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As a representative technology of artificial intelligence, 3D reconstruction based on deep learning can be integrated into the edge
computing framework to form an intelligent edge and then realize the intelligent processing of the edge. Recently, high-
resolution representation of 3D objects using multiview decomposition (MVD) architecture is a fast reconstruction method for
generating objects with realistic details from a single RGB image. The results of high-resolution 3D object reconstruction are
related to two aspects. On the one hand, a low-resolution reconstruction network represents a good 3D object from a single
RGB image. On the other hand, a high-resolution reconstruction network maximizes fine low-resolution 3D objects. To
improve these two aspects and further enhance the high-resolution reconstruction capabilities of the 3D object generation
network, we study and improve the low-resolution 3D generation network and the depth map superresolution network.
Eventually, we get an improved multiview decomposition (IMVD) network. First, we use a 2D image encoder with multifeature
fusion (MFF) to enhance the feature extraction capability of the model. Second, a 3D decoder using an effective subpixel
convolutional neural network (3D ESPCN) improves the decoding speed in the decoding stage. Moreover, we design a
multiresidual dense block (MRDB) to optimize the depth map superresolution network, which allows the model to capture
more object details and reduce the model parameters by approximately 25% when the number of network layers is doubled. The
experimental results show that the proposed IMVD is better than the original MVD in the 3D object superresolution
experiment and the high-resolution 3D reconstruction experiment of a single image.

1. Introduction

The three-dimensional reconstruction of a single image is a
hotspot and a difficult point in the field of computer vision.
The purpose of the three-dimensional reconstruction of a
single image is to reconstruct the corresponding 3D model
structure from a single RGB image or a single depth image.
The early 3D reconstruction of objects used the multiview
geometry (MVG) method, which mainly studied structure-
from-motion (SFM) [1, 2] recovery and simultaneous
localization and mapping (SLAM) [3]. In addition, 3D object
reconstruction also has methods based on prior knowledge
[4, 5]. These traditional methods are often limited to a certain
class of object in the 3D reconstruction of a single image, or it
is difficult to generate a 3D object with better precision. With

the continuous development of deep learning technology, the
technology has been widely used in recent years [6–14], such
as video analysis [8], image processing [9–11], medical
diagnosis and service [12, 13], and target recognition [14].
Applying these to actual scenarios will encounter problems
of large energy consumption and long response time. Using
edge computing can effectively solve these problems. In the
era of big data, data generated at the edge (e.g., images) also
requires artificial intelligence technology to release its poten-
tial. Some research attempts to combine edge computing and
deep learning include intelligent video surveillance [15], food
recognition systems, [16], and self-driving cars [17]. At
present, most of the research on edge computing and deep
learning focuses on object recognition in two-dimensional
space. However, for applications such as self-driving and
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virtual reality, 3D reconstruction is the core technology. In
the 3D reconstruction of objects, many methods try to extend
the convolution operation in the two-dimensional space to
the three-dimensional space to generate 3D shapes [18–20]
and have achieved good research results. These methods all
use a convolution operation based on dense voxels. As the
running time and memory consumed increase cubically with
the improvement of voxel resolution, the resolution of the
generated models is limited to 64 × 64 × 64. In order to solve
the problem that the model generated by this method is
limited to low resolution, some studies have proposed a sparse
3D reconstruction method using octrees [21–23]. Recently,
the generative adversarial network (GAN) has shown great
potential in image generation, and Yu et al. [24] also extended
it to the 3D reconstruction of a single image. For the 3D recon-
struction of a single image using GAN, this method consumes
huge computing resources and also has a long training time.
At present, the application of edge computing [25, 26] may
be a feasible solution to this problem. Applying edge comput-
ing to traditional 3D reconstruction can generate 3D shapes
faster, but the selection and processing of images may be a
problem [27]. Therefore, combining edge computing and deep
learning to achieve real-time 3D reconstruction of a single
image may be a solution. In addition to the direct use of voxel
methods to generate 3D shapes, other studies have used differ-
ent three-dimensional representations, such as point clouds
[28–30], meshes [31–33], primitives [34, 35], and implicit
surfaces [36, 37]. Most of these methods can reconstruct
three-dimensional objects with high resolution and are not
limited by memory requirements. However, most of these
methods need to solve the inherent defects of the model, such
as using the point cloud method to reconstruct the surface
details of the object and solving the genus problem of the mesh
method to reconstruct the object.

