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S-shape acceleration and deceleration are the most widely used flexible acceleration and deceleration method in the current CNC
system, but its velocity solution equation contains irrational terms, which create a more complicated solution process. When
analyzing the solution process of the S-shape acceleration and deceleration directly, using a traditional numerical solution
method, the phenomenon of “solving the interval jump” arises, which is the main reason for low efficiency and poor stability of
the solution. According to the S-curve profile and solution, the concept of separating the curve profile recognition from the
velocity solution was proposed, and a method of quickly identifying the interval of the solution location was introduced.
Through the method mentioned above, the complete acceleration and deceleration curve parameters can be obtained through a
one-time plan and a one-time solution, and the solution efficiency and stability are guaranteed; solving the Newton problem
depends too much on the initial value of Newton velocity, which not only retains the speed advantage of the Newton method
but also uses the downhill factor to ensure its convergence. Through the simulation comparison and analysis, the efficiency,
stability, and universality of the method are verified.

1. Introduction

The ability of acceleration and deceleration is an impor-
tant index in evaluating the performance of CNC systems,
which directly affects the processing efficiency and quality
of CNC equipment. High-speed and high-quality machin-
ing demands higher requirements for the acceleration and
deceleration control abilities of CNC systems. The CNC
equipment must be able to move from the current
position point to the next position point quickly and accu-
rately, while also ensuring the smooth operation of the
equipment and avoiding impact, out of step, over the
range, or oscillation.

The commonly used acceleration and deceleration
algorithms in medium and low-speed equipment include
trapezoids [1, 2] and exponential acceleration and deceler-
ation algorithms [3, 4]. The two algorithms are simple in
programming, good in real-time performance, and high

in processing efficiency, but they all have the problems
of abrupt change and discontinuity of the acceleration
curve, which makes them not suitable for high-speed and
high-accuracy machining [5].

In high-speed equipment, flexible acceleration and decel-
eration algorithms are often used, and their acceleration and
acceleration function expressions are continuous, to reduce
the impact on mechanical components [6]. S-shape accelera-
tion and deceleration algorithm is the most widely used in
flexible acc/dec algorithms at present. This method is based
on the jerk constraint. The curves of displacement, velocity,
and acceleration are composed of cubic, quadratic, and linear
functions, respectively, and all of them are continuous
without deviation [7, 8].

The mathematical programming and solution of the S
-shape acc/dec method have attracted considerable atten-
tion. The complete S-shaped acc/dec curve is composed
of 7 segments, with many parameters. In most cases, the
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velocity solution equation is nonlinear, which makes its
solution complex. Altintas [9] presented a detailed seven
segment model of S-shape acc/dec, without elaborating
its efficient solution. Barre [10] studied the influence of
the acc/dec control in a high-speed machining process
and analyzed the control algorithm of the seven-segment
S-shape acc/dec. Shi [11] summarized eight possible cases
of S-shape acc/dec in the planning, according to the char-
acteristics of the curve segment. Nam [12] used the binary
iteration to find the numerical solution, but the calculation
amount was uncertain, and the solution efficiency was not
ideal. Yang [13] adopted the Newton iteration, but the
preconditions and convergence of Newton iteration were
not clarified.

Many scholars simplified the S-shaped acc/dec curve in
order to reduce the complexity of the solution. Wang and
others [14, 15] introduced a look-ahead control algorithm
based on the S-shaped acc/dec curve with assuming that
the velocity curve is symmetrical. In reference [16], the
uniform acceleration and deceleration segments were
removed, and the model was simplified to 5 segments.
Although the above method reduced the complexity of
the solution, it limited the dynamic performance of the
machine tool. Xia [17] used the S-shape acc/dec based
on the reference table to plan the velocity, which reduced
the calculation time while limiting the flexibility of S-shape
acc/dec.

Presently, the planning of NURBS curve interpolation
velocity based on S-shape acc/dec has become a hot
research topic, and the solution mainly adopts the match-
ing displacement by changing the velocity step by step [18,
19].The main idea of this method is to use the assumed
key velocity value to calculate the corresponding displace-
ment, match it with the actual displacement, and then
determine the curve profile according to the matching
situation. For small line segments, the calculation needs
to be repeated more than three times, which reduces the
efficiency of the solution.

In order to reduce the complexity in S-shaped acc/dec
curve planning and solutions, some scholars introduced the
artificial intelligence algorithms such as genetic algorithms
[20] and particle swarm optimization algorithms [21].
Although the above artificial intelligence algorithm has
strong robustness, it needs to calculate the fitness of each iter-
ation. Compared with the traditional dichotomy and Newton
iteration, it has a large amount of calculation and low
competitiveness in real-time.

