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Presently, the wireless sensor network (WSN) plays an important role in smart farming. However, due to the limitation of wireless
sensor network resources, the time and space correlation of data acquisition is strong. In order to reduce the number of nodes
participating in data compression, the robust and secure data fusion algorithm based on intelligent sensing is proposed. The
algorithm can divide the whole network into many clusters. In order to maintain energy balance of nodes in the cluster, the
probability of each node in each cluster participating in each round of data collection is computed according to the residual
energy of the node. On the sink node, the number of sampling rounds of joint reconstruction of collected data is designated
according to the application requirements and reconstruction accuracy requirements, and the number of nodes participating in
is further reduced. The simulation results show that the number of nodes participating in the data collection of the proposed
scheme in this paper is lower than that of the ordinary intelligent sensing LEACH data acquisition scheme. Meanwhile, the
proposed scheme can dramatically extend the network lifetime. This paper provides an insight into various needs of WSN used
in agriculture and challenges involved in the deployment of WSN.

1. Introduction

The wireless sensor network consists of many low-cost tiny
sensor nodes, with the ability to compute, communicate,
and acquire data [1-3]. It is used for robust data collection,
and it has been widely used in military, environmental mon-
itoring, disaster monitoring, industrial production monitor-
ing, healthcare, smart homes, and other fields in social life.
Sensor nodes have limited energy, because its power supply
is a battery, and these nodes formed in wireless multihop
ad hoc networks through collaborating with each other. Data
gathering in the wireless sensor network is a typical form of
transmission. In meteorological and environmental monitor-
ing, all nodes periodically send data to the sink node, until
the lifetime of the network is over. The real-time require-
ments for data transmission are often lower, but it is required
that each node must periodically send information to the
sink node. In meteorological-environmental monitoring, it
is required to deploy a large number of meteorological sensor

nodes, which will increase network deployment costs. On the
other hand, the bandwidth of the network and the energy of
the sensor nodes are very limited; thus, how to use the limited
resource efficiently to transmit and process meteorological
data which are collected by the nodes in the network is one
of the most important problems in meteorological sensor
network research. In a microclimate sensing network obser-
vation system, the spatiotemporal continuity exists between
the meteorological factors which leads to the massive node
data with high temporal and spatial correlation and high
redundancy. Enabling a certain degree of error and time
delay of the premise and fusing the meteorological data can
improve the data collection rate and reduce the energy
consumption, which can prolong the network life [4-10].
Donoho et al. proposed the theory of compressive sens-
ing [11], which provides a new way of thinking data fusion
for a meteorological sensor network. The theory states that
as long as the signal is sparse or the sparseness can be repre-
sented by a sparse basis, you can use a measurement matrix


https://orcid.org/0000-0002-1953-9423
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8887632

which is not related to the sparse basis to project this high
dimension signal into a low-dimensional space and then by
solving a nonlinear optimization problem to reconstruct the
original signal from a few projections with high probability.
Compressive sensing theory has been applied in wireless sen-
sor networks [12-20], in order to ensure that the original sig-
nal can be under the premise of the sparse representation; it
applies an encoding algorithm with low complexity in com-
puting and storage capacity of sensor nodes, obtaining vector
projection, and then transmits it to the sink node. Due to the
idea that the sink nodes’ energy is adequate, its computation
and storage capacity are strong; hence, it can run a higher
complex degree decoding algorithm to recover the original
signal. By this way, it can significantly reduce the network
data transmission times and energy consumption and also
can prolong the lifetime of the network.

