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As an emerging type of Internet of Things (IoT), Internet of Vehicles (IoV) denotes the vehicle network capable of supporting
diverse types of intelligent services and has attracted great attention in the 5G era. In this study, we consider the multimedia
content caching with multicast beamforming in IoV-based vehicular edge networks. First, we formulate a joint vehicle-to-
vehicle- (V2V-) assisted clustering, caching, and multicasting optimization problem, to minimize the weighted sum of flow cost
and power cost, subject to the quality-of-service (QoS) constraints for each multicast group. Then, with the two-timescale setup,
the intractable and stochastic original problem is decoupled at separate timescales. More precisely, at the large timescale, we
leverage the sample average approximation (SAA) technique to solve the joint V2V-assisted clustering and caching problem and
then demonstrate the equivalence of optimal solutions between the original problem and its relaxed linear programming (LP)
counterpart; and at the small timescale, we leverage the successive convex approximation (SCA) method to solve the nonconvex
multicast beamforming problem, whereby a series of convex subproblems can be acquired, with the convergence also assured.
Finally, simulations are conducted with different system parameters to show the effectiveness of the proposed algorithm,
revealing that the network performance can benefit from not only the power saving from wireless multicast beamforming in

vehicular networks but also the content caching among vehicles.

1. Introduction

Smart devices equipped with the capability to interact with
the physical environment and the function to communicate
with each other are prompting the Internet towards the so-
called Internet of Things (IoT) [1]. IoT holds the promise
to improve our lives and the way we interact with devices,
such as actuators, sensors, cell phones, and home automa-
tion. With the ever-increasing proliferation of IoT devices,
the worldwide multimedia traffic is anticipated to experi-
ence a rapid growth in the 5G era [2]. Different from the
legacy IoT with information exchange at the byte level,
image, audio, video, and other traffic in the 5G era are typ-
ically with a large volume of information, thereby bringing
forth the new terminology, namely, multimedia IoT
(MIoT). As an emerging type of IoT, MIoT denotes the
IoT with multimedia traffic as outputs and inputs and has
been extensively used in healthcare, smart homes,

communication-based train control system (CBTC), and
Internet of Vehicles (IoV) [3-6].

The introduction of IoV-based vehicular edge networks
and the increasing demand for IoV services have imposed
more stringent constraints on the quality-of-service (QoS)
requirements of image and video, particularly for high-
quality real-time multimedia services in fast-moving vehicles.
These constraints indeed pose challenges in exploiting the
full potential of vehicle-to-vehicle (V2V) communications,
e.g., resource allocation, multiple-input-multiple-output-
(MIMO-) based beamforming, network architecture, multi-
cast routing, and dynamic controls [7-9].

To better cope with these constrains imposed on multi-
media content retrieval in IoV-based vehicular edge net-
works, wireless content caching begins to emerge as
promising solutions [10]. By bringing multimedia contents
closer to vehicles via prefetching them from the Internet or
core networks, the traffic loads and network costs can be
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significantly reduced. In the meantime, the QoS for IoV
applications could also be improved, since lower access delay
and higher data rate are enabled by caching in edge nodes
(e.g., base stations (BSs) and roadside units (RSUs)). There-
fore, wireless content caching contributes to the agile multi-
media content distribution with a higher data rate and
enhanced broadband connectivity. On the other hand, as
the extension of unicast transmission and by exploiting the
broadcast nature of wireless channels, the point-to-
multipoint multicast transmission provides a more efficient
capacity-offloading approach, to deliver the identical content
to multiple vehicles on the same frequency band. Thus, the
integration of caching with multicasting becomes the key
enabler in JoV-based edge networks, which could not only
reduce the flow (traffic) cost in core or transport networks
but also improve the spectrum efficiency in vehicular edge
networks [11].

Besides, there have been some works related to caching-
based multicast beamforming design [12-15]. Nevertheless,
the integration of caching with multicasting in vehicular
edge networks is not smooth and still faces several chal-
lenges, due to the following observations. First, the caching
decision needs to operate at the large timescale (e.g., several
minutes), and the multicast beamforming has to be tailored
at the small timescale (e.g., several seconds) to exploit the
mobility. That is, it is a prerequisite to decouple the joint
caching and multicast beamforming to different timescales.
Second, when the edge network is confronted with IoV in
the 5G era, numerous vehicles emerge to assist the V2V
communications between each other. Thus, although with
smaller storage size compared to the BS, caching profits
in vehicles are nonnegligible, which yet has not been stud-
ied thoroughly, especially in the caching-based multicast
beamforming. Third, the cooperative multicasting necessi-
tates the clustering of vehicles (namely, deciding on which
vehicle should be picked into the cluster to serve the same
receiver), which needs to be optimized at the large time-
scale as well.