For S-shaped acc/dec curves, the more ideal solution
method should have smaller calculation complexity and
higher solution accuracy. However, there is no general
perfect solution at present.

In this paper, the characteristics of the S-shaped
acc/dec curve were analyzed. Focusing on the disadvan-
tages of low efficiency and poor stability of traditional
algorithms, a more concise, efficient, and stable general
solution was proposed. In this method, the curve profile
planning and velocity solution were completely separated.
On the basis of proving the continuity of displacement’s
segmented function about velocity, the interval boundary

points were used to analyze the interval of velocity, so as
to complete the profile planning quickly. After obtaining
the interval of the velocity solution, the modified Newton
method was introduced, which can make full use of the
Newton method to accelerate up to the convergence speed,
and at the same time, the downhill factor guarantees the
convergence of the iteration.

2. Profile Characteristics of S-Shape
Acceleration and Deceleration

The name of the S-acceleration and deceleration curves are
derived from the fact that the acceleration curve is approx-
imately S-shaped. This type of S-acceleration and deceler-
ation processes includes the S-acceleration process,
deceleration process, and the uniform connection between
acceleration and deceleration. Acceleration processes
includes the accelerated acceleration segment, uniform
acceleration segment, and decelerated acceleration; the
deceleration process includes the accelerated deceleration
segment, uniform deceleration segment, and decelerated
deceleration segment. There are 7 sections in total, as
shown in Figure 1. The corresponding mathematical
expression is as follows:

In the follow formula, tiði = 1, 2,⋯,7Þ is the running time
of each segment. Command T1 = t1, T2 = t1 + t2, and so on,
T7 = t1 + t2 + t3 + t4 + t5 + t6 + t7,.A is the maximum acceler-
ation, J is the maximum jerk, Vs is the initial velocity, Ve is
the final velocity, andVmax is the maximum velocity. Accord-
ing to the characteristics of the S-acceleration and decelera-
tion curve, t1 = t3, t5 = t7.
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Figure 1: Profile of S-shape acceleration and deceleration.
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J tð Þ =

J1 = J 0 ≤ t < T1

J2 = 0T1 ≤ t < T2

J3 = −J T2 ≤ t < T3

J4 = 0T3 ≤ t < T4

J5 = −J T4 ≤ t < T5

J6 = 0T5 ≤ t < T6

J7 = J T6 ≤ t < T7

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

,

a tð Þ =

a1 = Jt 0 ≤ t < T1

a2 = AT1 ≤ t < T2

a3 = A − J t − T2ð ÞT2 ≤ t < T3

a4 = 0T3 ≤ t < T4

a5 = −J t − T4ð ÞT4 ≤ t < T5

a6 = −AT5 ≤ t < T6

a7 = −A + J t − T6ð ÞT6 ≤ t < T7

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

,

v tð Þ =

v1 =Vs + 1
2 Jt

2

v2 =V1 + Jt1 t − T1ð ÞV1 =Vs + 1
2 JT

2
1

v3 =V2 + Jt1 t − T2ð Þ − 1
2 J t − T2ð Þ2 V2 =V1 + Jt1t2

v4 =V3 V3 =V2 +
1
2 Jt

2
1

v5 =V4 −
1
2 J t − T4ð Þ2 V4 =V3

v6 =V5 − Jt5 t − T5ð ÞV5 =V4 −
1
2 Jt

2
5

v7 =V6 − Jt5 t − T6ð Þ + 1
2 J t − T6ð Þ2 V6 =V5 − Jt5t6

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

:

ð1Þ

Displacement of the acceleration section:

Sacc = S1 + S2 + S3 = v +Vsð Þ 2t1 + t2ð Þ/2: ð2Þ

Displacement of the deceleration section:

Sdec = S5 + S6 + S7 = v +Veð Þ 2t5 + t6ð Þ/2: ð3Þ

Total displacement:

ST = Sacc + Sdec = v + vsð Þ 2t1 + t2ð Þ/2 + v + vsð Þ 2t5 + t6ð Þ/2:
ð4Þ

If the actual displacement is S > ST , then there is a uni-
form velocity segment and running time:

t4 =
S − ST
v

: ð5Þ

Whether there is a uniform acceleration section or a uni-
form deceleration section in the process of acceleration and
deceleration is decided by Vs, Ve, v, A, and J .

v − Vs = t1 + t2ð ÞA, v −Ve = t5 + t6ð ÞA, ð6Þ

t1 = t3 =
A
J
, t2 =

v − Vs

A
−
A
J
v > Vs +

A2

J
, ð7Þ

t1 = t3 =
ffiffiffiffiffiffiffiffiffiffiffiffi
v − Vs

J

r
, t2 = 0 v ≤Vs +

A2

J
, ð8Þ

t5 = t7 =
A
J
, t6 =

v − Ve

A
−
A
J

v >Ve +
A2

J
, ð9Þ

t5 = t7 =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v − Ve

J

r
, t6 = 0 v ≤Ve +

A2

J
: ð10Þ

Substituting the above time expression into the displace-
ment formula:

(1) While v > Vs + ðA2/JÞ&v >Ve + ðA2/JÞ, then ST = ð1
/AÞv2 + ðA/JÞv − ðVs2 +Ve2/2AÞ + ðVs +Ve/2JÞA

(2) While v > Vs + ðA2/JÞ&v ≤Ve + ðA2/JÞ, then ST = ðv
+Vs/2ÞððA/JÞ + ðv −Vs/AÞÞ + ðv +VeÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v − Ve/J

p

(3) While v ≤Vs + ðA2/JÞ&v >Ve + ðA2/JÞ,then ST = ðv
+Ve/2ÞððA/JÞ + ðv −Ve/AÞÞ + ðv +VsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v − Vs/J

p

(4) While v ≤Vs + ðA2/JÞ&v ≤Vs + ðA2/JÞ, then ST = ðv
+VsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v −Vs/J

p + ðv + VeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v −Ve/J

p

The expression (13) is a quadratic equation of one vari-
able, and the exact solution can be obtained by using the root
formula, while the expressions (14)-(16) contain the irratio-
nal part, so it is difficult to obtain the analytical solution.

3. Direct Numerical Solution

3.1. Dichotomy. Dichotomy is the most common method in
solving nonlinear equations. Its main process in solving S
-shape acceleration and deceleration is shown in Figure 2.

Step 1. input the initial velocity Vs, the final velocity Ve, max-
imum acceleration A, maximum jump A, required moving
displacement S, and maximum limiting velocity Vmax.

Step 2. compare the value of V =Vmax, Vs ′ =Vs + ðA2/JÞ,
and Ve ′ =Ve + ðA2/JÞ.

Step 3. call formulas (7)-(10) to calculate the time of each seg-
ment ti and put them into formulas (13)-(16) to calculate the
displacement ST .

Step 4. if ST ≤ S, call formula (5) and obtain the running time
of each segment and the overall curve profile. The calculation
is finished.

If in step 4 ST > S, the binary algorithm will be executed
in step 5 to step 8:
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Step 5. take the initial interval ½Va, Vb�, where Va =max fV
s, Veg andVb =Vmax and set the velocity accuracy V ε.

Step 6. determination of termination conditions: if ðVb −Va
Þ ≤ Vε, the calculation will be stopped.

Step 7. for iterative calculation, take V ′ = ðVb +VaÞ/2, com-
pare V ′, Vs ′ =Vs + ðA2/JÞ, and Ve ′ =Ve + ðA2/JÞ, call for-
mulas (7)-(10) to calculate the time of each segment, and
substitute them into formulas (13)-(16) for calculation ST .
If ST ≤ S, then set Va =V ′; otherwise, set Vb =V ′.

Step 8. turn to step 6.

3.2. Newton Iteration

3.2.1. Principle. For nonlinear equation f ðvÞ = ST − S = 0, V0
is assumed to be an approximate solution of V ∗; f ðvÞ is
expanded in the Taylor form at V0, and the following
formula is obtained:

f vð Þ ≈ f V0ð Þ + f ′ V0ð Þ v − V0ð Þ = 0: ð11Þ

V1 = V0 − f ðV0Þ/f ′ðV0Þ f ′ðV0Þ ≠ 0 is obtained as the
first approximation of V ∗; Vk is assumed as the current
point, andf ðvÞ can be expanded in the Taylor form at Vk:

f vð Þ ≈ f Vkð Þ + f ′ Vkð Þ v −Vkð Þ = 0: ð12Þ

Then,

Vk+1 =Vk − f Vkð Þ/f ′ Vkð Þ f ′ Vkð Þ ≠ 0, k = 0, 1⋯ ð13Þ

3.2.2. Iteration Process. The first four steps are the same as the
first four steps of dichotomy, so it will not be described here.
Start with step 5:

Step 5. V0 is taken as the initial value, N is the maximum
number of iterations, and Vε is taken as the accuracy
requirements.