For the voxel-based 3D object reconstruction method, it is
robust to input. This method has the ability to adapt to 3D
CNN and generate arbitrary topological structures. However,
this method requires a huge amount of memory and calcula-
tions, and these factors make the resolution of the generated
3D shape too low. Therefore, how to solve the drawbacks of
voxel-based 3D reconstruction is a premise for this method
to generate high-resolution 3D shapes. At present, there are
several methods for generating high-resolution 3D objects
using voxel-based methods. As mentioned above, one of the
methods is to use the sparse three-dimensional representation
of the octree to generate high-resolution 3D shapes. It is also a
method to transfer high-resolution 3D shape reconstruction to
2D space for implementation. Specifically, the method first
uses the traditional 2D encoder-3D decoder architecture to
generate a 3D object with low resolution from the input image.
Then, superresolution reconstruction is performed on the 2D
depth images of the low-resolution 3D object. Finally, the
generated superresolution depth images are used for the
reconstruction of a single high-resolution 3D object. In order
to avoid directly manipulating voxels in a three-dimensional
space, Richter and Roth [38] first predicted 6 depth maps of
a 3D shape. They are then fused into a single reconstructed
3D shape. Smith et al. [39] also adopted a similar idea in the
proposed MVD. They first used an encoder-decoder network

to reconstruct the low-resolution 3D volume of a single image.
Then, six orthographic depth maps of the low-resolution 3D
object are obtained for superresolution reconstruction. Finally,
the generated superresolution images are used to carve the
upsampled low-resolution 3D shape to generate a high-
resolution 3D object. This method can quickly accomplish
high-resolution 3D object reconstruction of a single image.

However, the MVD method uses a traditional encoder-
decoder network to generate low-resolution 3D shapes. This
method has limited ability to extract image features in the
2D encoding stage, and the decoding speed in the 3D decoding
stage is slow. In addition, the residual blocks (RB) used by
MVD in depth image superresolution reconstruction do not
fully utilize the features of different layers. This paper studies
and improves these aspects to enhance the overall 3D recon-
struction capabilities of the model. First, we improve the 2D
encoder in the low-resolution 3D generation network into a
2D encoder with multifeature fusion to enhance the image
feature extraction capability of the model. Then, we extend
2D ESPCN [40] to 3D ESPCN in the decoder stage to increase
the speed of the decoder to generate 3D shapes. Second, this
paper first introduces a single residual dense network (SRDN)
on the basis of the residual network and dense network to
improve. The residual network is then improved in a densely
connected manner to maximize the reuse of features. Then,
we obtain a multiresidual dense network (MRDN) to enhance
the depth map superresolution network, which makes the net-
work structure deeper andmaximizes the information transfer
between different convolutional layers. The experimental
results show that the improved multiview decomposition
(IMVD) structure performs better. First, the decoder using
3D ESPCN can increase the decoding speed of themodel with-
out degrading the performance of the model. Second, when
the number of MRDB network layers is doubled compared
to the number of RB network layers, the total model parame-
ters and size are reduced by approximately 25%, respectively.
Then, when the reconstructed object is in a relatively thin part,
the reconstruction results of the MVD method are often
broken. But our IMVD method can avoid this situation to
some extent. In addition, the network that combines MFF
andMRDB can capture more local features. The following sec-
tions are organized as follows. In Related Work, the current
work related to this research is introduced. In Method, the
improved MRDB and the low-resolution 3D object recon-
struction network are introduced, respectively. In Experiment,
the experiment is introduced, which includes the establish-
ment of the dataset, the details of the training, and the relevant
experimental results of each improvement component. In
Conclusion, this paper is summarized.

The main contributions of this paper are summarized as
follows:

(i) We propose an image encoder with multifeature
fusion, which extracts the feature information of
each layer to enhance the representation of the local
details of the 3D shape. Compared with the tradi-
tional image encoder, the encoder with MFF is rela-
tively more advantageous in capturing the detailed
parts of 3D objects
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(ii) We propose a 3D ESPCN operation to improve the
traditional 3D decoder based on voxel representation,
which reduces the time for the model to generate 3D
shapes. Using 3D ESPCN can generate 3D shapes in
lower resolution 3D volume spaces than traditional
3D decoders in the last step of the 3D decoding stage.
This reduces the time required for the model to
generate 3D shapes

(iii) We propose a multiresidual dense network to make
full use of the features extracted from the residual net-
work and the dense network.We connect the residual
network in a dense manner and send the extracted
features into the densely connected network. Model
expression ability is improved by maximizing the
reuse of features of each layer

2. Related Work

The goal of our work is to enhance its ability to generate
high-resolution 3D objects from a single RGB image by
improving the original MVD network. Wu et al. [18] earlier
proposed the use of neural networks to recover the 3D shape
of objects from 2.5D depth maps. Girdhar et al. [19]
proposed a TL-embedding network. The network can com-
plete the reconstruction from the RGB image to the 3D shape
after training. These studies all apply a traditional encoder-
decoder architecture, which uses progressive 2D convolution
and 3D deconvolution for processing. Smith et al. [39] also
used a similar structure to generate 3D shapes from 2D
images. As we all know, in 2D image processing, the network
layer that is too deep will cause the problem of gradient
dispersion. When a network that is too deep can converge,
its accuracy will also degrade. However, the deeper the net-
work has also been proven to improve its performance.
Therefore, it is an instinctive idea to introduce residual learn-
ing in the 3D reconstruction of a single image. Inspired by
the residual network [41], Choy et al. [20] introduced a
residual structure to design a deeper 3D object generation
network. Their experimental results show that the network
has a lower loss value in the training stage and can generate
better 3D shapes than traditional 3D object generation net-
works. Similarly, Wu et al. [42] applied a similar residual
structure in the 2D encoder. In addition, Soltani et al. [43]
merged the residual block into the network to improve the
performance of the model.