In this paper, we study the joint V2V-assisted clustering,
caching, and wireless multicast beamforming in vehicular
edge networks. The distinctive features of this work are as
follows:

The distinctive features of this work are as follows:

(1) We present a two timescale-based V2V-assisted clus-
tering, caching, and multicast beamforming problem,
with the objective of minimizing the total network
cost (involving both flow and power costs), subject
to the QoS constraint for each multicast group, and
the caching memory limitation for each vehicle. With
the two-timescale setup, different types of variables
are decoupled at separate timescales

(2) Atthelarge timescale, we leverage the sample average
approximation (SAA) technique to resolve the joint
clustering and caching problem. We first reformulate
and relax the stochastic original problem as a deter-
ministic integer linear programming (ILP) one and
then exhibit the equivalence of optimal solutions
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between the original one and its relaxed linear pro-
gramming (LP) counterpart, thereby simplifying the
computation substantially

(3) We leverage the successive convex approximation
(SCA) method to solve the multicast beamforming
problem at the small timescale. As such, the original
nonconvex problem can be transformed into a series
of convex subproblems, with the convergence
assured

(4) Simulations are executed with different system
parameters to show the effectiveness of the proposed
algorithm, as well as the convergence of the proposed
two-timescale setup. Simulation results reveal that
the system performance could benefit from both the
power saving from multicasting and the content
caching among vehicles

The remainder of this work is organized as follows. In
Section 2, we list works related to caching-based multicasting
and V2V-assisted caching, respectively. In Section 3, we pres-
ent the system model and formulate a joint clustering, cach-
ing, and multicast beamforming problem, to minimize the
total network cost subject to QoS constraints. In Section 4,
we leverage the SAA and SCA methods to solve the large-
and small-timescale problem, respectively. In Section 5, we
present and discuss the simulation results. We conclude this
paper in Section 6.

2. Related Work

Some recent studies related to caching-based multicast
beamforming and V2V-assisted caching in edge networks
are presented. We believe these works can motivate more
achievements in the academia and industrial domain.

2.1. Caching-Based Multicasting. In the literature, multicast
beamforming has emerged as an effective approach to miti-
gate the interference in cellular systems, e.g., in smart-grid
powered cellular networks [16] or in full-duplex cellular net-
works [17]. Furthermore, the integration of caching and mul-
ticasting could multicast the identical content to multiple
receivers in the same frequency band, and thus attracts sig-
nificant interests.

In particular, in the cache-enabled cloud radio access
network (RAN), Tao et al. [12] investigated the joint
design of content-centric BS clustering and multicast
beamforming for wireless content delivery. In particular,
the problem is formulated as one mixed-integer nonlinear
programming (MINLP) problem, and a sparse multicast
beamforming algorithm is proposed based on the L, norm
approximation. In the two-tier heterogeneous networks,
Cui et al. [13] considered a random caching and multi-
casting mechanism with caching distributions as design
parameters, to enable the efficient content dissemination.
First, the successful transmission probabilities in the gen-
eral and high signal-to-noise ratio region are derived via
stochastic geometry; then, a nonconvex joint caching and
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multicasting problem is formulated to maximize the suc-
cessful transmission probability in the asymptotic region.

Also, in cache-enabled ultradense cellular networks,
Nguyen et al. [14] proposed a cooperative multicast beam-
forming approach to improve the cost-efficiency. Besides,
Zhou et al. [15] minimized the energy cost in a multicell
multigroup setup, involving caching, computing, and com-
munication resources.

2.2. V2V-Assisted Caching. As an analogous terminology to
V2V, device-to-device (D2D) caching refers to the caching
of popular contents in mobile devices. D2D could directly
deliver the content to adjacent devices, thereby offloading
the BS’s traffic. Malak et al. [18] leveraged the stochastic
geometry theory to derive the outage probability in the
presence of interference and noise, designed the distributed
caching strategy, and maximized the density of successful
receptions. Jiang et al. [19] modelled the local caching as a
backpack problem and characterized the D2D pairing as
the maximum weight matching problem in the bipartite
graph, to maximize the BS traffic offloading. In addition, Cac-
ciapuoti et al. [20] claimed that in D2D networks, caching
performance is closely related to devices’ interests and prefer-
ences in multimedia contents. In particular, content popular-
ity focuses on community interests, while device preference
reflects the difference of request probability between different
individuals. Therefore, Zhang et al. [21] designed a unified
D2D-caching utility function, not only considering the
D2D communication distance but also incorporating the
similarity of preferences among adjacent devices.