Start

Input
Vs/Ve/A/J/S/Vmax

V = Vmax
Call formula (9)-(12)

Calculate time of segment ti

St≤S

Command V = Vmax
Call formula (7), t4

End

Backbone Dichotomy

Y

N

N

Y

Call formula (9)-(12)

Calculate Vs′ = Vs + A
2/J

Ve′ = Ve + A
2/J

Call formula (9)-(12)
Calculate time of segment ti

Calculate time of segment ti

Y

N

 preset V𝛿

Va = max{Vs,Ve}, Vb= Vmax

Vc  = Vb − Va

Vc  ≤ V𝛿

V′ = Va

Va = V′

Vb = V′ST′≤ S

CompareV ′,Vs′,Ve′

V′ = (Va+Vb)/2

Figure 2: Solving the S-shape acceleration flow chart with dichotomy.
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Figure 3: Schematic diagram of interval jump in the solving process.
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Figure 4: Flow chart of solution by matching with velocity step by step.
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Step 6. calculate Vk+1 =Vk − f ðVkÞ/f ′ðVkÞ .

Step 7. if jVk+1‐Vkj <Vε, the calculation will be stopped.

Step 8. if k =N , stop; otherwise, k =N + 1 and turn to step 6.

4. Phenomenon of Solving Interval Jump

For the numerical solution, whether dichotomy or the New-
ton method, the solution interval is selected according to the
initial value of the velocity in the first step, and then the dis-
placement expression of this interval will be calculated. The
solution obtained is not the final velocity solution, and the
solution interval will be selected again according to the veloc-
ity value, and the iterative calculation will be carried out
repeatedly until the termination condition is met. The pro-
cess will cause the velocity value to jump at different inter-
vals, and the displacement expression needs to be selected
repeatedly, which will affect the solution efficiency, as shown
in the following figure:

Figure 3 shows the case of Vs <Ve < Vs + ðA2/JÞ < Ve +
ðA2/JÞ <Vmax. The blue dotted line represents the segment
point of the interval. From formula (13) to formula (16), it
can be seen that the expression of displacement velocity is
different in different segments. Taking dichotomy as an
example, assuming that the required solution V ∗ is slightly
less thanVe + ðA2/JÞ, the solution obtained after the first iter-

ation is V ′ =Va +Vb/2 =Ve +Vmax/2ðA2/JÞðA2/JÞ. Red
indicates the corresponding position of the iterative solution.
At this time, formula ((3)–(14)) is applicable, and the next
iteration is carried out V ′′ = Va + Vb/2 =V ′ + Vmax/2ðA2/J
Þ max�. At this time, formula (16) is applicable, and the third
iteration is carried out V ′′′ =V ′ + V ′′/2 ∈ ½Vs + ðA2/JÞ, Ve
+ ðA2/JÞ�. In this case, (14) applies again.

This kind of iterative solution jumps between intervals,
which causes different displacement expressions to be called
back and forth, which leads to the instability of the solution
process and affects the solution efficiency. In order to solve
this kind of jump problem, the analytic programming
method is introduced; that is, the interval of the expected
solution is estimated first, and then the solution is calculated.

5. Solution by Matching with Velocity
Step by Step

The main idea of this method is to use the assumed key veloc-
ity value to calculate the corresponding displacement, match
it with the actual displacement, and then determine the curve
profile according to the corresponding situation.

Take acceleration segment as example:

Step 1. assuming that the velocity can reach the required
maximum velocity, the maximum velocity is substituted into

A2

J
+

Case 1
Ve Ve0 A2

J
+ Vmax

Interval 0 Interval 1 Interval 2 Interval 3

Vs Vs

Figure 5: Case 1 with initial velocity less than the final velocity.

A2

J
+Ve Ve

A2

J
+ V

ST (V)

S

ST

Vmax

Vs Vs

Figure 6: STðvÞFunction curve.

Table 1: The summary of the curve profile planning of case 1.

Serial number
Fis ∗ Fie ≤ 0, f is ∗ f ie ≤ 0 true or false

Expression for calculate ti Composition of curve profile
F1s ∗ F1e F2s ∗ F2e F3s ∗ F3e

1 T F F 10/12 4 segments: t1/t3/t5/t7
2 F T F 9/12 5 segments: t1/t2/t3/t5/t7
3 F F T 9/11 6 segments: t1/t2/t3/t5/t6/t7
4 F F F 9/11/7 7 segments: t1/t2/t3/t4/t5/t6/t7
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the displacement formula, and the calculated displacement is
compared with the actual displacement. If the calculated dis-
placement is smaller than the actual displacement, then there
is a uniform velocity segment:

Step 2. if the calculated displacement is larger than the actual
displacement, assume that there is just a uniform acceleration
segment and substitute the assumed velocity value into the
displacement formula and compare the calculated displace-
ment with the actual displacement. If the calculated displace-
ment is smaller than the actual displacement, it means that
there is a uniform acceleration segment, then use the dis-
placement formula including the uniform acceleration seg-
ment to solve the actual velocity value.

