened mode and
sleeping mode. In the awakened mode, the LMU reports accurately the PU activity like other normal cooperative users, while in
the sleeping mode, it randomly reports abnormal sensing data similar to an always yes malicious user (AYMU) or always no
malicious user (ANMU). In this paper, statistical analysis is carried out to detect the behavior of different abnormal users and
mitigate their harmful effects. Results are collected for the different hard combination schemes in the presence of the LMU and
opposite categories of malicious users (OMUs). Simulation results collected for the error probability, detection probability, and
false alarm at different levels of the signal-to-noise ratios (SNRs) and various contributions of the LMUs and OMUs confirmed
that out of the many outlier detection tests, the median test performs better in MU detection by producing minimum error
probability results in the CSS. The results are further compared by keeping minimum SNR values with the mean test, quartile
test, Grubbs test, and generalized extreme studentized deviate (GESD) test. Similarly, performance gain of the median test is
examined further separately in the AND, OR, and voting schemes that show minimum error probability results of the proposed
test as compared with all other outlier detection tests in discarding abnormal sensing reports.

1. Introduction

Radio spectrum is considered the backbone for wireless com-
munication. The unique characteristic of the wireless sensor
networks (WSNs) makes it distinguishable from the tradi-
tional networks [1]. In WSNs, a number of small sensor
devices distributed spatially are allowed to cooperatively
sense environmental and physical conditions. The WSN
nodes have limited resources in terms of power, computa-
tional complexity, and memory [2]. Recently, the WSNs are
employed in civilian applications, such as home appliance
control, traffic control, checking environmental conditions,

Internet of things (IoT), and robotic games [2]. The fre-
quency spectrum assigned to the WSNs and other communi-
cation devices is not efficiently utilized that results in
spectrum scarceness issues. The CR network (CRN) is a
promising technology in the field of WSNs to tackle the spec-
trum scarcity [3].

The idea of CRN was presented for the first time by
Mitola in [4]. As demand to the frequency spectrum
resources is increasing with the increased number of wireless
devices, therefore, static spectrum allocation (SSA) policy is
considered to have limitations to meet these requirements
[5]. The 300 GHz bandwidth that once seems to be sufficient
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is now becoming congested [6-9]. CRN is an intelligent wire-
less communication technology that has the ability to sense
the radio environment and act accordingly. The CRN has
two main objectives: reliable communication at any time
and place and efficient use of the radio spectrum [10]. As
static spectrum allocation is not the solution to meet with
the increasing number of wireless communication devices,
therefore to overcome this challenging problem, dynamic
spectrum access (DSA) has been widely proposed as one of
the most promising technologies to increase spectral effi-
ciency [11]. The CRN is considered a feasible intelligent tech-
nology for 4G wireless networks or self-organization
networks. In the CRN, unlicensed users or secondary users
(SUs) periodically sense the spectrum band of the PU net-
work. The SUs utilize vacant channels in the VHF and
UHF frequency bands, allocated to TV broadcasting between
54 and 862 MHz frequency range [12]. The PU spectrum
availability is inspected by applying various spectrum sensing
techniques [6]. The SU performs local sensing by adopting
sensing techniques such as energy detector (ED), matched fil-
ter detector (MFD), and cyclostationary [7]. When statistics
of the PU are not available, then the ED technique is more
suitable that requires only power of the PU channel. The
received energy of PU is compared with a fixed threshold
value in the ED technique. In case the received energy is
greater than the threshold, the presence of PU is confirmed;
otherwise, the absence of the PU signal is declared [7, 8]. In
the proposed work, we will follow the ED technique to sense
the spectrum of the PU channel.

In CRN, individual SU is not sensitive enough to detect
PU channel weak signals. The single SU sensing performance
is further deteriorated by the multipath fading and shadow-
ing effects as in [13]. In order to tackle individual user sens-
ing issues, CSS is used to solve this problem. This allows
local sensing users to forward their sensing results to the
fusion center (FC), where the final decision is made about
the PU status [14].