Due to the dense deployment of the sensor nodes, there is
a lot of spatial correlation between the sensing data [21-26].
Many researches use data spatial correlation to compress the
data and use the intelligent sensing theory in the data collec-
tion in wireless sensor networks to get a significant compres-
sion effect [27-30]. However, the existing research on the
data gathering in large-scale wireless sensor networks based
on compressive sensing is limited in the simple application
of intelligent sensing theory to the process of data collection,
and the improvement of network performance is not obvi-
ous. Compressive sensing theory is a new information acqui-
sition theory, which is also in the rapid development. If the
theory of intelligent sensing is applied in the actual data col-
lection in large-scale wireless sensor networks, there are still
many problems to solve and perfect. Therefore, based on
the intelligent sensing of wireless sensor network data collec-
tion, related research has important practical application
value and academic significance. This paper provides an
insight into various needs of WSN used in agriculture and
challenges involved in the deployment of WSN. Smart farm-
ing (SF) has played a major role to enhance more production
in the field of agriculture. The solution proposed in this work
has been a WSN composed of several units with different
sensors, allowing the monitoring of the farming procedure.
These sensors send their sensing data to a coordinating unit
that processes them and sends them to a database so that
any farmer can obtain information about the state of his agri-
cultural exploitation and can act on it adequately.

The remainder of this article is organized as follows. We
review related work in Section 2. In Section 3, we describe the
robust data fusion method based on intelligent sensing.
Section 4 presents the simulation results to illustrate the key
features as well as the performance of the designed rating
protocol. Finally, conclusions are drawn in Section 5.

2. Related Works

At present, the research on a data collection problem in large-
scale wireless sensor networks mainly focuses on three
aspects: (1) improving the compression performance of sens-
ing data, so as to reduce the number of the collecting mea-
surements [31, 32]; (2) designing a better projection matrix
to reduce the transmission cost of a single measurement
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[33]; and (3) designing a better routing strategy to match
the projection matrix and routing strategy [34-36].

Based on the intelligent sensing data collection process,
values for almost all nonzero elements in the measurement
matrix are data collected by dense random projection
scheme. A dense random projection data collection scheme
is used in References [37, 38].

A lot of data collection strategies for sparse random pro-
jection are also proposed, such as in Reference [34]; data col-
lection is based on sparse random projection. Sparse random
projection can reduce the transmission cost of a single mea-
surement. However, it needs to collect much data. So it can-
not improve the network performance. At the same time, the
sparse random projection is not suitable for the data collec-
tion of a sparse signal. In References [39, 40], the authors also
make the measurement matrix become more sparse, which
can reduce the communication cost of a single measurement.
Due to the randomness of the nonzero elements in the sparse
random projection, it is very difficult to match the routing
paths in the matrix and real networks.

The design principle of the measurement matrix is to
satisty the RIP (Restricted Isometry Property) condition or
low correlation with arbitrary orthogonal representation,
whether it is a dense random projection or a sparse random
projection. This is also the reason why the measurement
matrix cannot be sufficiently sparse, and we can only use
the measurement matrix to match the application scene.

References [8, 14, 41-43] proposed an information
acquisition scheme, which combines intelligent sensing and
LEACH (Low-Energy Adaptive Clustering Hierarchy) for
underwater sensor networks. The scheme in [14] is called
CS-LEACH. The main idea of this information acquisition
scheme is using the LEACH algorithm to divide the sensor
network into M clusters at first. In the stable data acquisition
phase, the nodes of each cluster use the independent and
identically distributed Bernoulli random generator to gener-
ate probability p; these nodes of the cluster participate in the
data collection with the probability p in each round. The sink
node collects data from M cluster head nodes. Each data that
the sink node received is a weighted sum of data which are
collected by the node participants in collection of the clusters.
So the vector of the measured value received by the sink node
can be represented as follows:

y(n) = ¢(mju(n) +z(n), (1)

where n represents rounds, z(n) represents the noise caused
by surroundings, u(n) represents the data collection in the
whole sensor network, and ¢(n) represents the measurement
matrix; the procedure of establishing the measurement
matrix ¢(n) is as follows: if node j belongs to the ith cluster
and this node will participate in the data collection, the
corresponding ¢, ; will be set to 1; otherwise, the ¢, ; will be

set to 0. Therefore, the data that the sink node receives from
each cluster head node is y, = Zj\i | Pyt

After a data collection round, the sink node can use an
orthogonal matching pursuit algorithm (OMP) to reconstruct
the information of the whole environment monitoring area
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FIGURE 1: Wireless sensor network developed on a rectangular area.

according to the measurement vector y(n) that is received by
the sink node, measurement matrix ¢(n), and basis .