With recent advents in the IoV paradigm, Su et al. [7]
developed an edge caching mechanism in RSUs. Specifically,
involving the content access pattern, vehicle velocity, and
traffic density, the features of content requests are analysed,
followed by a model to decide whether and where to cache
the content. By proposing an analytical model, Tan et al.
[22] quantified the effects of velocity, traffic density, and
service rate on the content hit ratio. Also focusing on the
edge caching in RSUs (termed as edge nodes therein), Zhao
et al. [23] proposed one cost-efficient method to minimize
the time-averaged service response delay, by jointly studied
caching, request routing, and wireless resource allocation
over the long run in an online manner. To solve the
dynamics in IoV, Lyapunov optimization is leveraged to
make near-optimal decisions, with a stable system assured.
In addition, Xiao et al. [24] proposed one adaptive and
dynamic user-centric virtual cell scheme to facilitate the
multicasting of vehicular-to-everything (V2X) message,
followed by a max-min fair problem formulation. Further-
more, focusing on 802.11p protocols rather than 3GPP
standards, Wu et al. [25] proposed one semi-Markov deci-
sion process- (SMDP-) based formulation to maximize the
long-term reward in vehicular edge networks, by jointly
considering the transmission delay, computing delay, and
task diversity.

2.3. Discussions. Edge computing and edge caching have
attracted lots of attention [26-28]. The aforementioned
works typically solve the clustering and multicast beamform-

ing optimization at the same timescale. Nevertheless, it is
often the case that the clustering and caching execute at a
much larger timescale, while the multicast beamforming is
tailored per small timescale to exploit the fast fading of wire-
less channels. Although Qiao et al. [28] decoupled content
placement and content delivery at different timescales in
vehicular edge networks, the multicast transmission was
ignored, which possibly incurs low-spectrum efficiency. That
is, it is a prerequisite to propose a joint clustering, caching,
and multicast beamforming algorithm in vehicular edge
networks on the basis of a two-timescale setup.

3. System Model and Problem Formulation

Vehicular edge network with one BS and multiple IoV
devices is considered. The BS is equipped with L antennas,
and each vehicle has one single antenna. As shown in
Figure 1, in the context of V2V communications, the content
requesting vehicle (CRV) could not only attach to the BS via
cellular links but also associate with content caching vehicles
(CCVs) directly. The BS is indexed by j = 0, while CCVs are
denoted by # ={1, -+, j, -+, J}. Furthermore, #, = # U {0}
denotes as the set of all transmitters. Meanwhile, the CRV's
with the identical content request are categorized into
one multicast group, and all multicast groups are denoted
by & ={1,--,s,--+,S}. For each multicast group s€ &, its
all associated CRVs are denoted by .7, and U, o7 =S
holds, where .7 is the set of all CRVs. In addition, we follow
the equal content size for all contents [12], namely, each of
which is chunked and normalized to the size of one.

3.1. Two-Timescale Setup. Mixed-timescale setup in [29, 30]
is incorporated in this study. Each large timescale accommo-
dates multiple successive small timescale slots, e.g., a total of
T slots, denoted by 7 = {1, ---, T}. In addition, in each slot,
the beamformer is designed for each multicast group, to
exploit the fast fading and mobility experienced by CRVs.
As revealed in Figure 2, at the end of each large timescale,
the network operator has to decide the CCV clustering (i.e.,
the CCVs serving for the same multicast group) and the con-
tent caching for transmitters. Then, following this decision
unchanged throughout the next large timescale, the picked
content is cached in the local memory or storage in both BS
and clustered CCVs.

In this work, we assume that all multicast groups can be
admitted and satisfied with their content requests. The case
also occurs that insufficient resources cannot accommodate
all multicast groups (e.g., in [31]), which is yet beyond the
scope of this work.

Afterward, following the two-timescale setup, two types
of variables can be specified as:

(i) Large-timescale variables: x,; € {0, 1} and z; € {0, 1},
indicating whether or not that transmitter j belongs to
the serving cluster of group s, and whether or not that
transmitter j caches the content requested by group s,
respectively. That is, x,; € {0, 1} indicates a clustering
variable: if x, ; = 1, then transmitter j is within the clus-
ter of 5; and x, ; = 0 vice versa

>,
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FIGURE 1: System model of vehicular edge networks.
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FIGURE 2: Two-timescale setup.

(i) Small-timescale variables: w,(f) € C**! (or w;(t)
€C,je 7), denoting the per-slot multicast beam-
forming vector of the BS (or CCV j) for group s

The two-timescale setup along with its two types of vari-
ables necessitates a network cost involving both the flow and
power costs, which will be introduced in the following,
respectively.