L.1. Related Work and Contribution. Information reported to
the FC by the SUs through local sensing is divided into two
major categories: hard decision fusion (HDF) and soft deci-
sion fusion (SDF). In the HDF, the SUs convert the sensing
reports into binary decision to represent a PU signal. The
HDF schemes not only reduce communication cost but also
reduce the implementation complexity [15]. In the SDF
scheme, the reports are in the form of energy values of the
PU signal forwarded to the FC. There are many SDF schemes
suggested in the literature, where soft energy information is
reported to the FC [16]. Similarly, in the Bayesian model,
users report probabilities to represent the confidence level
of the users’ local decision [17]. The FC then takes a global
decision by combining all these probabilities. An SDF model
proposed in [17] reports two-bit information to state the free
and occupied status of the PU channel. The SDF scheme
known as the likelihood ratio test (LRT) has attained a signif-
icant attention. In [12], a linear test statistic is applied based
on an LRT detector at several PU conditions. In [18], the
focus is on maximum eigenvalue-based LRT against different
noise behaviors of the PU signal. In [19], the authors have
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investigated a distributed LRT detector for sensing the spec-
trum of the PU spectrum where the channels are considered
having random and Nakagami-lognormal mixture distribu-
tion. Similarly, in [20], some inspections against frequency-
selective Nakagami channels using correlation in the fre-
quency domain are investigated. In [21], authors have pre-
sented a collusion pattern of the attackers. These attackers
usually form a collusive group that can boost the spectrum
sensing data falsification (SSDF) attack power, resulting in
falsification of the spectrum sensing data. These attackers
are prevented by applying a trust mechanism technique, in
which the reports of the SUs are examined by their historical
sensing behaviors [22]. The less trusted SUs are given low
weights, or even their reports are deleted during final deci-
sion. The collusive attackers are riskier as they improve their
trust value, which results in increasing their attack power.
The main contributions of this paper are as follows.

(i) In this paper, a new behavior of MU, i.e., a lazy mali-
cious user (LMU), is introduced in the CSS environ-
ment. The LMU reports PU information to the FC in
two operating modes, i.e., an awakened phase and
sleeping phase. The user acts as normal SU during
the awakened phase with accurate sensing reports
in this phase, while in the sleeping phase, the LU acts
maliciously by reporting false sensing data randomly
selected as AYMU and ANMU probabilistically. The
OMU category of MUs senses the PU channel and
repots sensing data to the FC that negate the channel
actual status

(ii) The proposed techniques in the paper detect LMUs
and OMUs by applying outlier detection tests while
reporting to the FC. During the sleeping phase of
the LMUs, received sensing reports are detected as
abnormal and discarded while making global deci-
sion at the FC. Similarly, as the awakened phase
sensing reports of the LMUs are accurate, therefore,
the outlier detection tests declare their sensing
reports as normal and suggest for consideration in
the global decision

(iii) Simulation verifies that, out of the many outlier
detection tests, the median test shows better detec-
tion results of MUs in CSS and produces minimum
error probability. The results are further compared
at low SNR values with those of the mean test, quar-
tile test, Grubbs test, and generalized extreme stu-
dentized deviate (GESD) test

The proposed work limitation lies in the parameter selec-
tion of statistical tests. It is noticeable that whenever univar-
iate data samples are selected less than a certain limit, outlier
values near the upper and lower fence of the data distribution
cannot be detected reliably. Hence, the number of SUs should
be sufficient enough to get better sensing results.

The rest of the paper is organized as follows: Section 2
presents the system model. Section 3 gives a detailed descrip-
tion of the proposed MU detection model. Section 4 discusses
the simulation results. The paper is concluded in Section 5.
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2. System Model

All the participating SUs sense the PU status and report their
decisions to the FC. The SUs decide the PU activity locally
and inform FC about their binary decision findings for mak-
ing a global decision. FC collects individual hard binary deci-
sions of the cooperative users and employs HDF schemes to
recommend the final decision about licensed user activity as
shown in Figure 1.

The binary hypothesis about the presence and the
absence of the PU channel is given as

- Hy:  n(l) "
POV Hy s hs(y () [

] J

where x;(1) denotes the energy received by the j*" SU in the "
time slot. H, and H, represent the absence and presence
hypothesis of the PU signal. n,(I) is the AWGN and h; is
the channel gain between the PU and the j™ SU. s(I) is the
PU transmission at the I time slot [23, 24]. The energy sta-
tistic of the PU received by the j™ SU in the i time interval is
given as

In (2), b is the number of samples at the i time interval.
The central limit theorem (CLT) shows that for binary
hypothesis and large sample size, the energy reported by
the participating SUs resembles Gaussian random variables.
The normalized energy is written as

N(uy = b, 07 =2b), H,
W.~ .
" N(u =b(n+ 1), 02 =2b(n;+ 1)), H,
(3)

In (3), n; represents the noise received by the j™ SU. The
mean and variance of the energy statistics are y, and o},
respectively, for the hypothesis H. Similarly, for H,, the
mean and variance of the energy statistics are g, and o7.
The energy statistics collected at each SU locally decide the
existence of the PU status. These statistics are further com-
pared with the predefined threshold value to send the hard
decisions 1 or 0 to the FC [15] as

, We(i) >y,
zj<i>={l 0 ”}, (4)

0, otherwise

where W(i) is the energy statistic of the PU received by the
71 SU in the i interval. y ; denotes the threshold value for the

i reporting user.