The intelligent sensing theory is introduced into the data
fusion of the meteorological sensor network. The temporal
and spatial correlation of the cluster head nodes is intelligent
and fused, the data transmission of the cluster head is
reduced, and the network lifetime is prolonged by construct-
ing the diagonal Gauss matrix. In this model, each node in
the model needs to be involved in the process of data acqui-
sition, and how to reduce the amount of data transmission
and reduce the number of nodes participating in data acqui-
sition is a problem that needs to be considered.

However, the CS-LEACH does not give the process of
constructing the measurement matrix ¢(n) in detail, and
also, it does not take the redundant energy of nodes into con-
sideration during the process of constructing the measure-
ment matrix ¢(n). There is no solution to solve the possible
abnormal data during the process of collecting data. On the
sink node side, the CS-LEACH just reconstructs the informa-
tion alone for each round of sampling data and does not con-
sider the temporal correlation of data.

So this paper proposes the energy balance data fusion
algorithm based on intelligent sensing (EBDFACS), in order
to reduce the number of nodes that participates in data
compression.

3. Robust Data Fusion Method Based on
Intelligent Sensing

3.1. Problem Description. In an enviromental monitoring
area with the length L, the width W, as shown in Figure 1,
we can collect the meteorological data of the environment

monitoring area such as temperature and humidity by
deploying wireless sensor nodes regularly on the monitoring
area. These deployed sensor nodes can communicate with
sink nodes which are located in a point outside of the moni-
toring area. By selecting part of all nodes to participate in
data collection and fusion processing, the problem we need
to solve is how to decrease the number of the nodes that
participate in data collection in each round and get the
information of all nodes in the meteorological environment
monitoring at the sink node finally.

3.2. Method Model. It divides the entire monitoring area into
many cells of u x u; if we need the meteorological element
information of every cell, we need to deploy a sensor node
in every cell to collect the data and transmit the data to the
sink node. The number of cells in the entire monitoring area
is N=(Lx W)/u?.

In temperature monitoring, for example, x(I, w) repre-
sents the temperature value collected by the node in location
(I, w), where ] and w are the coordinates of the node. So the
data of the entire area in a sampling round can be repre-
sented as follows:

X1 X2 X1,
x Xyy ot X
21 %22 2,j
F= (2)
X1 Xip - Xij

It is convenient to express data collected from the
network in the form of a vector f =vec(F); in the formula,
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vec(F) represents the conversion of the matrix F as column
vectors to a one-dimensional column vector. The expression
is shown as follows:

T
vec(F) = (xl,l’x2>1""xi,l’xl,Z""xi,Z""xi,j) . (3)

The expression (- --)T represents the vector transpose. As
shown in Figure 2, in a sampling round, the nodes collect
data with spatial continuity.

When the nodes are deployed evenly in the network, first
of all, the clustering algorithm is used to select the cluster
head, and the M cluster heads are selected in the cluster head
election. Namely, M cluster structures are established in the
whole network.

After the establishment of the cluster structure, the stable
data collection and transmission stage is started. In this stage,
we can combine the intelligent sensing random measurement
process with the random selection of nodes in the cluster, in
which not every node in clusters needs to be involved in the
data collection. Each cluster node generates a random num-
ber, and compared with the probability threshold, it decides
whether this node anticipates the data acquisition process
in the sampling round. A weight coefficient is set on every

Cluster
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node. The node multiplies the weight coefficients of the node
by its own collecting value after collecting the data value and
then sends the results to the next node. The next node multi-
plies the weight coefficients of the node by its own collecting
value, and the result includes the value of the parent nodes.
The results continue forwarding. In the process of forward-
ing, the data is processed until transmitted to the cluster
head. The cluster head node receives the fusion result and
sends the result value to the sink node by the shortest
path algorithm. This process corresponds to the random
measurement process of intelligent sensing, equivalent to
building a measurement matrix ¢ to observe the data col-
lected from the nodes for the entire network, that is, y = ¢f,
y € R™ M < <N. Each node involved in the data acquisition
in a cluster fuses into a set of data and sends this set to the
sink node, and the sink node in a sampling turn can
receive M data in all.