3.2. Caching Model. At the end of large timescale, both the
clustering variable {x,;} and caching variable {z,;} have to
be designed for the next large timescale. It is straightforward
that if the content is not cached in the network, then it must
be retrieved via the backhaul link from the Internet, as shown
in Figure 1, thus incurring flow cost in the backhaul link or
transport networks. The data rate of fetching content from
core networks should be as least as the transmission rate of
its associated multicast group. Following the fixed transmis-
sion rate R, in [12] for each multicast group s, the total flow
passing through the backhaul link on the BS can be repre-
sented as ) . o(1—z,o)R;. In particular, when z., =1, the
immediate transmission from the BS to CRV i does not incur
any flow cost on the backhaul link, and z,, =0 vice versa.
Besides, different from the BS, CCVs could not directly
retrieve the content through the backhaul link from the
Internet or core networks. Without caching, CCVs have to
resort to the BS for the content retrieval, which would claim
a dedicated frequency band to avert the interference to CRVs,
thereby contributing to the flow cost as well. As such, the flow

cost should involve both the backhaul cost and frequency
bandwidth cost, and the latter one could be equivalently
translated to the former one in terms of fixed transmission
rate R.. Till now, the total flow cost (on the backhaul link
and dedicated frequency band) can be represented as

Ce=) ) (1-2,)R.

sesje g,

(1)

Then, for the clustering variable x, ;, it is irrational to

cache the requested content in transmitter j when it is not
picked to join the cluster of multicast group s. That is, z;

could only take value zero when x, ; = 0 holds, which can be
formulated as

Z; <X

S,j Vs, ] : (2)
Next, also revealed in Equation (2), z i tends to take value
one to save the flow cost, given xg;=1.Yet, finite storage size

in CCV's constrains the cached content number, namely, only
parts of contents can be accommodated in each transmitter j,
written as

2.2 < iV, (3)

ses

which indicates the caching capacity constraint C; with a
normalized content size of one.
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Finally, although the caching function does also incur
costs for both BS and CCVs, we only focus on the trade-oft
between backhaul cost and power cost, and the study on
caching cost is beyond the scope of this work.

3.3. Multicast Model. The multicast beamforming vector is
tailored per slot. For w,(t) =
(Wi (£), wh (8), -+, wff](t)]H be the network-wide beamform-
ing vector for group s from all transmitters [32]. Further-
more, for each CRV i€ .7, h,(t) e CX*/)*! denotes as the
aggregate channel vector from all transmitters to CRV i. As

such, the received signal-to-noise-ratio (SINR) for CRV i at
slot ¢ can be written as

simplicity, let

0l (1w (1)

SINR,(t) = — s
Y ws[h (w ()] + o

Vie F,s, (4)

where 07 is the additive white Gaussian noise power per CRV
2, . .

and Y '#s/h(t)w,'(t)|” is the intergroup interference from

any other multicast group s’ #s. For each group s, it is

ensured that the achievable data rate of any CRV i is no
smaller than its group’s fixed transmission rate R, namely,

Blog, (1 +SINR;(t)) 2R,Vie 7, (5)
which can be further recast as
SINR;(¢) 22" - 1Vie 7,5, (6)

where B denotes the frequency bandwidth.

Furthermore, considering any pair of transmitter j and
multicast group s, if j does not belong to the serving cluster-
ing of s, then it is irrational to design a nonzero beamforming
vector for s. That is to say, if x,;=0 holds, then we have
w(t) =0 (or w,(t) =0) at any time slot ¢, which can be

s,j
represented as

(1 - xs,O)ws,O(t) = O’VS’ t

(1—x;)w,;(t)=0Ys, je 7,t. @)

Moreover, since each transmitter is with the maximum
transmit power threshold, the peak power budget E; per
transmitter should be imposed as

Y l[weo(0)|[3 < Eg¥t,
ses

2 |y (0)][; < Epvie £t
se§

(®)

In addition, summing over the transmit power of all
network-wide beamforming vectors, the total power cost
can be computed as

Co= 3 Y YW ©)

teT se§

which is averaged over all time slots in one large timescale. In
particular, Cp, is exactly defined as the time average of small-

timescale transmit power cost Y .. ¢|[w,(£)|[5.

3.4. Problem Formulation. Finally, involving both the flow
cost and power cost, the overall cost minimization problem
can be formulated as

Py :min Cp +1Cp
s.t.(2), (3), (6), (7), (8)

var xg;, z; € {0, 1},95s, j,

var w(t),Vs, t,

where 7 is a coefficient to balance the trade-off between
flow and power costs and could be regulated artificially
in line with the price of backhaul link and transmit power.

4. Joint Clustering, Caching, and Multicast
Beamforming Algorithm

In this section, we first present the challenges to solve prob-
lem &, and then leverage the SAA technique to decouple
the two-timescale problem into one large-timescale problem
and a series of independent small-timescale subproblems.

4.1. Algorithm Design Challenges. We desire to solve &, at
the end of each large timescale for the next one. Nevertheless,
it poses challenges to solve &, due to the following
observations:

(i) The channel vectors {h;(t)},.s are unknown for
the operator, since all channel vectors are future
ones in the next large timescale

(i) Both x={x,;} and z={z;} are binary variables,
rending &, an MINLP problem

(iii) Even though x and z are relaxed, both Equations (6)
and (7) are still nonconvex constraints

Thus, to make &, tractable, an approximation approach
is a prerequisite to solve it.