2.1. Proposed MU Detection Model. A flow chart of the pro-
posed CSS model is shown in Figure 2, where multiple SUs
sense a spectrum band of the PU and report their observa-
tions to the FC. In the flow chart, simple AND, OR, and
majority voting are the schemes where outlier tests are not
applied and reports are collected from all SUs about PU
activity. Similarly, the modified AND, OR, and majority vot-
ing are those schemes where outlier tests were used for the
MU identification based on all users’ reported information.
The global decision is calculated under both simple HDF
and modified HDF schemes separately, and results are
compared.

Pseudocode 1 of the proposed Algorithm 1 is shown in
Section 3.

3. Pseudocode 1 of Algorithm 1

A pseudocode of the proposed algorithm to solve the given
problem in a stepwise manner is shown. Here, the users take
their hard binary decisions and report the same information
as 1 or 0 to the FC. FC tries to collect and stores user reports
during the N sensing intervals and stores the same in its local
database in Z. The FC takes its final decision normally using
hard decision schemes before collection of enough reports
from the sensing users. At the end of a required number of
iterations, the results in Z are accumulated by finding each
user total sensing data to form vector z. The algorithm calls
statistical outlier detection tests to detect any abnormality
in z results as outlier or malicious data. After the identifica-
tion of MUs, modified HDF schemes are allowed to take deci-
sion based on the sensing reports of the normally declared
users in the subsequent sensing intervals.

3.1. Hard Decision Schemes. A centralized CSS allows SUs to
forward their local sensing results to a central unit where the
final decision of the PU activity is made based on sensing
reports. To categorize the information provided to the FC,
local sensing schemes are divided into HDF and SDF. In
HDF, the SUs convert the sensing reports into binary digits
1 and 0 that represent the PU signal. HDF schemes reduce
both the communication cost and implementation complex-
ity of the system. In the SDF scheme, reports are in the form
of energy values of the PU signal that are forwarded to the
FC. LRT has attained a significant attention out of the differ-
ent SDF schemes.

3.1.1. AND Scheme. In the AND scheme, all SUs have to be
consistent about the reports of PU:

H,: 3 Z(i)=n
Gy = J; 0 , (5)

H,: otherwise

Z,(i) consists of reports in the i™ interval by the SUs. The
channel is declared occupied when all SUs reports the PU
availability where H, is generated by the FC as a global deci-
sion Gg; otherwise, decision H,, is declared.
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FIGURE 1: System model.
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FIGURE 2: Flow chart for the proposed methodology.

3.1.2. OR Scheme. In the OR scheme, if any SU detects the PU
signal, then FC takes it as a global decision and generates H;
otherwise, the global decision is H:

n
Hy: Y zi)z1
Gd: ]':1 .

(6)

H,: otherwise

3.1.3. Majority Voting Scheme. The majority voting scheme is
based on the voting of SUs. If majority users declare the PU
availability, the decision is made in favor of majority voters:

H,: nZiZk
Gy = ;’() , (7)

H,: otherwise

where k is the number of SUs, declaring that PU has occupied
the channel, and 7 is the total number of participating SUs.
The majority voting scheme is the special case of global deci-
sion when k = n/2. The FC applies statistical analysis by com-
bining the reports of all participating users to remove the
nasty data from MUs in the local sensing.

3.2. Statistical Outlier Tests. The outliers in the data are dis-
similar values to the rest of the data set. They are generated
through different mechanisms in the CSS [25]. The outliers
can also be defined as those observations that deviate from
their members in the data sample [26]. In this work, the
reports of the MUs are outliers because from the definition,
outliers are the data samples generated by another



Wireless Communications and Mobile Computing

(1) For i= 1 to total iterations
(2) Forj=I to total SUs
3) if PU is available

(5) if E(; ;> threshold
(7) else

9) end

(10) end

(11) end

(12) if i < Sensing limit

(14) Simple AND

(15) Simple OR

(16) Simple Majority voting
17) else

(18) Identifyz

(21) end

(22) if y" j=1 Zj(i) =n
JEMU

(24) else

(26) end

(28) OR global Decision as H,

(29) else

(30) OR global Decision as H,

(31) end

(2 Yy Z()znn
JEMU

(34) else

(36) end
(37) end of iterations

(4) j " user sensing in i ™ interval E(i, j)
(6) local decision Z(i, j) = 1 (Reporting 1 as hard decision),

(8) local decision Z(i, j) = 0 (Reporting 0 as hard decision)

(13) Compile the results for simple HDF schemes

(19) Run Outlier Tests using zto detect outliers
(20) Compile results for Modified HDF schemes

(23) AND global Decision as H,
(25) AND global Decision as H,

(27) Compile results for Modified HDF schemes if »" j=1 Z(i)=1

(33) Voting global Decision as H,

(35) Voting global Decision as H,,

MU

PseupocobE 1

mechanism; hence, the reports from the MUs deviate from
those reports which are generated by normal SUs [27].