Step 3. if the calculated displacement is larger than the actual
displacement, it means that there is no uniform acceleration
section. At this time, the displacement formula without uni-
form acceleration section is used to solve for the actual veloc-
ity value.

The specific flow of the algorithm is shown in Figure 4.
The advantage of this method is that you can use the

assumed velocity to plan first; then, you can solve for the
actual velocity and avoid the jump in value ranges, increasing
the stability of the solution, but there are also obvious disad-
vantages: the displacement is calculated and matched step by
step with the assumed velocity. For the small line segment,

the calculation needs to be repeated more than three times,
which reduces the efficiency of the solution.

6. Interval Identification

To solve the problem of low efficiency of solution by match-
ing with velocity, a new velocity planning method is pro-
posed here.

From formula (5) to formula (10), it can be seen that
when the initial velocity, final velocity, and maximum accel-
eration are given, the value of V directly affects the size and
existence of each segment time ti, and the actual s determines
whether the actual velocity can reach the maximum allow-
able value.

When Vs < Ve, Ve ≤ Vs + ðA2/JÞ, and Ve + ðA2/JÞ <Vmax
, because of max fVs, Veg ≤ V ≤Vmax, interval 0 in Figure 5
is meaningless, and V may exist in the intervals 1-3.

The velocity value interval is divided into six sections
and interval 0-5 by five key numerical points. The time
expression (8) and formula (10) are suitable in interval
1, and the corresponding displacement expression is
formula (16); the time expressions (7) and (10) are suit-
able in interval 2, and the corresponding displacement
expression is formula (14); the time expressions (7) and
(9) are suitable in interval 3, and the corresponding dis-
placement expression is formula (15). Then, the piecewise
function is obtained:

According to the definition of the function continuity, let

y = sðvÞ exist in a certain field of point v0; when v→ v0, if the
limit of the function sðvÞ exists and is equal to its function
value at point v0,that is lim

v→v0
sðvÞ = sðv0Þ, then function y = sð

vÞ is continuous at point v0. If Vs ′ =Vs + ðA2/JÞ and Ve ′ =
Ve + ðA2/JÞ, it can be proved that the function is continuous
at the points Vs ′and Ve ′.

It can be seen from Figure 6 that the curve increases
monotonously in the range of ðVs, V maxÞ.
Letf iðvÞ = STiðvÞ − S, (i = 1,2,3), S is the actual displacement,
and there is a unique solution to f iðvÞ = STiðvÞ − S = 0
(i = 1,2,3), and with the difference of the displacement s
value, the interval of solution of the piecewise function equa-
tion will change.

In the initial conditions, the initial velocity, the final
velocity, the maximum acceleration, and the maximum
jerk are given. The end values of three intervals are

substituted into f iðvÞ = STiðvÞ − S, respectively. Fis and

Fie are function values of the endpoints of the i-th
interval.

F1s = f1 v v =Vejð Þ = ST1 v v =Vejð Þ − s

F1e = f1 v v = Vs +
A
J

����
� �

= ST1 v v = Vsj + A
J

� �
− s

F2s = f2 v v =Vs +
A
J

����
� �

= ST2 v v =Vs +
A
J

����
� �

− s

F2e = f2 v v =Ve +
A
J

����
� �

= ST2 v v =Ve +
A
J

����
� �

− s

F3s = f3 v v = Ve +
A
J

����
� �

= ST3 v v =Ve +
A
J

����
� �

− s

F3e = f3 v v =VmaxjT2 v = Vmax ∣j���
:

ð15Þ

STi vð Þ =

ST1 = v +Vsð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
v −Vs

J

r
+ v +Veð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v −Ve

J

r

ST2 =
v + Vs

2
A
J
+ v −Vs

A

� �
+ v +Veð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v − Ve

J

r

ST3 =
1
A
v2 + A

J
v −

Vs2 +Ve2

2A + Vs +Ve

2J

8>>>>>>>>><
>>>>>>>>>:

v ≤Vs +
A2

J
≤Ve +

A2

J
≤Vmax

Vs +
A2

J
≤ v ≤Ve +

A2

J
≤Vmax

Vs +
A2

J
≤ Ve +

A2

J
≤ v ≤ Vmax

: ð14Þ
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From the properties of the continuity function, F1e
= F2s, F2e = F3s.