Due to the data sequence existing in temporal correla-
tion, this temporal correlation can be used to reconstruct
the sampled data, repeat data acquisition, and transfer
operation by T sampling rounds totally. The sink node
received these fusion results of the T times sampling round;
then, it ran a decoding algorithm of compression sensing.
Moreover, it can recover data of T sampling rounds by joint
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reconstruction in the whole network. The sampling round
number T can change according to application requirements.
If it needs to reconstruct the original data sequence effec-
tively, it is required to meet the prerequisites for intelligent
sensing; the dimension of measured values of M is the num-
ber of clusters that need to satisfy inequality as follows:

M > cK log"'%, (4)

where c is a constant and it is more than 1, N is the length of
the original data sequence, and K is the data sparse degree.
An energy balance data fusion model based on intelligent
sensing is shown in Figure 2.

When the nodes in the clusters collected abnormal data,
it will destroy the sparse of sampling data of the entire
network. The abnormal data are transmitted to the sink node,
the reconstruction algorithm on the sink node cannot effec-
tively recover the abnormal data, and the data error between
the recovered data and the original collected data is too large;
it cannot meet the requirements of the application; at this
time, it needs to deal with the abnormal data, and the abnor-
mal value will be discarded or sent to the sink node to make
early warning.

It sets an exception threshold e in the entire network, and
the nodes compare the collected data to the threshold e; when
the acquisition data x,, is larger than the threshold e, then x,,
is identified as abnormal data and needs to be processed.
Then, the node does not need to participate in the data over-
lay fusion. The fusion data is transmitted directly to the next
node which is involved in the data acquisition process, and
the node immediately discards the abnormal data or directly
transmits it to the sink node for processing.

3.3. Algorithm Description

3.3.1. Observation Measure. In the data stable transmission
stage, the cluster head knows the location information of
each member node, and the member nodes send the infor-
mation to the cluster head node in a certain sequence. Each
sensor node has a random number generator to generate ran-
dom number wj if the random number w is less than the
probability threshold p, the node is involved in the data
acquisition; the calculation of the probability threshold p
can be expressed as follows:

E .
p = max < reE&ldem > Cprob> > (5)
0

where E, e 18 the residual energy of the node, E, is the ini-
tial energy of the node, and C,,, is the probability of the
nodes participating in the data collection. E |E, is the

resident’ ~o

percentage of the remaining energy and the initial energy of
the nodes. Each of these sampling round nodes with higher
residual energy values has higher probability to participate
in data acquisition, and the counter is involved in the control
of the number of data acquisition nodes, achieving balanced
energy consumption. Since the process of clustering is
random, w is also randomly generated, so the sensor node
selection based on residual energy cannot destroy this ran-

domness. The number of nodes participating in the data
acquisition is consistent in each cluster; each node has a
weight coefficient ¢, and the coeflicient ¢, will be set as 1
when the cluster node will participate in the data acquisition
round; the cluster head specifies a starting node; the path
from the starting node to a cluster head is according to the
shortest route principle; the node-collected data x multiplied
by the weight coefficient ¢, is sent to the next participating
node; the next node multiplies the weight coefficients of the
node by its own collected value; and the result is added to
the data forwarded by the former node. The results continue
forwarding; the final results reach the cluster head node. The
cluster head node will send the result of the fusion and the
node number of the data acquisition nodes to the sink node.