4.2. SAA-Based Cost Minimization. The channel vectors
{h;(t)}y,s are exactly stochastic at each decision moment,
since they are scattered in the next large timescale and thus
unpredictable. As in [29, 30], the SAA technique is leveraged
to approximate the random variables {h;(t)}, 5, with the
basic principle assuming that {h,(t)},,.s is drawn from a
certain distribution. As such, Equation (9) can be deemed
as the time average of T random variables, and its expecta-
tion can be approximately computed as

EE<Z|W5|§> < LYYWk ()

se§ teT ses§



where h is the stochastic channel vector space, and W,
denotes the h-based beamforming vector. Then, by leverage
the SAA, a series of samples are generated, and the expecta-
tion (11) can be approximated by its sample average. To dis-
tinguish the sample from real channel vectors per time slot, v
is utilized to denote the sample index, and a total of samples
are produced. Therefore, by substituting ¢ with v at the deci-
sion moment of each large timescale, an approximate prob-
lem of &, can be recast as

P, :min Cp+ —

ZZHW )12

ve%seé’
8.t.(2), (3) (6) (7). (8) (12)
var x;,z,; €{0,1},Ys, j,

var wy(v),VYs, v,

where h;(v) is the v-th sample from a certain distribution,
and w,(v) is the h,(v)-based beamforming vector.

From Equation (12), it follows that 9, turns out to be a
deterministic problem rather than a stochastic one. Never-
theless, solving &, still poses challenges, since both Equa-
tions (2) and (6) are nonconvex constraints. Furthermore,
small-timescale variable w,(v) and large-timescale variable
x,; are still tied in Equation (7). For this problem with two
types of coupled variables, an intuitive approach is to decou-
ple them firstly and then optimize them separately. Thus, we
would propose an iterative algorithm, with the outline as
follows:

(i) First, given any feasible w, search for the optimal
{x*,2*} in P,

(ii) Then, given {x*,z"}, search for the optimal w* with
the sample {h;(v)};,

(iii) Repeat aforementioned procedures until convergence

(iv) With the acquired {x*,z"}, the optimal {w(t)},,,
for problem % can be obtained by solving the fol-
lowing multicast beamforming problem per slot as
follows:

: min —ZZHW Hz

tEJ €S
st (6), (7), (8) (13)

var w(t),Vs, t.

By comparing &, and %,, it reaches the conclusion that
&P, is alarge-timescale problem with sample channel vectors,
while &, reduces to a small-timescale one with actual chan-
nel vectors. In the next, we would separately introduce
approaches to solve them.
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4.3. Joint Clustering and Caching Algorithm. Given any feasi-
ble w, any group-transmitter pair with nonzero beamform-
ing vector can be determined. Define the set
Fy={(5,j) IWso(v) #0o0rw;(v)#0,3ve 7’}.  Following
Equation (7), if wy,(v) #0 or wy;(v) #0, 3v € 7, then x;

1 must hold. On the contrary, although Wio(v) =0 or w,;
(v)=0,V¥v cannot straightforwardly reach the conclusion
with x,;=0 from Equation (7), we can claim that x,;=0

holds, namely, j does not need to belong to the serving cluster
of swhenw,(v) =0orw,;(v) =0, Vv. Likewise, define the set

Fy={(s]) |Wy(v) =00rw,;(v)=0¥ve 7}
As such, the clustering var1able {xS’J} is fixed given any

feasible w, and &, reduces to the following large-timescale
problem as

i

P,_; : min Cy

s.t.(2), (3),
X =1Y(s,j) €Ky, (14)
x,;=LY(s, j) €Ky,

var xg;, z,; € {0, 1}Vs, j,

which exactly involves only the caching variable {z,;}, since
{x,;} is determined.

It follows that &, _, is a typical 0-1 ILP problem. On one
hand, the celebrated cutting-plane or branch-and-bound
methods have been extensively utilized to solve it, yet with
the computational complexity scaled with S and J. Thus,
solving it is prohibitively complicated in a larger-sized net-
work. On the other hand, there are also extensive works
(e.g., in [2]) to leverage heuristic algorithms to solve the
ILP problem. Nevertheless, the optimality cannot be ensured
in this case, and it poses challenges to analyse the gap
between the heuristic and optimality as well.

Motivated by our previous works in [33, 34], we resort to
the LP counterpart of 9,_;. If the equivalence of optimal
solutions between ,_; and its LP counterpart can be estab-
lished, then we claim that the optimal solution to LP counter-
part is also integer-valued and optimal to 2,_; as well.
First, with relaxed z,;, &,_; can be recast as

P, :min Cp

s.t.(2), (3),
X =1V(s,j) €Ky, (15)
x,;=0,Y(s, j) €Ky,

var 0<zg; <

1,Ys, j,
where the clustering variable {x;} is eliminated on the basis
of #, and K, for conciseness.