In the next step, the function values of f iðvÞ = ST iðvÞ − S
at the end points of each group of intervals are multiplied
by each other to determine whether the product result is less
than zero. There are two situations for the result:

(1) If Fis ∗ Fie > 0, the ST and S curves do not intersect in
this interval, and there is no solution in this interval.
If there is no solution in the three intervals, the veloc-
ity is taken as V max, which indicates that the system
has a uniform segment, the time is t4, and the curve is
composed of seven segments. The ti can be obtained
by substituting the velocity value into the solutions of
formulas (4) and (5)

(2) If Fis ∗ Fie ≤ 0, it means that the ST curve and S line
intersect in this interval, and the equation has a solu-
tion, which is the actual value of velocity V that the
system can achieve. At this time, substituting V into
equation (7)—(10) can calculate the running time
of each segment

Table 1 is the summary of the curve profile planning of
case 1. The first three lines show the three cases of Fis ∗ Fie
≤ 0 when i equals 1,2,3, respectively. The fourth line shows
that i = 1, 2, 3 cannot meet the situation of Fis ∗ Fie ≤ 0.

Formulas (14)-(16) can be solved by the dichotomy and
Newton method listed above to get the velocity value. Then,
the value is brought into the corresponding time calculation
formula to get the running time of each segments.

As shown in Table 2,there are 12 possibilities in the com-
parison of five key values of the initial velocity Vs, the final
velocity Vs, Vs + ðA2/JÞ, Ve + ðA2/JÞ, and Vmax.

Next, case 2 and case 3 in Table 2 will be discussed, and
the interval distribution is shown in Figure 7.

Case 2. Interval 1 and interval 2 make sense.
The time expression (8) and equation (10) in interval 1

are suitable, and the displacement expression is the same as
equation (17).

The time expression (7) and equation (10) in interval 2
are suitable, and the displacement expression is the same as
equation (18).

Case 3. Only interval 1 makes sense. The time expression (8)
and equation (10) in interval 1 are suitable, and the displace-
ment expression is the same as equation (17).

Case 4 and case 5 express the situation when Ve >Vs +
ðA2/JÞ, as shown in Figure 8.

Case 4. interval 1s and 2 make sense.
The time expression (7) formula (10) in interval 1 is

applicable, and the displacement expression is the same as
formula (14).

Time expression (7) and equation (9) in interval 2 are
applicable, and displacement expression is the same as
equation (13).

Case 5. Interval 1 makes sense.

The time expression (7) and formula (10) in interval 1 are
suitable, and the displacement expression is the same as for-
mula (15).

(1) When Vs = Ve, there are only two cases, case 6 and 7,
as shown in Figure 9

Case 6. Interval 1 and 2 make sense.
The time expression (8) and equation (10) in interval 1

are suitable, and the displacement expression is the same as
equation (17).

The time expression (7) and equation (9) in interval 2 are
suitable, and the displacement expression is the same as
equation (24).

(2) When Vs >Ve, the possible value range of velocity is
from case 8 to case 12. The actual solution process is
the same as that of Vs < Ve, and only 1 and 2 need to
be interchanged. In consideration of space, it will not
be expanded here

(3) There are four other possibilities, which are not listed
in the bid, as shown in Table 3

Table 2: Possibility of key point value comparison.

Case no. Description of value

1 Vs <Ve < Vs +
A2

J
<Ve +

A2

J
< Vmax

2 Vs <Ve < Vs +
A2

J
<V

A2

J max

3 Vs < Ve <V
A2

J
A2

J max

4 Vs <Vs +
A2

J
< Ve <Ve +

A2

J
< Vmax

5 Vs <Vs +
A2

J
<Ve <V

A2

J max

6 Vs =Ve <Vs +
A2

J
<Vmax

7 Vs =Ve < V
A2

J max

8 Ve <Vs < Ve +
A2

J
<Vs +

A2

J
< Vmax

9 Ve < Vs <Ve +
A2

J
<V

A2

J max

10 Ve <Vs <V
A2

J
A2

J max

11 Ve <Ve +
A2

J
<Vs <Vs +

A2

J
< Vmax

12 Ve < Ve +
A2

J
<Vs <V

A2

J max
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Case 7. Only interval 1 makes sense. The time expression (8)
and equation (10) in interval 1 are suitable, and the displace-
ment expression is the same as equation (17).

The so-called S-shape means that the shape of accelera-
tion is similar to the S-shape, case 13—case listed in
Table 3. There is only acceleration section or deceleration
section, and acceleration is similar to half circle. According
to the definition of the S-shaped acceleration and decelera-
tion curve, these four cases do not meet the definition, but
these four cases do exist in small displacement, especially in

the speed sensitive area, so they are listed here. The calcula-
tion method is the same as above and will not be described
here.

7. Comparison of Solution Methods

7.1. Match with Velocity VS Interval Identification. The first
step when using the velocity method is to assume that the
curve has seven complete segments, and that the time and
velocity values are substituted into the formula to calculate
the displacement. If the calculated displacement is less than
the actual displacement, the one with the larger value in Vs
+ A2/J and Ve + A2/J will be substituted into the equation
again to calculate the displacement, and the calculated dis-
placement and the actual displacement will be compared
again. If the calculated displacement is greater than or equal
to the actual displacement, then the actual velocity and run-
ning time can be obtained by solving the equation.