In a sampling round, the weight coefficients of each node
in the whole network can be abstracted into matrix ¢, and the
matrix ¢ can be expressed as follows:

Pi1 P2 Py PN
Po1 P22 Py o PN
¢=1| ! E (6)
”q)i,j

Prr Pmz T Pmy PuN

where M is the number of clusters within the whole sensor
network and N is the number of nodes in the network sensor.
Each row in the matrix corresponds to each cluster in the net-
work, and each column corresponds to each sensor node. In
the matrix ¢, if the node j belongs to the cluster i and the
node is involved in the sampling data acquisition, the weight
coeflicient b is 1 and the other position is 0, and if one node

weight coeflicient is 0, the node does not participate in data
acquisition.

Matrix ¢ is corresponding to the observation matrix of
the compressive sensing, and the data fusion process is corre-
sponding to the random measurement of the intelligent sens-
ing. The received data which was sent by M clusters in the
sink node is as follows:

X1
M1 P P2 Py PiN X
y=df = }’.2 _ (P?,l P2 P ‘Pz.,N
Pij Xn
Im Puy1 Pmp T Pmy PumN
L XN |

The fusion result of the cluster head node transmitted to
the sink node is y, = Zjl\il @ %;. x; is the data that is collected
from the node of the ith cluster, and ¢, ; is the weight coeffi-
cient of the corresponding node in the ith cluster. y is the
measurement result. y is also the data sequence of the fusion
value collected from each cluster. y is a M x 1 column vector,

where y € RM. After the completion of a sampling round,
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TaBLE 1: Experimental parameters.

Parameter name

Parameter definition

Value (unit)

K Sparseness 2

E Anomaly threshold 40 ("C)

Eqec RF energy coefficient 50 (n]/bit)

£ Power amplifier circuit energy coeflicient under free-space model 10 (p]/bit/mz)
Emp Power double fading model amplifying circuit energy factor 0.0013 (pJ/bit/m*)
d, Distance threshold \/Mm =87 (m)
E, Initial energy 0.5 ())

N The total number of nodes 100

each cluster head node sends the fusion data to the sink node.
After receiving the data from the sample round, the node id
can be used to rebuild the observation measurement matrix
¢, and the data from each cluster makes the measurement
value vector .

T
)1 Pr1 P12 w0 ey X
V2 P11 Pz P2t PN
y = (pf = . = . J .
Pij Xy
Yum Pry Pmz T Pmy PumN
LXN ]

When the collected data compared with the abnormal
data threshold e of a node is confirmed as abnormal data x,,,
the node needs to deal with the abnormal data to avoid
abnormal data impact on the measurement and reconstruc-
tion. Processes are as follows: the node detects the abnormal
data, the nonabnormal data, and the received data fusion,
and the node detects the abnormal data, the nonabnormal
data, and the received data fusion. We discard the abnormal
data directly and forward the normal data to the next nodes
till to the sink node. In the first cluster, for example, an
abnormal value is collected and the processing procedure is
shown in formula (8).

3.3.2. Joint Reconstruction. When the sink node receives the
data from each cluster all over the network in a sampling
round, the data is temporarily stored, and the sink node does
not run the intelligent sensing reconstruction algorithm
immediately. When performing the data acquisition process
in the network, it runs T times and T sampling rounds in
all. Each cluster head node transmits the data to the sink
node in each round.

After the sink node receives the fusion result of the T
sampling rounds, the measurement value y of each sampling

round is reformed to the new measurement value Y. Y =

[y(1),y(2),---y(i) --- y(T)]", where y(i) represents the mea-
surement sequence of the ith sampling round of the entire

network. That is, a diagonal matrix is recomposed of the
measurement matrix of each sampling round.

i ¢(T) |

where ¢(i) represents the measurement matrix of the ith
sampling round of the entire network. At this point, the cal-
culation process of the fusion result Y of the T sampling
rounds can be expressed as follows:

y(1) ¢(1) )
¥(2) ¢(1) f2)
Y= =¢F = ,
(i) ’ (i) f()
L(T) | L ¢(T) ] LA(T) ]

(10)
because F can be sparsely represented as follows:
F=y0. (11)