It is widely known that the optimal solution of LP must
locate on the vertex of the polyhedron for a feasible set. Thus,
what we only need to do next is to establish that any vertex of
the polyhedron of &, , is integer-valued. As such, the
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optimal solution to 9,_p must be integer-valued and is also
optimal to &,_,;. Henceforth, we further provide a sufficient
condition, under which the relaxed &, , has the integer-
valued optimal solution.

Theorem 1. If each transmitter’s storage capacity is the integer
multiplier of content size, i.e., C; € Z,Vj € J, then the opti-
mal solution to P,_y is integer-valued.

Proof. From [35], it follows that if the constraint matrix is
totally unimodular, then the optimal solution is integer-
valued and locates at the vertex of the polyhedron. There-
fore, we prove this theorem by establishing the total unim-
odularity of the constraint matrix of 9,_,. By introducing
a caching variable vector Y = {yw, Vs Vet Vst

SV ~~,ySJ}T and a storage capacity vector C=
{Cyp, Cys -+ Cj}T, Equation (3) can be recast as WY < C, and
W turns out to be as

W=[W,W, W, - W]

1 1 -1 00 - 0 -0 0 -~ 0

o0 011 -1 - 00 -+ 0

. A T T

o0 - 000 -+ 0 -+ 1 1 - 1
(16)

where each W; is with the dimension of (J + 1) x S. In partic-
ular, the (j+ 1)-th row of W, is all one and all zero for the
other rows. Since each column of W; contains only one non-
zero entry belonging to {0,+1,-1}, we claim that the con-
straint matrix W meets the four subconditions of total
unimodularity in [35]. As such, W is totally unimodular, and
thus the optimal solution of %, _j is integer-valued.
The proof is completed.

With Theorem 1, we can effortlessly solve &, _; via classi-
cal simplex method or ellipsoid algorithm, due to the equiv-
alence of optimal solutions between &, , and %,_;, thus
significantly reducing the computational complexity.
Although the classical cutting-plane or branch-and-bound
algorithm can also work for the ILP, they are only applicable
to small- and moderate-sized vehicular edge networks. When
it comes to a large-sized network, Theorem 1 exhibits more
effectiveness than legacy ones.

4.4. SCA-Based Multicast Beamforming. Once the aforemen-
tioned {x*,z*} is given, 2, reduces to the following one as

1
Prs: min = ) Y [[wi(v)lf;

ve? ses
5.t (6), (7), (8)

var wy(v),Vs, v,

which is exactly the same as &, with the only difference in
substituting the index ¢ in 9, with v in 9,_,. Notice that,
&P, is the small-timescale multicast beamforming problem
with actual channel vectors {h;(t)},, s while 2,_g is solved
at the large timescale with channel samples {h;(v)}, .o just
to proceed with the algorithm iteration in solving %, _s.
Thus, in the following, by putting &, and P,_¢ together,
we take 9, as a goal to find its approximation algorithm,
and do not distinguish them strictly.

Although the objective as well as constraints 7 and 8 turn
into convex ones, the nonconvex constraint 6 renders %, a
nonconvex one. Thus, by resorting to the SCA technique in
[12], we first recast Equation (6) as

(27 -1) (Z LHOINOIS +0?> - b (w (1)
s’:#s
<0Vie S, t.

(18)

It is evident that the left-hand side of Equation (18) is the
difference of two convex functions. Next, by substituting the
second term with its first-order Taylor expansion, at the
(0 + 1)-th iteration, we have

2Rs/B-1) [ (t)w,(1)]" + o?
s'#s
=2 { (wo(0) () b () wy ()} = B () wE()]
<0,Vie s, s, t,

2

(19)

which becomes a convex constraint, with w?(¢) acting as
the initial feasible solution obtained from the o-th
iteration.

Till now, at the (o + 1)-th iteration, 9, can be trans-
formed to the following one as

!
Pocimin ) Y [wi(o)ll;

teT se§

s.t.(7), (8), (19)

arw(t),Vs, t,

(20)

which is a convex quadratically constrained quadratic pro-
gramming (QCQP) problem and can be solved via many
mature convex algorithms effortlessly, e.g., interior-point
method [36]. At each iteration, a convex QCQP problem
needs to be solved until convergence. From Equation (19),
it follows that the obtained w?(¢) from the o-th iteration is
always feasible to the subproblem at the (o0 + 1)-th iteration.
Besides, since the objective of 9, . is the minimization of
power cost, w*!(f) must be a better solution than w°(t),

revealing the monotonicity of objective.