In the image superresolution, Dong et al. [44] first used
convolutional neural networks to achieve superresolution
reconstruction of low-resolution images. The input of this
method is a high-resolution image after upsampling the
low-resolution image. This superresolution method is com-
plicated in operation and has a large amount of calculation.
Subsequently, Shi et al. [40] proposed ESPCN. Different from
upsampling input images to target resolution images for
processing, they first use neural networks to extract features
from low-resolution images. Then, the extracted features
are recalculated using ESPCN operations to obtain high-
resolution images. Since the feature extraction stage is
performed on a lower resolution space, this method reduces

the computational complexity of the entire superresolution
process. Inspired by this, we first use a traditional 3D decon-
volution operation to generate multiple low-resolution 3D
volumes from the feature vector. Then, we expand ESPCN
from 2D space to 3D space to generate a higher resolution
3D volume from these 3D volumes.

Recently, different network structures have appeared in
image classification, such as the residual network (ResNet)
[41] and the densely connected network (DenseNet) [45].
The purpose of introducing a residual network or densely
connected network is to solve the problem of model degrada-
tion caused by designing a deeper network structure, and the
deeper the network can extract more features to enhance the
expression ability of the model. To reuse the feature informa-
tion between more layers, a densely connected network is
designed to solve the problem of gradient disappearance.
Besides, the network structure designed in this way has a
smaller model and requires less computation. Based on the
above research, after analyzing the advantages and disadvan-
tages of the residual block and the dense block, the Dual Path
Network (DPN) [46] combines both to reduce the model
parameters and to improve the training speed. Finally, better
results were obtained in image classification, object detection,
and semantic segmentation experiments. The relevant exper-
imental results show that different structures have different
benefits to the performance, parameter size, and computa-
tional complexity of the model.

Later on, various extended feature extraction structures
were gradually introduced in the experiment of image superre-
solution reconstruction [47], such as the deep residual recur-
rent network (DRRN) [48] and the residual block [49]. In
the superresolution experiment of 2D images, a multilayer
feature concatenation method is often introduced to obtain
more image feature information. Zhang et al. [50] proposed
a residual dense network (RDN) after studying the residual
block and the dense block. The output of each residual dense
block (RDB) is processed through local feature fusion and
global feature fusion. They further explore how to make full
use of the features of different convolutional layers through
this multifusion method. Wang et al. [51] introduced the
residual-in-residual dense block (RRDB) to connect different
network layers to make the model achieve better performance.
Inspired by these studies, we study a multiresidual dense block
to make full use of the features of each convolutional layer.

3. Method

In this section, we introduce an improved multiview decom-
position (IMVD) network, as shown in Figure 1. The goal of
this paper is to improve the MVD network to enhance the
expression ability of the model and raise the quality of 3D
object reconstruction. In the following content, we first
describe the improved multiresidual dense block (MRDB)
network. Second, a 2D encoder with multilayer feature fusion
is described. Finally, we briefly introduce the 3D subpixel
convolutional layer (3D SPCL) in 3D ESPCN.

3.1. Multiresidual Dense Network. The depth map superreso-
lution network of MVD is based on the residual block in the
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generator of SRGAN [49]. Our improved superresolution
network is based on a combination of the residual network
and dense network. This improvement is to increase the con-
nections between the convolutional layers to obtain more
feature information and to design deeper and more complex
structures.

Recent experiments have shown that connecting more
layers in a network structure can further improve the perfor-
mance of the model. Similarly, the use of denser connections
in 2D images has also proved to enhance the performance of
the model. Chen et al. [46] demonstrated that a single residual
network has less redundancy in reusing features, and this
shared information strategy makes it difficult to learn new fea-
tures. However, a single densely connected network will lead
to high redundancy while learning multiple new features.
Finally, they designed a DPN with the advantages of the resid-
ual network and the densely connected network. In addition,
Zhang et al. [50] also explored the combination of the residual
network and the dense network. Their experimental results
showed that the combination of both is beneficial. Similarly,
we also take both into consideration. First, we introduce a
single residual dense block (SRDB) [50]. Then, we improve
on the basis of a single residual dense block and design a
new multiresidual dense block (MRDB) by connecting the
residual learning in a dense manner, as shown in Figure 2.