In the proposed model, SUs sense the PU channel and
report their hard binary findings to the FC, where it stores
n SU sensing data reported in N sensing iterations to form
matrix Z as shown in

211 2 Z1n
21 23ttt 2oy
Z= (8)
LZN1  2N2 ZNn |

At the end of the required number of iterations, each user
contribution in sensing is determined by adding total hard
decisions of the SUs to form vector z as given in

Z=) (2i)), i€l,-N. (9)

Outlier detection techniques are called by giving the
result in equation (9) as an argument to declare the users as
normal or abnormal using various detection tests:

Z=z;, z, -z, (10)

Finally, the detected outlier is declared as malicious and



taken out of the hard combination scheme in the following
sensing intervals.

3.2.1. Proposed Outlier Median Test Scheme. This outlier
detection scheme searches for anomaly in the normally dis-
tributed sensing data as in [28]. In the case of univariate data,
the median absolute deviation (MAD) is the robust disper-
sion measure against outliers [28]. Therefore, outlier pres-
ence in the data needs to be properly detected and
removed. Automatic analysis for the detection of these
anomalies in the normally distributed data is mandatory.
The traditional method of the mean plus-minus 3 test based
on the standard deviation of the data follows normal distri-
bution of the data, where 99.87% of the data type occurs
within this range. Similarly, taking decision to remove the
values occurring in 0.13% of all cases is not too conservative
[28]. There are three problems when the mean is considered
the central tendency in the data set. First, the data set has to
be normally distributed when outliers are included. Secondly,
the outliers in the data have a strong impact on the mean and
standard deviation. At last, for any small data sample values,
the outlier detection is not guaranteed. Due to these draw-
backs, the mean test failed to detect outliers in data distribu-
tions when the data sample is limited in size.

Therefore, Miller proposed an outlier indication test
using the median of the data set. This outlier test detects
anomaly for the value of c: it is most conservative when c is
3, medium conservative when c is 2.5, and less conservative
when cis 2 [29]. The constant value of 3 is used in this work.
The limiting point against the users’ total sensing reports in
the z vector is determined in

M - (cxMAD) <z; <M + (¢ x MAD). (11)
The result in (11) is written in a more simplified form as

z,-M
> [+3].
MAD

(12)

The results of the median test are compared further with
those of other outlier tests such as the Grubbs test, GESD test,
and quartile test such as the box and whisker plot and mean
plus-minus 3 test.

3.2.2. Grubbs Test. Frank Grubbs in 1969 proposed an outlier
test to verify some univariate data [30]. The Grubbs test is
used to detect a single outlier in sampled data. This test ana-
lyzes the minimum/maximum values of the sample data and
applies statistics to search outliers. The test statistic is

_ |max value — M|
- -

G (13)

o

where M is the sample mean and ¢ is the standard deviation
given by

2(zi - 2)2

e (14)

o=
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In (14), S is the number of data values, z; is the maximum
value of the row vector, and z is the mean value of the vector z
. The following steps are used in the Grubs test to detect sus-
picious report as an outlier.

(i) Find the G test statistics using (13) for the users’
sensing reports in z

(ii) State the null and alternative hypotheses about the
existence of outliers in z

(iii) Find the G critical value from the table and select the
confidence level. The default confidence level is 95%

(iv) Compare the tested G statistic with the G critical
value

(v) The maximum value in z is an outlier if the test sta-
tistics are greater than the critical value

The Grubbs tests can be used to detect and remove outlier
values from the minimum values of the data sample as given
in

_ |M — min value|

G (15)

(o}

3.2.3. Generalized Extreme Studentized Deviate (GESD) Test.
GESD is an iterative hypothesis test proposed by Rosner in
1983. It can spot one or more outliers in a data set. In this
test, the upper bound or the total number of outlier values
is given in the null hypothesis. After that, a separate test is
performed by using the Grubbs statistics as given in [31]

z.— M
= DM, (16)

where M and o denote the mean and standard deviations in
the data. The observation corresponding to max |z, — M| is
removed using Grubbs statistics, and T, is computed from
the remaining sample. A sample mean and standard devia-
tion are computed for the remaining n — 1 data values. This
process is repeated until T is determined for a prespecified
k. Here, k represents the number of outliers in the data set
known as the upper bound specified in the null hypothesis
[32].

3.2.4. Mean Test. This method is based on the characteristics
of normal distribution of data. It is necessary for the outlier
test to detect the presence of the outlier’s data. In [33], the
mean plus-minus 3 standard deviation scheme is formulated
as

Z—(ax0)<z;<Z+ (axo), (17)

where Z denotes the sample mean and o denotes the standard
deviation of z. The constant parameter a is carefully selected
which is 3 here to produce accurate results. The value z; is an
outlier in the z if it exceeds the upper boundary of the data
sample such as z; <z + (ax o) or if the data value exceeds
the lower boundary, i.e, z— (a x o) <z; [28]. It is guiding
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the outlier detection test where the indicator itself is altered
by the existence of outlying values in the data.