4.5. Algorithm Outline and Computational Complexity. At
the end of a large timescale, the operator has to iteratively
resolve problems 9, ¢ and &,_;, until the termination
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Repeat

fort=1,2---,T

end for

Initialization: x,; = 1, Vs € 8, Vj € #, (Full cooperative multicasting is as the initial solution).

Solve problem %, _¢ via SCA to acquire w*;

Obtain %, and %, from Equation (14);

Solve problem %,_,; via Theorem 1 to acquire {x*,z*}.
Until the error tolerance is met or maximum iterations are reached.

Solve problem 2, via SCA with the available {x*,z* }.

ArGorITHM 1: Joint V2V-assisted clustering, caching, and multicasting algorithm.

criteria are satisfied, namely, one convergent solution is
acquired or the maximum iteration number is reached, as
described in Algorithm 1. Then, with the available {x*,z*}
from large timescale, the operator proceeds to tailor the mul-
ticast beamforming per slot, to solve 2, via SCA for the opti-
mal w(t).

From Algorithm 1, it follows that the SCA is a prerequi-
site at both timescales. Assume the maximum iteration num-
bers for joint V2V clustering and caching algorithm, and
SCA method reach @,,,, and o,,,, respectively. From [37],
it follows that the interior point method to solve each per-
iteration subproblem for &,_¢ or &, is with the computa-
tional complexity of @ = 6((J + L)’$*V?) or ®=0((J + L)’
S*T?). Thus, the overall computational complexity reaches
@((Qmax + 1>OmaX(D) = @(QmaxomaXCD)‘

5. Simulation Results and Discussions

In this section, we demonstrate the performance of proposed
joint V2V-assisted clustering, caching, and multicast beam-
forming algorithm in vehicular edge networks via simulation
results. In particular, the impact of the following two param-
eters is studied: (1) the number of CCVs; and (2) the average
data rate requirement per CRV. Meanwhile, two costs are
leveraged as performance metrics: (1) total flow cost; and
(2) total transmit power cost. In addition, for performance
comparison, three benchmark schemes are also evaluated,
listed as follows:

(i) Multicast without (w.0.) V2V caching refers to the
multicast beamforming scheme proposed in [11],
which only involves the BS caching but neglecting
the V2V caching. For fair comparison, the two-
timescale setup is also used in this scheme

(i) Unicast with (w.) V2V caching refers to the unicast
transmission scheme proposed in [23], where both
V2V and BS caching are involved. In this scheme,
each CRV is assigned an individual beamforming
vector, regardless of its requested content

(iii) Unicast w.o. V2V caching. In this scheme, each CRV
has to access the BS to fetch its requested content

5.1. Simulation Parameters. We investigate a time-slotted
wireless network consisting of one BS and 20 CRVs, with a
radius of 500 m for the cell coverage. The BS is equipped with

20 antennas, and each CRV and CCV is identically equipped
with one antenna. Overall, 20 types of multimedia contents
exist in the system. The BS has a storage size of 6 contents,
while each CCV could accommodate at most 1 content. For
simplicity, we do not employ the well-known Zipf distribu-
tion in [2]; instead, each CRV equally requests any content
with a probability of 5%.

The system bandwidth is 5 MHz, and the additive white
Gaussian noise power spectral is -174 dBm/Hz. The transmit
power budgets for the BS and CCV are 46 dBm and 24 dBm,
respectively. The path loss model is 35.3 + 37.6 log, (d(m)),
the log-normal shadowing parameter is 8 dB, and the multi-
path channel model with Rayleigh fading is assumed [20].
Overall, 200 samples are produced to simulate stochastic
channels vectors. Besides, the Monte Carlo approach is uti-
lized, both CRVs and CCVs are uniformly distributed and
dropped in the cell coverage, and all simulation results are
averaged over 1000 droppings. In addition, the vehicle speed
follows a truncated normal distribution ranging from 15m/s
and 31 m/s.

5.2. Convergence Performance. Figure 3 illustrates the conver-
gence performance of joint V2V clustering and caching algo-
rithms. In this setup, the number of CCVs is 20, and the data
rate requirement per group is 2Mbps. To overcome the
impact of # with too large or small values on the objective
of &, and for fair comparison, only the system power cost
is evaluated. First, it can be observed from Figure 3 that the
joint V2V clustering and caching algorithm tends to saturate
within 30 iterations. In spite of moderate convergence, the
result is acceptable since it is operated at a large timescale
and does not need to work per small timescale slot. Second,
with the increase of #, the total power cost gradually reduces.
This is because the objective of &, is the minimization of sys-
tem cost; a larger n will increase the weight of power cost,
thus reducing the power proportion in the optimal value.