If the calculated displacement is smaller than the actual
displacement, it is necessary to replace the smaller value of
Vs + A2/J and Ve + A2/J into the displacement equation
again, calculate and compare the displacement for the third
time, and then plan out the profile of the curve. Finally, the
actual velocity can be obtained by solving the equation.

The specific steps of the interval identification method
are as follows:① input the initial value, compare 5 key speed
values, and find the corresponding case No.; ② in the corre-
sponding case No., substitute the value to judge Fis ∗ Fie ≤ 0;
③ solve the equation in the interval of Fis ∗ Fie ≤ 0 and get
the velocity; and ④ replace the speed V with the time calcu-
lation formula and get the whole curve profile.

Figure 10 shows the comparison of the processes of the
two methods. In summation, if the curve has 7 or 6 segments,
the calculation steps and calculation amounts of the two

Case 1
0 A2

Ve J
+

Interval 0 Interval 1 Interval 2 Interval 3

Interval 0 Interval 1 Interval 2 Interval 3

Interval 0 Interval 1 Interval 2 Interval 3

Case 2
0

Case 3
0 + +

A2

J
Ve

Ve

Ve

Ve
A2

J

+Ve
A2

J

Vmax

Vmax

VmaxVs

Vs

Vs

Vs

+
A2

J
Vs

+
A2

J
Vs

Figure 7: Interval partition graph of cases 1-3.

+
Case 4

0 +

Interval 0 Interval 1 Interval 2

+
Case 5

0 +

Interval 0 Interval 1 Interval 2

A2

J

A2

J
Ve

Ve

Ve

Ve

A2

J

A2

J

Vmax

Vmax

Vs

Vs

Vs

Vs

Figure 8: Interval partition graph of cases 4 and 5.

+

Case 6
0

Interval 0 Interval 1 Interval 2

Interval 0 Interval 1 Interval 2

+

Case 7
0

A2

J

A2

J
Vmax

Vmax

Vs

Vs

Vs = Ve

Vs = Ve

Figure 9: Interval partition graph of case 6 and 7.

Table 3: Only acceleration section or deceleration section.

Case no. Description of value

13 Vs <Vs +
A2

J
< Vmax

14 Vs <V
A2

J max

15 Vs < Ve +
A2

J
<Vmax

16 Ve <V
A2

J max
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methods are basically the same. If the curve has 4 or 5 seg-
ments, the calculation steps and calculation amounts of the
interval identification method are less and therefore, the effi-
ciency is higher.

7.2. Direct Numerical Solution vs Interval Identification. In
order to verify the efficiency of the solution, various methods
and algorithms are programmed with matlab2018a, and the
displacement is taken as a variable between 0.0001m and
0.018m, and the interval between the value points is 0 and
1mm. Computer configuration: processor Intel (R) core
(TM) i5-4200u memory 8 g. The solution time of each algo-
rithm under different displacement conditions is calculated,
and the solution efficiency of each method is compared.
The number of Newton iteration and dichotomy iteration
termination is 10000. The specific parameter settings are
shown in Table 4, and the solution efficiency is shown in
Figure 11.

It can be seen from Figure 11 that the abscissa of either
direct Newton iteration or interval identification+Newton
iteration does not start from zero; that is, the red dotted area
in the figure which indicates that Newton iteration does not
return the velocity solution and directly jumps out of the iter-
ation cycle after reaching the limit of iteration rounds. As
mentioned in the previous paper, the convergence of the
Newton iteration needs to be further verified. When the dis-
placement value is about 1-3mm, the number of Newton
iterations is also significantly higher than the number after
it is stable. When the displacement is more than 4mm, all
algorithms tend to be more stable as displacement increases.

In order to see the solution efficiency of the four methods
more clearly and intuitively, the abscissa in Figure 11 is inter-
cepted through 7-12mm part, resulting in Figure 12.

Regarding solving efficiency, the efficiency of the interval
identification method is obviously better than that of the
direct iterative method when the solving process of various
algorithms is stable. The efficiency of interval identification
plus Newton iteration is the highest, and then the effi-
ciency of direct Newton iteration is about one third of that
of interval identification plus Newton iteration. The effi-
ciency of dichotomy is obviously lower than that of New-
ton iteration. The efficiency of direct dichotomy is about
one seventh of interval identification plus the Newton iter-
ation. From the point of view of solving stability, the
interval identification method is also better than the direct

Start

Input
Vs/Ve/A/J/S

Let V = Vmax
Calculate ti and ST

Let V = V′
Calculate ST

ST ≤ S

Put V = Vmax
Into formula 6

Get t4

V = V′′
Calculate ST

End

Y

N

Run formula 6-11
Get ti

N

Y
Compare ST ≤ S

Determination curve
profile

ST ≤ S

(a) Matching with velocity

Start

Calculate
Vs′/Ve′/A/J/S

Confirm case No.