3.2.5. Quartile and Percentile Test (Box-Whisker Plot). Tukey
in 1977 proposed a graphical outlier indication test to iden-
tify the skewness and unusual data points in the data distri-
bution [34]. It can detect one or more outlier values in the
data set and can also detect outliers in the upper and lower
boundaries of the data samples [35]. The following are the
steps of the quartile and percentile test.

(i) Determine the first quartile of the data as the 25
percentile (Q,) in z

(ii) Identify the third quartile of the data as the 75" per-
centile (Q;) inz

(iii) Determine the interquartile range (IQR) of the z vec-
tor as

IQR=Q, - Q,. (18)

(iv) A data value is considered an outlier in the lower
fence if it exceeds the results in

Q, - 1.5(IQR). (19)

(v) Similarly, a value is considered an outlier in the upper
fence of the data set if it exceeds the results in

Q; + 1.5(IQR). (20)

Figure 3 shows the diagram of the box-whisker plot. All
parameters are indicated in the figure.

3.3. Modified HDF Schemes. After detecting the reports of
MUs at the FC, global decision is made by FC in the modified
form in the subsequent sensing intervals. In the modified
AND scheme, sensing reports of the normally declared coop-
erative users are considered in the global decision. Similarly,
the reports received from the detected outliers such as MUs
are deleted in this combination. Hence, the modified equa-
tion of the AND decision scheme now takes the following
form:

n
H,: z Zj(i) = NMModified
Gy= J=1 . 21
d #MU (21)

H,: otherwise
In the modified AND scheme, only normal SU 7y 4ifieq

sensing reports about the presence of PU are considered,
whereas the reports of OMUs and LMUs are discarded.

The criteria for the decision of the OR scheme are modi-
fied as

Hy: ) Zi)=1
Gy= j=1 . 22
¢ MU (22)

H,: otherwise

The modified majority voting scheme takes its global
decision based on the reports of normally declared users.
After the filtration and elimination of the MUs, the modified
majority voting scheme decision is given as

n
H,: Z Z;(1) > kyjodified
i=1

G, = = N 23
d #MU (23)

H,: otherwise

where ky;o4iseq 1S the number of sensing reports received from
the normal SUs that declare the presence and absence of the
PU signal by H, andH, respectively.

4. Simulation Results

In this section, we present simulation results of the proposed
outlier detection-based HDF schemes and compared them
with other statistical outlier schemes. In the simulation, the
number of MUs varied in the cooperating environment to
investigate the overall effect in the CSS. The simulation
parameters are defined in Table 1.

4.1. Case I: Median Test Results. In case 1, the results for the
median test are plotted using HDF schemes. The median test
results in Figures 4 and 5 are compared with those of the sim-
ple HDF schemes. Figure 4 shows the simulation results
when there are no MUs in the cooperative environment. It
is observed that when the proposed median test is applied,
the error probability reduces than when the traditional
HDF scheme is applied. In Figure 4, an increase in SNR from
-30dB to -15dB results in an abrupt change in the error
probability for proposed OR and AND schemes, where error
probability reduces from 0.47 to 0.25 for the OR scheme. In
the AND decision scheme, error probability starts at 0.50 that
gradually reduces to 0.23 when SNR exceeds from -30dB to
-10dB for the proposed outlier test. Similarly, the proposed
majority voting error probability is reduced from 0.26 to
0.25, when SNR is increased from -40 dB to -10 dB. The pro-
posed HDF schemes show better sensing results with mini-
mum error probabilities, while the simple HDF schemes
result in maximum error probability.

In Figure 5, the number of LMUs is increased to five with
one OMU reporting with normal SUs. In this case, error
probability remains high for the traditional HDF schemes
while the proposed test has a reduced error probability. It
can be observed that for the simple HDF schemes when the
number of MUs is increased, the error probability remains
high at all SNR values, i.e., 0.53 approximately for the simple
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FIGURE 3: Box-whisker plot.

TaLe 1: Simulation parameters. 4.2. Case 2: Performance Comparison of the Proposed Scheme

Parameter Value with Other Statistical Outlier Test Schemes. In this case, we
present the performance comparison of the proposed median

TOtafl .number of users 40 test with the other statistical outlier tests in Figures 6-11.
Malicious users 2 HDF schemes are plotted separately and compared with out-
SNR range -40dBto-10dB  Jier tests. The comparison is made for HDF schemes in the
Number of samples in each interval 270 following scenario in CSS.
Sensing iterations 1000
Iteration range for simple HDF 1-500 (1) When no MU exists in the network
Iteration range for modified HDF 501-1000 (2) When five LMUs and one OMU exist in the network
Time consumption 1 msec

OR scheme and 0.5 for the simple AND scheme. Similarly,
for the simple majority voting scheme, the error probabil-
ity starts at 0.28 approximately and gradually reduces to
0.26. The proposed AND scheme has an error probability
of 0.5 at the SNR value of -40dB that sharply reduces to
0.26 when SNR is increased from -25dB to -10dB. The
proposed OR scheme has an error probability of 0.48 at
the SNR value of -40dB that reduces to 0.25 at the SNR
value of -10dB. Similarly, in the case of the proposed
majority voting scheme, error probability starts at 0.26
approximately and remains lower than that in the simple
majority voting scheme.