Figure 4 reveals the convergence of the SCA-based multi-
cast beamforming algorithm. Likewise, the number of CCV's
is 20, and the data rate requirement per group is 2 Mbps. We
leverage the L, norm on the difference of successive optimal
solutions, i.e., [[wo™!(£) —w?(t)||, as the metric. As shown in
Figure 4, all settings under different values of # have good
convergence, saturating within 10 steps.

5.3. Performance Comparison. Figure 5 shows the power-flow
cost tradeoff curve of the proposed algorithm under different
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FIGURE 4: The convergence of the SCA method.

values of #. Similar to the result in Figure 3, when #
approaches infinity, the proportion of power cost is getting
larger, and thus the power cost decreases in the minimization
of the weighted sum. In particular, the flow cost reduces to
21 W while the flow cost reaches 34 Mbps, given 7 =10°.
On the contrary, when # approaches zeros, the proportion
of power cost gets smaller, and more weights are imposed
on the flow cost. In particular, the flow cost increases to
35W while the flow cost reduces to 18 Mbps, given 77 = 107°.

Figure 6 shows the impact of CCV number on the flow
cost. In this scenario, the average data rate requirement is
2Mbps, #=10% and the CRV number ranges from 15 to
30. As shown in Figure 6, the curve is broken line-shaped,

34 -

32 A

30 A

28 A

26 -

Flow cost (Mbps)

24 -

22 4

20 -

18

20 25 30 35
Power cost (W)

—o— Tradeoff curve

FIGURE 5: Flow-power cost tradeoff.

since the flow cost must be the integer multiplier of the data
rate requirement. The flow cost reduces with the increase of
CCV number. This is because the wireless network incorpo-
rating more CCVs would introduce multiuser diversity gain
and a more flexible clustering combination. In the unicast
w.0. V2V caching scheme, the caching functions are only
available in the BS, and each CCV provided a requested con-
tent individually, thus resulting in the largest flow cost. In
addition, unicast w. V2V caching outperforms multicast
w.0. V2V caching in terms of flow cost, indicating that the
V2V caching gains overwhelm the multicasting gains in this
setting, especially when the CCV number is relatively large.

Figure 7 shows the impact of CCV number on the power
cost, with identical settings as in Figure 6. Likewise, unicast
w.0. V2V caching still gets the largest power cost compared
to the other three schemes. Meanwhile, unicast w. V2V cach-
ing is also with worse performance compared to multicast
w.0. V2V caching. This is because multicast w.o. V2V cach-
ing tends to save more transmit power than unicast w. V2V
caching, while the latter one must allocate an individual
beamformers to each CCV. The performance gap also indi-
cates the multicast gains over unicast. Furthermore, the pro-
posed algorithm gets close performance with multicast w.o.
V2V caching, only with a slightly small gap, since in this set-
ting, multicast gains overwhelm V2V caching gains.

In Figure 8, we compare the performance with different
data rate requirements R, ranging from 2 Mbps to 3.8 Mbps.
In this scenario, there are 20 CCVs, and 7 = 10°. Figure 8
shows the flow cost is almost proportional to the data rate
requirement. In the meantime, there exists a significant gap
between the proposed algorithm and the other three schemes
(approximately 30 Mbps on average compared to multicast
w.0. V2V caching), which can be explained as follows: on
one hand, the unicast transmission would result in more flow
costs, since each CRV is equipped with a CCV cluster and a
content flow; on the other hand, the multicast w.o. V2V
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caching neglects the caching functions in CCVs, thus incur-
ring the traffic congestion.

Figure 9 shows the impact of data rate requirement on
power cost, with identical settings as in Figure 8. Different
from the results in Figure 8, both the proposed algorithm
and multicast w.o. V2V almost remain unchanged with the
increase of data rate requirements. This is because in this set-
ting, sufficient power is available to support a larger data rate,
and thus multicast transmissions could save more power
than unicast. Meanwhile, the performance gap between the
proposed algorithm and multicast w.o. V2V caching reveals
that, the lack of V2V caching would incur that all CRVs tend
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to access the BS, the power resource of CCVs is wasted, and
thus a worse feasible solution is produced. In addition, uni-
cast would allocate an individual beamformer to each CRV,
thus getting the worst performance.

6. Conclusions

In this study, wireless content caching along with multicast
beamforming was studied in vehicular edge networks. First,
a two-timescale setup was proposed to decouple the joint
clustering, caching, and multicast beamforming problem at
separate timescales. Next, at the large timescale, with the
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SAA technique, a theorem was verified to reveal the equiva-
lence of optimal solutions between the original ILP problem
and its relaxed LP counterpart. Then, with the SCA method,
the multicast beamforming-based power minimization prob-
lem was solved per slot. Simulation results revealed that the
network performance could benefit from not only the power
saving from wireless multicast beamforming but also the
content caching and sharing among vehicles.
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