TheMVDbasic architecture uses sixteen residual blocks as
shown in Figure 2(a). We maintain the basic architecture of
MVD. We apply L multiresidual dense blocks as shown in
Figure 2(c). The basic structure of the multiresidual dense
network is shown in Figure 1. First, we consider a single image
x0 as the input of the superresolution network. Each layer of
the network input consists of one or more components: batch
normalization (BN) and convolution (Conv), and we repre-
sent these nonlinear transformations as Hlð·Þ, where l indexes
the layer. Then, Hlð·Þ in Figure 2 is in the form of Conv-BN-
Conv-BN. Then, T denotes a transition layer consisting of a
1 × 1 convolution layer and batch normalization.

3.1.1. ResNet. Compared with the traditional CNN, insert-
ing shortcut connections between different convolutional
layers can convert it into a residual network, as shown
in Figure 2(a). When the input and output dimensions of

different convolutional layers are the same, the identity short-
cut connection can be used to directly add its output to the
output of the subsequent layer. When using the identity short-
cut connection method, this connection method neither adds
new parameters nor increases the computational complexity.
For the residual network of Figure 2(a), the output xl−1 from
the ðl − 1Þth layer bypasses the nonlinear transformations with
an identity function, and the results are added as the lth layer
input. The residual network can be expressed as follows:

xl =Hl xl−1ð Þ + xl−1: ð1Þ

3.1.2. Single Residual Dense Network (SRDN). ResNet uses
shortcut connections to solve the problem of model degrada-
tion to a certain extent. However, the connection between
different layers of ResNet is a sparse connection. In order to
make full use of the features of different layers, DenseNet uses
the output of each layer as the input of each subsequent layer.
This densely connected approach allows the model to achieve
better performance than ResNet with fewer parameters and
computational costs. In the single residual dense block of
Figure 2(b), the input of the lth layer is derived from the out-
put features of the previous 0th, 1th,⋯, ðl − 1Þth layers, x0,
x1,⋯, xl−1:

xl =Hl x0, x1,⋯,xl−1½ �ð Þ, ð2Þ

where ½x0, x1,⋯,xl−1� represents the concatenation operation.
Equation (2) is also known as densely connected network out-
put. Finally, a SRDB result consists of the input x0 summed
with the T output by a shortcut connection. We call this
network SRDN, and its output can be expressed as

xSRDB = T xlð Þ + x0: ð3Þ

3.1.3. Multiresidual Dense Network (MRDN). In each SRDB,
DenseNet is applied to extract the features of different layers
for fusion, and single residual learning is introduced to
improve the information flow. It should be noted that residual
learning in SRDB is not closely combined with DenseNet. In
order to further improve the information flow, we fuse the
residual learning of different layers with DenseNet. Now we
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Figure 1: Improved single-RGB image high-resolution 3D reconstruction network structure. We apply the basic architecture of MVD [39].
The improved multiresidual dense block superresolution network processes six axis-aligned orthographic depth maps (ODMs). High-
resolution depth maps and silhouette maps are estimated from the low-resolution ODMs, respectively. The improved multifeature fusion
2D encoder encodes the input RGB image into a 1024-dimensional latent vector and decodes it through 3D ESPCN.
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consider the multiresidual dense block of Figure 2(c). First, we
denote the x0 and y0 as the residual input and dense input of a
single MRDB, and x0 = y0. For x1, it can be expressed as

x1 =H1 y0ð Þ + x0: ð4Þ

Then, y1 is expressed as the fusion of residual output x1
and x0:

y1 = x0, x1½ �: ð5Þ

Combining Equations (4) and (5), it can be seen that the
input of DenseNet in MRDB includes the output of RenseNet.

Further, we denote that xl and yl are the output of the
residual network and the densely connected network in the
lth layer, respectively. The lth layer accepts all of the preced-
ing input feature maps x0, x1,⋯, xl−1 and the yl−1 of the ðl
− 1Þth layer as the residual output xl:

xl =Hl yl−1½ �ð Þ + 〠
l−1

t=0
xt

 !
: ð6Þ

Similarly, we can get the output yl of the lth layer:

yl = x0, x1,⋯,xl½ �: ð7Þ

Thus, transform Equation (7) into Equation (6), and
Equation (6) can be further written as

xl =Hl x0, x1,⋯,xl−1½ �ð Þ + 〠
l−1

t=0
xt

 !
: ð8Þ

Comparing Equation (8) with Equation (2), the first term
on the right side of Equation (8) is formally equal to Equation
(2). However, x1,⋯, xl−1 in Equation (8) is essentially the
residual input of Equation (1). In addition, Equation (8) adds
a summation operation for all feature maps x0, x1,⋯, xl−1 of
the preceding lth layer. From the above analysis, Equation (8)
combines the features of the residual network and the dense
network and expands them.