Formula (11) is a transformation of formula (10). The
problem can be transformed to the convex optimization
problem of the L1 norm. min ||y F||; is subjected to Y =
¢y0 = O0. The sink node can run common reconstruction
algorithms to solve the equation 0 = argmin||y!F||,, subject
to Y = ¢y0. There are many reconstruction algorithms, such
as the orthogonal matching pursuit algorithm. It can get the
approximate vector 6 of the sparse coefficient 00 = y"F, it
runs inverse transformation F =6 again, and it can get the
approximate value F of the original signal. F is a sampling
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FIGURE 3: The three-dimensional graph of collected data for a sampling round.
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data recovery value of the data from all nodes of T sampling  and merging, the nodes will collect data and abnormal e. If
rounds in the entire network.

the abnormal data is directly transmitted to the received data
The process of joint reconstruction on the sink node is  and then the weight is set to 0, the value is processed accord-
not a fixed sampling round T process, because encoding  ing to the application requirements.
and decoding are relatively independent. Sink nodes can be
used to change the T value; when T is 1, it can be adapted 1o 3. The data is transmitted to the cluster head node of
toa ;llilffertent sce;let.h bal data fusion aloorith each cluster, and the cluster head node forwards the data
e steps of the energy balance data fusion algorithm N :
based on infelligent sensinggyare as follows: ’ 0 =1 Vi ) .and the 1.10de id of the data acquisition
to the sink node in a multihop way.
Step L After deploying meteorological sensor nodes. n the Step 4. According to different application requirements, the
monitoring area, the T‘Ode runs the clustering algorithm in 11 1de constructs the fusion result of T sampling rounds,
the network to establish M clusters, and each cluster head ;" o 0 o rement value vector YY = Y(1) -
communicates with the sink node by the shortest path rout- Y(T), and the measurement matrix ¢(T) of each sampling
ing. ‘The cluster.head of each cluster transmits its node infor- roun(i is reconstructed by using the node information of data
mation to t.h.e sink node; then, the network enters the stable acquisition. The diagonal measurement matrix ¢ is composed
data acquisition stage. of the measurement matrix of each sampling round. The
reconstruction algorithm of intelligent sensing runs on the
Step 2. In one sampling round, the nodes in each cluster are  sink node; then, it recovers the sampling data of T sampling
generated by a random number generator and W is com-  rounds of all nodes in the whole network.
pared with the probability threshold p. If p is less than the
threshold value, it is involved in the data collection. At the 4, Performance Analysis
begining, we build the shortest path and the packets are
transmitted along this path. In this transmission, the data is
collected and the relay nodes do the multiplication process

In this paper, the performance of the energy balance data
until the cluster head node. In the process of forwarding

fusion algorithm based on intelligent sensing is evaluated
by using the MATLAB tool. The data is the measurement
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F1GURE 6: The relationship between the reconstruction error and the number of nodes involved in data acquisition in each cluster, when the

of ambient environment temperature from EPFL Sensor
Scope WSN [13]. 100 adjacent nodes of the data set in the
network are extracted as 100 meteorological sensor nodes.

100 x 100 square meter monitoring region, that is, about a
The data acquisition interval is set to 4 minutes. The calcula-

sensor node within each 10 x 10 square meter region.

In the simulation experiment, the relationship between
tion formula of data reconstruction error adopts the calcula-

the reconstruction error of the algorithm and the number
tion formula of relative error &, as shown as follows:

of clusters M in the network is considered. The relationship
between the reconstruction error and the number of nodes

e= H]?_f”z
17112

i (% - xi)z
vV i1 X2

(12)

L in the data acquisition is also considered. And the perfor-

mance comparison between EBDFACS and CS-LEACH
[14] and the abnormal data processing are verified.

The reconstruction algorithm on the sink node uses the

There is a high spatial correlation for sampling values of

orthogonal matching pursuit algorithm. In the simulation,
the data recovery algorithm runs 400 times, the average value
of the reconstruction error of all times is the same as that of

the data reconstruction error, and the related experimental
parameters are shown in Table 1. In the experimental net-

work, there are 100 sensor nodes which are deployed in the

the dense sensor node deployment; Figure 3 shows the spatial
three-dimensional graph of all nodes in a sampling round. It
can be seen that there is continuous change of the node data
in the space. There is a high spatial correlation.