The results of percent decrease in error probability of
the modified and traditional HDF schemes at different
SNRs values are illustrated in Table 2 in the presence of
LMUs and OMU. The table result shows that when
SNRs = —26 dB, the proposed voting scheme results in bet-
ter sensing performance with 9.1% minimum sensing
error probability compared with the simple voting
scheme. Similarly, the proposed OR scheme obtained
8.9% reduction in error probability as compared with
the simple OR scheme, while the proposed AND decision
scheme has 0.4% reduction in the error probability results
compared with the simple AND combination scheme. As
the SNRs are increased to -10dB, the percent decrease in
error probability of the proposed HDF schemes is further
improved for the proposed voting (9.8%), proposed OR
(1.7%), and proposed AND (47.1%) schemes compared
with the simple voting, simple OR, and simple AND deci-
sion schemes.

4.2.1. Scenario 1: OR Scheme. A global decision of the OR
scheme is made when a single SU detects the presence of a
PU signal; hence, there is a chance of error in the sensing
report. In Figures 6 and 7, the results for the OR scheme is
investigated for all outlier tests along with the results of the
simple HDF (OR) scheme in the global decision. These fig-
ures show that the proposed test scheme is outperforming
other statistical outlier test schemes, when there is no MU
in the network. The SNR varies from -40dB to -10dB. In
the simple OR scheme, error probability starts at 0.51 that
reduces after -20dB and reaches a value of 0.38 approxi-
mately at -10 dB. All the statistical outlier test schemes have
a starting error probability of 0.49 which is lower than that
of the simple HDF OR scheme and abruptly reduces after
-30dB. The mean test results are with maximum error prob-
ability among all other outlier detection tests as SNR ranges
from -30db to -10dB which is followed by the GESD,
Grubbs, and quartile tests. The proposed median outlier test
scheme has minimum error probability from -30dB to
-10dB.

In Figure 7, there are five LMUs with one OMU and 34
normal SUs reporting to FC for a global decision. The simple
HDF scheme has an error probability of 0.51 approximately
at -40 dB that is slightly reduced to 0.49 at -10 dB. Similarly,
all the statistical outlier tests have the same probability of
error up to -25dB which is slightly reduced to 0.47 approxi-
mately for the mean test. For the GESD test, the P, is 0.45 at
-10dB, and for the Grubbs test, the P, is 0.43 approximately
at -10 dB. These results further reduce to 0.26 approximately
for the quartile test at the SNR value of -10dB. Similarly,
when the SNR value exceeds -25dB, the proposed test
scheme curve is skewed down to the error probability of
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FiGure 5: Five LMUs and one OMU with 34 normal SUs in the network.
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TABLE 2: Percent decrease in the error probabilities for modified HDF schemes.

Decision schemes SNR values
-26dB -22dB -18dB -14dB -10dB
Simple vs. proposed voting 9.1% 9.1% 9.1% 9.1% 9.8%
Simple vs. proposed OR 8.9% 11% 21.3% 38.7% 51.7%
Simple vs. proposed AND 0.4% 2.6% 14% 32.2% 47.1%
0.55 T T T T T
7 S S S S
0.45
22 0.4+
g
g
T 035
iy
%
<
& 0.3
0.25
0.2 T T T T T
-40 -35 -30 -25 -20 -15 -10
SNRs (dB)

—©— Simple OR
———-- Grubbs OR
—A— Mean OR

—+— GESD OR
—#— Quartile OR
————— Proposed OR

FiGURE 6: No MUs with 40 normal SUs in the network.

0.25 at -10 dB, which is the minimum error probability of all
outlier tests.

The results in Table 3 illustrate the percent decrease in
the error probability of the proposed median test-based OR
HDF combination scheme as compared with other outlier
detection tests in the presence of LMUs and OMU at various
SNRs. The table shows that at -26 dB, the proposed OR HDF
scheme results in better sensing performance with 1.67%
reduction in sensing error probability compared with the
mean OR, GESD OR, Grubbs OR, and quartile OR test
schemes. Similarly, as SNRs are increased to -10 dB, the per-
cent decrease in error probability of the proposed OR HDF
scheme is further improved as compared with that of the
mean OR (91.4%), GESD OR (81.7%), Grubs OR (72.7%),
and quartile OR (4.87%) test schemes.