Finally, the output of a single MRDB can be expressed as

xMRDB = T ylð Þ + x0: ð9Þ

x0 +
x1
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Figure 2: (a) Residual block in MVD [39]. (b) Single residual dense block in RDN [50]. (c) Our multiresidual dense block.
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We assume that the growth rate of the model is G [45].
Each Hlð·Þ produces G feature maps, and the result is G0 +
G × ðl − 1Þ, where G0 is the number of feature map channels
of the input layer.

3.1.4. Implementation Details.We use the structure shown in
Figures 2(b) and 2(c) in single residual dense networks and
multiresidual dense networks, respectively. In the experi-
ment, the kernel filter stride length of all convolutional layers
is 1. The kernel depth G is 128 and 64, respectively. Since the
multiresidual dense network has deeper and denser connec-
tions, it will inevitably lead to an increase in the parameters
of the model. Performing 1 × 1 convolution after feature
input is a common means of reducing model parameters
[45, 50]. Our Hlð·Þ form is Conv(1 × 1)-BN-Conv(3 × 3
)-BN. In addition, the final concatenation operation of each
multiresidual dense block produces a large number of feature
maps. We use 1 × 1 convolution to reduce its number and
follow a batch normalization operation to feed the next
multiresidual dense block. We let the number of single resid-
ual dense blocks and multiresidual dense blocks be L, which
is set to 8 or 4 in the experiment.

3.2. Low-Resolution Network. The bottom of Figure 1 shows
the overall low-resolution 3D reconstruction network. First,
a 2D encoder with multifeature fusion is used to encode the
input image into a fixed-length hidden layer vector. Then,
traditional 3D deconvolution and 3D ESPCN are used to
decode the latent vector to generate a low-resolution 3D
volume. In the next part, we will introduce the 2D encoder
with multifeature fusion and 3D ESPCN, respectively.

3.2.1. 2D Encoder with Multifeature Fusion. For coarse-to-
fine 3D object reconstruction methods, high-quality low-
resolution 3D object reconstruction is a basis for its higher
resolution 3D reconstruction. In order to further improve
the feature extraction capability of the 2D encoder to
enhance the 3D reconstruction performance of the model,
we use different layers of feature maps for fusion. An
improved network comparison is shown in Figure 3.

Both encoder networks consist of a standard convolutional
layer, a batch normalization layer, and a leaky rectified linear
unit (LReLU). The encoder encodes the input data into a
low-dimensional hidden vector, and the decoder decodes the
compressed vector to reconstruct a 3D object. The advantage
of this approach is that it can compress the input high-
dimensional data into a low-dimensional representation and
then reconstruct its 3D object through the representation.

By observing the traditional encoder of Figure 3(a), we
find that the encoder of this mode has less utilization of fea-
tures. In the image superresolution experiment of RDN [50],
the global feature fusion (GFF) method proved to be able to
improve the performance of the model. This is a method of
extracting the output of all residual dense blocks in the net-
work for fusion. Inspired by this, we extract the output from
each nonlinear transformationHlð·Þ in the encoder to fuse, as
shown in Figure 3(b). To match the number of Hlð·Þ output
feature map channels of different lth layers, we use a 1 × 1
convolution. The definition of Hlð·Þ is consistent with Sec-

tion 3.1. Since the number of convolution channels after
feature fusion is too large, their direct compression to a
1024-dimensional feature vector will result in huge model
parameters. Therefore, we use a 1 × 1 convolution to reduce
the dimensions of the fused features. The multifeature fusion
encoder output is expressed as

xMFF = T x1, x2,⋯,xl½ �ð Þ: ð10Þ

Finally, the output of the encoder is compressed to a
1024-dimensional feature vector through a flat layer and a
fully connected layer. We find that multilayer feature fusion
can encourage models to learn new features.

3.2.2. 3D Subpixel Convolution Layer. In the image superre-
solution experiment, combining multiple low-resolution
images (feature maps in low-resolution space) to generate a
higher resolution image is a more efficient processing
method [40]. Inspired by this, in the voxel-based 3D convo-
lutional neural network, multiple low-resolution 3D shapes
can be combined into a higher resolution 3D shape. This
operation can be named 3D SPCL, as shown in Figure 4.

Generally, the size of a single low-resolution 3D volume
and a single high-resolution 3D volume can be expressed as
H ×W ×D and nh × nW × nD, respectively. We will refer
to n as the upscaling ratio. First, a traditional voxel-based
decoder is used to generate n3 low-resolution 3D shapes from
the latent space, the size of which is H ×W ×D · n3. Then, 3D
SPCL is used to rearrange the generated n3 low-resolution 3D
shapes into one high-resolution 3D shape. 3D SPCL is a
periodic operation that rearranges the elements of the H ×W
×D × n3 tensor to a tensor of shape nH ×W ×D · n2. Then,
the W channel and the D channel are arranged in sequence.
Finally, a tensor of shape nH × nW × nD is the output. The
entire 3D SPCL does not involve convolution operations. Com-
pared with the traditional 3D decodingmethod based on voxels,
this method reduces the 3D deconvolution operation at higher
resolution. Therefore, using 3D SPCL when generating 3D
shapes can make the model have a faster decoding speed.