First of all, this simulation verifies the validity of the
EBDFACS algorithm (data in Figure 3 for joint reconstruc-

tion) and restores the data series (three-dimensional graph
shown in Figure 4); as can be seen from Figure 4, the differ-
ence between the collected data in Figure 3 and the recovered
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FiGuRre 7: The relationship between the reconstruction error and the number of nodes involved in data acquisition in each cluster, when the

cluster number is 10.

data in Figure 4 is not large, and data reconstruction error of
only 0.0081 meets the validity of data reconstruction.

In the energy balance data fusion algorithm based on
compressive sensing, the number of clusters in the network
corresponds to the measured value M of the intelligent sens-
ing. With the increase in measured values, the relative error
of data recovery is smaller; that is, with the increase in the
number of clusters in the network, the error of data recovery
will be less. To randomly select 2 nodes within each cluster to
participate in a sample round of data collection, for example,
it can be seen from Figure 5 that with the increase in the
number of clusters within the network structure, the recon-
struction error of CS-LEACH and EBDFACS (T =2, T =3)
shows a downward trend. In the CS-LEACH protocol, when
the number of clusters was increased from 4 to 5, the recon-
struction error showed a rapid decline. When the number of
clusters is more than 7, the change in reconstruction error is
very small, and when the number of clusters is less than 4, it
is unable to reconstruct the original data. And in the EBD-
FACS algorithm, the decline trend of the reconstruction error
is relatively small. When the number of sampling rounds is 2
and the cluster number reaches 3, it can effectively recon-
struct the original data. When T equals 3 and the number

of clusters in the network is 1, the original data sequence can-
not be reconstructed, and the reconstructed error can reach
0.0512; when the number of clusters is 2, the reconstruction
effect is better. When the number of clusters is larger than
4, the reconstruction error is stable. When the number of
clusters is 4, the reconstruction error of EBDFACS (T =3)
is better than that of the data recovery of CS-LEACH
(0.1723). From the figure, it can be seen that in the EBDFACS
algorithm, the requirements for the cluster number is rela-
tively low for the entire network; as long as the number of
clusters is more than two, it can effectively recover the origi-
nal data; this algorithm is more suitable to the network with
fewer clusters.

The number of clusters in the network affects the quality
of data reconstruction on the sink node. In each cluster, the
number of nodes involved in data collection also affects the
quality of reconstruction error. It can be seen from
Figures 4-6 that reconstruction error decreases with the
increase in the number of sampling nodes in the cluster;
when the proportion of the sample node in the cluster tends
to 100%, reconstruction error tends to 0. When the number
of clusters in the network is small, the number of nodes par-
ticipating in the data acquisition of the CS-LEACH protocol
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FI1GURE 8: Recovery effect for joint reconstruction after processing sparse anomalies.

has a big influence on the reconstruction error. In the case of
four clusters in the network, the reconstruction error is
1.3032; in the same case, the reconstruction error of EBD-
FACS (T =3) is 0.0529. In order to achieve the same recon-
struction error, the CS-LEACH needs three nodes to
participate in the data acquisition in each cluster. After the
number of nodes participating in the collection reaches four,
the reconstruction error of CS-LEACH and EBDFACS (T = 3)
is close to having the same values.

When the number of clusters is relatively large in the
network, as shown in Figure 7, only one node in the cluster
participates in data acquisition, the EBDFACS (T = 3) recon-
struction error is only 0.0086, relative to 0.0446 of CS-
LEACH, and the effect is much better. And they can achieve
the same error in at least 4 nodes. Thus, in the energy balance
data fusion algorithm based on the intelligent sensing algo-
rithm, the requirement for the number of nodes participating
in data acquisition is lower.