4.2.2. Scenario 2: AND Scheme. When all the SUs confirm the
presence of the PU signal, a global decision is made in favor
of the AND scheme. This scheme is tested at the same SNR

values of -40 dB to -10dB. In Figure 8, no MUs are included
in sensing. Therefore, the simple HDF scheme performed
moderately with an error probability of 0.50 which proceeded
to 0.37 approximately at -10 dB. Similarly, other outlier tests
have minimum error probabilities compared with the simple
HDF scheme at -10dB. The mean test has P, =0.36, the
GESD test has P, =0.3, and the Grubbs test, quartile test,
and proposed test have P,=0.27 approximately. It is
observed that for the SNR values between -30dB and
-15dB, the proposed median test scheme has the best perfor-
mance with minimum error probability.

The simple HDF scheme has poor sensing performance
when MUs appear in sensing with constant P, = 0.52 approx-
imately from -10dB to -40dB as observed in Figure 9. The
same maximum P, of 0.52 is observed for all outlier tests
from -40 dB to -20 dB. These results are followed by the mean
test that has P, = 0.46, Grubbs and GESD tests with P, = 0.45
, and quartile test with P, =0.34 approximately at -10dB.
The proposed median test has P, = 0.28 at -10dB, which is
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Table 4 shows the performance gain in terms of percent
decrease in error probabilities at different SNR values for
the proposed outlier detection test using the AND HDF

lowest in all the outlier test schemes. The proposed median
test surpasses all other outlier tests at SNR values from
-15dB to-10 dB with the minimum P, of 0.28 at -10dB.
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scheme containing LMUs and OMU. The table shows that at
-26 dB, the proposed AND HDF scheme results in better per-
formance gain with 0.19% decrease in sensing error probabil-
ity compared with the mean AND, GESD AND, Grubbs

AND, and quartile AND schemes. Similarly, as the SNRs
are increased to -10 dB, the percent decrease in error proba-
bility of the proposed AND HDF scheme is further improved
as compared with the mean AND (64.7%), GESD AND
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TAaBLE 3: Percent decrease in the error probabilities for the proposed OR HDF scheme.

Decision schemes SNR values

-26dB -22dB -18dB -14dB -10dB
Proposed OR vs. mean OR 1.67% 5.8% 23.2% 53.1% 91.4%
Proposed OR vs. GESD OR 1.67% 5.8% 23.2% 51.5% 81.7%
Proposed OR vs. Grubbs OR 1.67% 5.8% 23.2% 48.4% 72.7%
Proposed OR vs. quartile OR 1.67% 3.47% 16.6% 7.27% 4.87%

TABLE 4: Percent decrease in the error probabilities for the proposed AND HDF scheme.
Decision schemes SNR values
-26dB -22dB -18dB -14dB -10dB

Proposed AND vs. mean AND 0.19% 5.71% 24.2% 49.7% 64.7%
Proposed AND vs. GESD AND 0.19% 5.71% 23.5% 46.7% 59.7%
Proposed AND vs. Grubbs AND 0.19% 5.5% 24.2% 48.5% 60.8%
Proposed AND vs. quartile AND 0.19% 5.7% 22.5% 32.9% 22%

(59.7%), Grubbs AND (60.8%), and quartile AND (22%)
schemes.

4.2.3. Scenario 3: Majority Voting Scheme. For simulation
purposes, k =n/2 is selected for the majority voting scheme,
where more than one SU has to declare the PU channel avail-
able to make its decision about the presence and absence of
PU; otherwise, PU absence is declared. Figure 10 shows the
results without any misbehaving users. The simple voting
scheme has maximum P, with a starting value of 0.51 at the

SNR value of -40dB and reduces to a value of 0.26 at the
SNR value of -10dB. All outlier tests give similar P, results
at all SNR levels. The proposed median test results are
slightly improved giving low P, values from SNR values of
-35dB to -20 dB which are significantly lower than those of
the simple HDF of the majority voting scheme.

The value of P, is increased for the simple majority voting
scheme when MUs transfer reports in the sensing interval.
From Figure 11, it is observed that P, of the simple majority
voting scheme is 0.51 approximately at -40dB and after
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TaBLE 5: Percent decrease in the error probabilities of the proposed voting scheme.

Decision schemes SNR values

-26dB -22dB -18dB -14dB -10dB
Proposed voting vs. mean voting 16.7% 17.4% 13.3% 5.5% 0.4%
Proposed voting vs. GESD voting 16.4% 17.4% 11.8% 3.9% 0.4%
Proposed voting vs. Grubbs voting 16.4% 17.4% 13.3% 5.5% 0.4%
Proposed voting vs. quartile voting 15% 13.3% 7.6% 1.6% 0.4%
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0.15 0.2 0.25
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—#— Proposed OR
—A— Simple AND

—~A— Proposed AND
---- Simple voting
---- Proposed voting

FIGURE 12: Probability of detection (Py) vs. probability of false alarm (P;) for the simple and modified HDF schemes with normal SUs and

MUs.