4. Experiment

In this part, we show the experimental results of the
improved multiview decomposition (IMVD) network for
3D object superresolution and 3D object reconstruction of
a single RGB image. In addition, we analyze the importance
of each component in the network. The qualitative and quan-
titative results show that the proposed method can improve
the expression ability of the model.

4.1. Dataset and Metric

4.1.1. 3D Object Superresolution Dataset. The 3D object super-
resolution dataset consists of a 32 × 32 × 32 low-resolution
voxel model and a corresponding 256 × 256 × 256 high-
resolution voxel model. Following theMVD approach, we also
use the ShapeNetCore [52] dataset to transform CAD models
into 3D shapes represented by voxels. Two classes are selected
from the ShapeNetCore dataset: chair and plane. Their
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numbers are approximately 7000 and 4000, respectively. We
preprocess the 3D object superresolution dataset and extract
6 orthographic depth maps (ODMs) for each object in the
dataset corresponding to low resolution and high resolution.
The final dataset is divided into a training set, a validation
set, and a test set. We used 70% of the dataset as the training
set, 10% as the validation set, and 20% as the test set. The data-
set we created is named 3D superresolution dataset (DataSR).

4.1.2. Low-Resolution 3D Reconstruction Dataset. The 3D
object reconstruction experimental dataset of a single RGB
image is based on DataSR. Similarly, we refer to the relevant
dataset production methods in MVD. Based on the com-
pleted DataSR, we render each CAD model as a 128 × 128
RGB image to obtain a random viewpoint and possible
azimuthal rotation of the object between ð−20°, 30°Þ. Simi-
larly, the completed dataset is divided into a training set, a
validation set, and a test set according to the 3D superresolu-
tion experimental dataset, with a ratio of 70 : 10 : 20, respec-
tively. Finally, the dataset we follow is named DataHSP.

4.1.3. Evaluation Metric. In all 3D reconstruction experi-
ments, the evaluation metric uses the intersection over union
(IoU). Applying IoU to evaluate the corresponding model on

the DataSR and DataHSP enables quantitative analysis of
model performance.

4.2. Training Details.We train the entire model in two stages.
The 3D superresolution model and the low-resolution 3D
reconstruction model are separately trained. Finally, the
two training models of the two stages are combined to form
the final high-resolution 3D object reconstruction model of
a single RGB image, which is the improved multiview decom-
position (IMVD) network.

In the 3D object superresolution experiment, the silhou-
ette estimation network and the depth estimation network
are, respectively, trained. Following the MVD, the 3D object
superresolution experiment was reconstructed from 32 × 32
× 32 resolution to 256 × 256 × 256 resolution. The dataset
used for model training comes from the 3D superresolution
dataset described in Section 4.1. During the training process,
both use the Adam [53] default parameter training, the learn-
ing rate is 10-4, the training minimum batch size is 32, the
training epoch is 300, and the error function uses the mean
square error (MSE) loss function. The training set is used
for network training, and the validation set is used to evaluate
model performance at the end of each epoch. The current
model is retained only if the IoU score of the reconstruction
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result evaluation is greater than the largest IoU score of the
previous reconstruction result.

In a low-resolution 3D object reconstruction experiment,
the encoder with multifeature fusion and the 3D ESPCN
decoder are trained. Using the Adam optimizer, the learning
rate is 10-3, the training minimum batch is 128, the training
epoch is 300, and the mean square error term is used as the
loss function. The update of the model is the same as the
operation in the 3D object superresolution experiment.

After the silhouette estimation network, the depth estima-
tion network, and the low-resolution 3D object reconstruction
network have all been trained, the 3Dmodel carving combines
three networks to accomplish the high-resolution reconstruc-
tion. For model carving, it includes silhouette carving and
depth map carving. Firstly, the rough 3D shape after upsam-
pling is carved using estimated silhouette maps to ensure the
correctness of its structure. Then, the estimated depth maps
will be used for detail carving. The voxels that have not
reached the corresponding depth in the 3D shape after silhou-
ette carving will be deleted. We implemented the model with
the TensorFlow Architecture and trained on a single NVIDIA
GTX 1080 GPU.