Solve fi(v) = 0
Get V

Fis
⁎Fie≤ 0

Let V= Vmax
Call formula 6

get t4

Call formula
9-12 get ti

End

Y

N

Input
Vs/Ve/A/J/S

(b) Interval identification

Figure 10: Comparison of matching with velocity and interval identification.

Table 4: Parameters used in the simulation.

Symbol Item Value

Vs Initial velocity 20mm/s

Ve Final velocity 30mm/s

Vmax Maximum velocity 100mm/s

Amax Maximum acceleration 600mm/s2

Jmax Maximum jerk 3 × 104mm/s3

Vε Iteration termination precision 1 × 10−6mm/s

Ts Interpolation period 1ms

S Displacement 0.01-18mm

Vo Initial velocity of iteration 15mm/s
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Figure 12: Local amplification of efficiency comparison graph after stabilization.
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iteration method. As mentioned earlier in the paper, the
interval identification avoids the phenomenon of iteration
jumping back and forth in different value intervals, thus
improving the stability.

To sum up, the interval identification+Newton iteration
method is the best both in solving efficiency and solving
stability.

Figure 11 is the abscissa which is truncated at 0-5mm
and enlarged locally to get Figure 13. It can be seen that the
efficiency of all solutions fluctuates within a certain bound-
ary, and the Newton iteration is the obvious. In the figure,
the red dot dash appears near two key points, which are ST1
and ST2 in formula (17), corresponding to the interval
boundary points in the interval identification method. This
shows that the expression change caused by the change of
displacement length has an obvious effect on the iteration
efficiency. The smaller the displacement, the more time-
consuming the solution.

8. Interval Identification plus Modified
Newton Iteration

In order to prevent the divergence of Newton iteration, a
requirement is attached to the iteration process to keep its
monotonicity.

f Vk+1ð Þj j < f Vkð Þj j: ð16Þ

In order to meet this requirement, Newton iteration is
modified.

Vk+1 =Vk −
f Vkð Þ
f ′ Vkð Þ

Vk+1 = λVk+1 + 1 − λð ÞVk

8><
>: , ð17Þ

Where λð0 < λ ≤ 1Þ is the downhill factor, and formula
(18) is obtained after the transformation of the above
formula:

Vk+1 =Vk − λ
f Vkð Þ
f ′ Vkð Þ

 k = 0, 1,⋯ ð18Þ

In the iteration, it starts from λ = 1 and reduces by half
until it meets the requirements (16).

After the modified Newton iteration is introduced, the
iteration parameters and initial conditions are set according
to Table 4. Under the same conditions, the efficiency curve
Figure 14 is obtained.

Only Newton iteration can be seen in Figure 14, because
the iteration diverges until the number of iterations jumps
out of the cycle. The record time of 0.01 seconds in the figure
is the time taken to jump out of the cycle. Figure 13 is
partially enlarged to obtain Figure 15.

It can be seen from Figure 15 that, when the displacement
is large, the solution efficiency of interval identification plus

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

Intervl identification+Newton
Derect Newton iteration

Interval identification+Dichotomy

Derect dichotomy iteration

×10−3

×10−5

S (m)

Ti
m

e (
s)

Figure 13: Comparison of solution efficiency when small displacement.
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modified Newton method is very close to that of interval
identification plus Newton iteration, which retains the char-
acteristics of fast convergence of Newton iteration; when
the displacement is small, the downhill factor ensures the
convergence of iteration.

9. Conclusion

(1) When analyzing the process of solving S-shape accel-
eration and deceleration directly by the traditional
numerical solution method, the phenomenon of
“solving interval jump” was concerned, which is a
main reason for the low efficiency and poor stability
of the solution

(2) According to the S-curve profile and solution, the
concept of separating the curve profile recognition
from the velocity solution was introduced, and a plan
of quickly identifying the interval of the solution
location was put forth. With this method, the com-

plete acceleration and deceleration curve parameters
can be obtained through one-time planning and
one-time solutions, and the solution efficiency and
stability are certain

(3) The modified Newton method was introduced to
solve the problem that the Newton iteration depends
too much on the initial value of velocity, which not
only retains the speed advantage of the Newton
method but also uses the downhill factor to ensure
its convergence

(4) Finally, through the simulation comparison and
analysis, the efficiency and stability of the interval
identification and modified Newton method were
verified

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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