From the comparison between Figures 6 and 7, it can be
seen that relative to the number of nodes participating in data
acquisition, the number of clusters in the network has a great
influence on the reconstruction error. When the number of
clusters is relatively large, even if the number of nodes partic-
ipating in the collection is relatively small, it can also achieve
a better reconstruction effect. From the comparison between
EBDFACS (T =2) and EBDFACS (T = 3), it can be seen that
when the number of nodes involved in the data acquisition is
small, the reconstruction error of T =2 is 0.002 higher than

that of T' = 3. However, when the number of nodes involved
in the data acquisition is big, the reconstruction error of
T =2 is lower than that of T = 3. This is due to the increase
in the number of sampling rounds; the correlation between
the data becomes small but the error increases.

Joint reconstruction of the energy balance data fusion
algorithm based on compressive sensing is a kind of flexible
joint reconstruction, and the number of sampling rounds
can change according to the application requirements. From
the above analysis, we can see that EBDFACS is very suitable
for smaller numbers of clusters within the network, better
suited for a small-scale short sampling period of meteorolog-
ical sensor networks. Our scheme is also suitable for large-
scale networks by adjusting the sample number of rounds.
Relative to CS-LEACH, EBDFACS can reach smaller recon-
struction error, higher precision for data recovery, and lower
demands on clusters within the number of nodes involved in
the data collection.

When the network is involved in the data acquisition of
the abnormal data, it is necessary to deal with the abnormal
data. If the abnormal value is not processed, the original data
sequence cannot be recovered. As shown in Figure 8, if the
nodes do not deal with the abnormal value of the data
sequence, the deviation between the recovered data sequence
and original data sequence is very large, the green recovery
value and the red value of the original basic do not coincide,
and the reconstruction error is 0.7735. When the processing
method of this paper can be used to deal with the abnormal
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value, the blue line is the basic and the red value of the recov-
ery value is basically maintained. The reconstruction error of
the data is only 0.0086. It can be seen that the reconstruction
effect is very good after processing the abnormal value.

Figure 9 is a life cycle comparison for different methods;
when we run the experiment in the 853rd round, there
appears the first node death for the LEACH protocol, while
after the CS-LEACH in the 967th round, the first dead node
comes in the 1113th round for EBDFACS (T = 3).

5. Conclusion

According to the problems in the meteorological sensor net-
work, such as sensor nodes being deployed in a large scale
and network bandwidth resource and node energy con-
straints in the network, for efficient transmission and pro-
cessing of data acquisition, this paper proposed the energy
balance data fusion algorithm based on intelligent sensing.
In the process of random selection of nodes participating in
the data acquisition process, in order to promote uniform
energy consumption of nodes, the node residual energy is
introduced to calculate the probability p. In view of the
abnormal data in the network, in order to avoid the effect
of outliers on the fusion and reconstruction operations, this
paper proposed an algorithm to process the data and which
can process the data according to the application require-
ments of the abnormal value. In order to reduce the number
of clusters and the number of nodes involved in data acquisi-
tion, measurement values of T sampling rounds are jointly
reconstructed using temporal and spatial correlation of per-
ception data on the sink node. And this kind of joint recon-
struction is a kind of flexible joint reconstruction; it can be
adjusted according to the application requirements. This

paper designs experimental simulation of the algorithm to
analyze the effectiveness of the proposed algorithm, and the
requirements for the number of clusters and the number of
nodes are shown in performance comparison. The research
results show that EBDFACS can effectively recover the orig-
inal data sequence, relative to CS-LEACH, it can get better
recovery results in the case of the small number of clusters
in the network, and the requirements for the number of
nodes participating in data collection are lower. Due to the
flexibility of the sampling rounds T, the algorithm is suitable
for all kinds of network scale, especially for the small number
of clusters in the network. Finally, the validity of the algo-
rithm is verified. The energy balance data fusion algorithm
based on intelligent sensing has a good recovery effect; more-
over, it can reduce the number of nodes that participate in
data acquisition and also can effectively extend the network
lifetime.
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