4.3. 3D Object Superresolution Experiment

4.3.1. Model Parameters, Size, and IoU Comparison. Table 1
shows the experimental comparison of SRDN and MRDN
on the DataSR chair for different block numbers L (8 or 4)
and different size feature maps G (128 or 64). The number
in italic in Table 1 indicates the highest IoU score for the cor-
responding category of 3D reconstruction. We use SRDN and
MRDN to improve MVD in superresolution experiments of
the chair and can achieve higher IoU scores than MVD. We
roughly calculate the number of MVD superresolution net-
work layers with 16 residual blocks as shown in Figure 2(a),
and the total number of layers is 32. Similarly, the number
of IMVD network layers improved by MRDB is 72.

As can be seen from Table 1, when the number of
network layers is increased by about 1 time, the MRDN
model parameters are reduced by about 25%. At the expense
of the IoU reconstruction score, the model parameters are
reduced by 81% when the feature map G is reduced by half.
We observe that in the MRDB experiment, keeping the
feature map G constant and reducing L by half make the
model IoU fall. This suggests that designing deeper networks
can enhance the expressive ability of the model. In Table 1,
MRDN-4 (G = 128) and MRDN-8 (G = 64) are scaled-down
on L and G, respectively. Although the IoU scores are almost
the same, the latter model parameters are reduced by approx-
imately 56%. In addition, the MRDN model parameters can
be reduced by 45% when SRDN and MRDN are close to
the obtained IoU score.

4.3.2. Qualitative Results. We show qualitative results in
Figure 5. We rendered from 323 resolution to 2563 on the test
set. The low-resolution 3D shapes of real chairs and planes
are used as input for this experiment (line 1 of Figure 5).
The output results of MVD [39] are shown in line 2 of
Figure 5. The IMVD results are shown in line 3 of Figure 5.

As can be seen from the comparison of Figure 5, the MVD
method tends to break in a thin object portion. However,
our IMVD results are more complete in this situation. The
experimental results show that extracting more feature infor-
mation through the multiresidual dense network is beneficial
to enhance the expressive ability of the model.

4.3.3. Quantitative Results. We trained each class in DataHSP
separately in a 3D object superresolution experiment. The
results are compared with various methods employed in
MVD and presented in Table 2. The benchmark method
directly increases the resolution of the 3D volume from 323

to 2563 through the nearest neighbor upsampling. The
MVD method combines depth estimation and silhouette
estimation. It can be seen from Table 2 that our method
performs better than the MVD method in the experiment.
We all achieved higher scores in different categories.

4.4. Single-Image 3D Reconstruction Experiment

4.5. Model Parameters and Iteration Time. We show the
parameter sizes and required iteration time of different low-
resolution 3D reconstruction models, as shown in Table 3. It
can be seen from Table 3 that IMVD has increased in the
number of parameters and decreased in iteration time.
Generally, 3D reconstruction experiments of a single image
often use 13 categories in the ShapeNetCore dataset. The total
number of models in 13 categories is approximately 39,832.
According to the method of generating the dataset in this
article, the number of models in the training set of each cate-
gory is approximately 2,144. According to the iteration time
in Table 3 and the training method in this paper, the training
time of IMVD in 13 categories will be reduced by approxi-
mately 4 hours compared with MVD. For higher resolution
3D reconstruction experiments, this method has more advan-
tages in training time.

4.5.1. Convergence Curve Analysis. In Figure 6, we show the
convergence curve on the validation set. In Figures 6(a) and
6(b), the red curves represent the convergence of the MVD
method on the chair and aircraft validation set, respectively.
Similarly, the green curve corresponds to our IMVDmethod.
We train the model to use the same parameters, just changing
the structure of the model. The training epoch was 300, and
the reconstructed IoU score was evaluated on the validation
set at the end of each epoch. The original MVD oscillated

Table 1: Comparison of parameters and IoU (%) on the DataSR
chair model. “-” means that the model is out of our running
memory without IoU results. “∗” indicates the result of our
implementation.

Method Parameters Size IoU

RB [39] 5.28M 21.1M 68.4∗

MRDN-4 (G = 128) 2.25M 9.0M 69.3

SRDN-8 (G = 64) 1.83M 7.3M 69.1

MRDN-8 (G = 64) 1.00M 4.0M 69.2

SRDN-8 (G = 128) 7.27M - -

MRDN-8 (G = 128) 3.97M 15.9M 69.8
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over the entire training cycle of the training chair. Our IMVD
uses a multifeature fusion approach to reduce the degree of
model oscillation, which helps to improve the model expres-
sion ability. In Figure 6(b), the model of the aircraft itself has
no complicated and thin parts like a chair. Therefore, it seems

that there is not much difference between the improved
convergence curves of the IMVD network and the original
MVD network on the validation set. In summary, we can see
from the comparative analysis in Figure 6 that the improved
network can improve the stability of model training.

4.5.2. Quantitative Results. We show quantitative results in
Table 4. We compared several methods, HSP [22], AE [39],
and MVD [39], which all use DataHSP to reconstruct 3D
objects from a single RGB image at 2563 resolution. As can
be seen from Table 4, the proposed IMVD method can
achieve a higher IoU score on a single-image reconstruction
2563 resolution 3D object.