-30dB it reduces further to 0.26. Outlier test schemes show
that P, is between -35dB and -15dB and is minimized
slightly compared with that of the simple majority voting
scheme. On the other hand, the proposed median test scheme
shows significance upon all outlier test schemes from SNR
values of -35dB to -15dB. It is observable from the simula-
tion results that the outlier test scheme detects falsifying
reports of MUs and removes them in the final decision that
decreases the error probability.

The overall performance gain of the voting scheme is bet-
ter than that of the AND HDF and OR HDF schemes by
establishing minimum error probability. Table 5 illustrates
the results of percent decrease in the error probabilities
obtained by the proposed outlier detection test using the vot-
ing scheme in the presence of LMUs and OMU at different
SNR values. At -26 dB, the proposed voting scheme results
in better sensing performance with 16.7% decrease in sensing
error probability compared with the mean voting scheme,
16.4% decrease compared with the GESD voting and Grubbs
voting schemes, and 15% improvement compared with the
quartile voting scheme. As the SNRs are i5ncreased to
-10dB, the percent decrease in error probability of the pro-

posed voting scheme is 0.4% as compared with that of mean
voting, GESD voting, Grubs voting, and quartile voting
schemes.

The receiver operating characteristics (ROC) with proba-
bility of detection P vs. probability of false alarm P; are col-
lected in the presence of LMUs and OMUs in Figures 12-15.
In Figure 12, the results are plotted for simple HDF and pro-
posed (modified) HDF schemes. The simple OR HDF results
are highly deteriorated by producing high P; values with the
contributions of MUs, whereas the proposed (modified) OR
decision scheme gives better detection results. Similarly,
AND combination scheme detection probability with the
employment of the proposed median test has better detection
results with minimum false alarm than the detection proba-
bility of the traditional AND decision scheme. Likewise,
detection results of the proposed voting scheme remain supe-
rior and surpass those of all other HDF schemes in Figure 12.

The modified scheme ROC results are further compared
with those of the other outlier detection tests to investigate
the proposed test superiority. Figure 13 shows the result illus-
trations for the OR HDF scheme which was compared with
the other outlier detection tests. It is observable from the
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FIGURE 13: Probability of detection (Py) vs. probability of false alarm (P;) of the OR HDF schemes with the normal SUs and MUs.
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FIGURE 14: Probability of detection (P4) vs. probability of false alarm (P) of the AND HDF schemes with the normal SUs and MUs.

results in Figure 13 that the proposed median outlier test has
attained maximum detection probability, whereas the simple
OR HDF scheme shows minimum detection probability. The
median test performance is next followed by the quartile and

corresponding Grubbs tests. The mean and GESD tests pro-
duce similar detection results with their detection probabili-
ties comparatively limited as compared with the detection
probability of the proposed test.
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FIGURE 15: Probability of detection (P,) vs. probability of false alarm (P;) results of the voting HDF schemes with the normal SUs and MUs.

In Figure 14, it is noticeable that the proposed median
test-based AND HDF scheme has high detection probability
with minimum false alarm probability in comparison with
the other outlier-based detection results. The proposed
median test-based ROC results are followed by the quartile
test, GESD test, and Grubbs test. The mean test has the min-
imum detection probability as compared with all other out-
lier detection tests.

The voting HDF scheme ROC results are shown in
Figure 15 to compare the proposed and various outlier detec-
tion tests. In Figure 15, all other outlier detection tests give
similar detection results, while the proposed median test is
able to achieve significant improvement over all other outlier
detection tests.

5. Conclusion

The CSS is reliable in detecting the presence and absence of
the PU signal; however, the participation of the MUs in the
CSS results in false report collection at the FC. This research
work considered the involvement of the MUs in the CSS. An
improved statistical analysis is employed for spectrum sens-
ing in the CRN. The focus in this research work is to boost
the performance of the traditional HDF schemes with some
statistical analysis. The false reports of the MUs can be effi-
ciently detected using different outlier tests. The results of
the four outlier tests are compared and concluded that the
median plus-minus 3 test outperforms other statistical out-
lier detection tests. The proposed outlier test is accurately
detecting the behavior of the LMU and OMU in the CSS.
For future work, it is recommended that these outlier sta-
tistics should be further investigated by applying them to

detect the MU behavior of always yes, always no, and random
opposite categories of the MUs. Similarly, other categories of
outlier detection techniques such as density-based, depth-
based, and cluster-based schemes can be employed.
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