4.6. Ablation Studies. Table 5 quantitatively demonstrates the
effects of MFF, 3D ESPCN, andMRDB. The IoU scores of the
reconstruction results are in the second column, and the
third column corresponds to the plane and the chair, respec-
tively. The last column represents the average IoU score for
the plane and chair reconstruction results. The first column
in Table 5 represents the combination of the different com-
ponents we proposed. Among them, the benchmark is the
method of MVD. We add MFF and MRDB (from line 3 to
line 4 of Table 5) to the benchmark method. Since the

Figure 5: 3D object superresolution results on DataSR.

Table 2: 3D object superresolution reconstruction IoU score at
2563.

Class
Benchmark

[39]
Depth
[39]

Silhouette
[39]

MVD
[39]

IMVD
(ours)

Chair 54.9 58.5 67.3 68.5 69.8

Plane 39.9 50.5 70.2 71.1 72.9

Table 3: Model parameters and iteration time at 323 resolution. The
batch size is 2.

Method Parameters (M) Iteration time (ms)

MVD [39] 27.02 50.8

MVD+MFF 27.15 49.9

MVD+3D ESPCN 27.01 47.7

IMVD 27.14 47.1
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Figure 6: Convergence curve analysis on the validation set. The curve represents the evaluation of the loss value over 300 epochs of the
corresponding validation set on the DataHSP.

Table 4: Single-image reconstruction IoU score at 2563 resolution.

Class AE [39] HSP [22] MVD [39] IMVD (ours)

Chair 36.4 37.8 40.1 41.9

Plane 28.6 56.1 56.4 58.8

Table 5: The IoU score evaluates the contribution of each
component.

Component Chair Plane Average

Benchmark [39] 40.1 56.4 48.25

3D ESPCN 40.2 56.4 48.30

MFF 41.2 57.9 49.55

MRDB 41.3 57.0 49.15

MFF+MRDB 41.9 58.6 50.25
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addition of 3D ESPCN basically did not improve the perfor-
mance of the model, it can be seen that adding another
component can improve the performance of the model. We
add modules for the combination of MFF and MRDB on
the benchmark (in the last row of Table 5). After adding
two components, the performance of the model has been
further improved.

Figure 7 qualitatively shows the contribution of MFF and
MRDB in the model. The first column of Figure 7 represents
the input RGB image. The second column is a method of
MVD, and the reconstruction result is broken at the edge
portion (columns 3 to 5 of Figure 7). However, partial
fractures have been improved after the addition of MFF or
MRDB. In addition, it can be seen in the reconstruction of
the first row of the chair in Figure 7 that the input RGB image
of the chair back is a series of unconnected pillars. However,
the 3D reconstruction result of MVD does not reflect this
feature. After adding MFF or MRDB alone, the reconstruc-
tion results show this part of the details. This detail can be
further enhanced after combining MFF and MRDB. It can
be seen from the comparison of the third column to the fifth
column of Figure 7 that the final reconstruction result of

IMVD is mainly refined based on MFF. This also reflects
the impact of the resolution of low-resolution 3D object
reconstruction on high-resolution 3D object representation.
At present, the rendering of CAD models in the dataset is
performed in random colors, and the background of all
rendered images is clean. In the future, images with textures
and backgrounds can be used for rendering to enrich the
dataset, which will make the model more robust to 3D object
reconstruction from 2D images in real scenes. In addition,
there are other methods, such as exploring new algorithms
to extract more effective image features, using different train-
ing architectures, and supervising methods to optimize [54].

5. Conclusion

We improve the depth map superresolution network and
low-resolution 3D reconstruction network of the single
image in MVD, respectively. The improved model shows
better performance compared with MVD in the correspond-
ing experiment. We propose an architecture that includes
multiple MRDB blocks, which can make the network struc-
ture design deeper and make full use of the multilayer

Input Benchmark MFF MRDB MFF+MRDB

Figure 7: Qualitative results of the ablation study. This figure reflects the contribution of each improved component to the model.
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structure information to enhance the model expression
ability. Even though the network design is deeper, the model
parameters are even smaller. In addition, we use multifeature
fusion and 3D ESPCN to improve the 2D encoder and 3D
decoder, respectively. Both of these can reduce the training
time of the model. At present, there are few studies on 3D
reconstruction technology and edge computing based on
deep learning, but their combination has broad application
prospects. In intelligent manufacturing, edge computing is
conducive to extend various computing resources to the edge
of the Internet of Things and realizes manufacturing and
production [55]. However, the problem of 3D data heteroge-
neity between different devices may need to be resolved. The
use of 3D reconstruction methods based on deep learning
may be one of the means to solve this problem in the future.
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