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In this paper, a novel digital video resolution enhancement algorithm based on adaptive directional interpolation is proposed,
where the directionality of the edge structure and the nonlocal self-similarity prior within the current frame as well as its
adjacent frames are both considered. First, we establish the regularization equation that conforms to the prior model of a video
frame and then take the classic bicubic interpolation result as the initial estimation to iteratively solve the restoration equation,
in which the edge structures and contours in low resolution (LR) input are reconstructed to estimate and refine the desired high
resolution (HR) output. Experimental results show that the proposed algorithm can effectively enhance the clarity of a video
frame, with satisfying subjective visual quality and PSNR value.

1. Introduction

Videos and images are the main sources of information for
humans. According to statistics, more than 80% of the infor-
mation we receive from the outside world comes from vision.
With the development of digital mobile communication and
computer technology, various novel applications such as dis-
tance education, video on demand, telemedicine, and multi-
person online video conference have appeared, promoting
the revolution of productivity and social progress. In the
meantime, the image quality of digital video has also been
desired higher and higher, where the clarity index comes
from standard definition to high definition (HD) and ultra-
high definition, as well as the corresponding resolution index
also comes from 480p to 720p, 1080p, and 2160p (4K). On
the one hand, these improvements in clarity and resolution
can meet the increasing demand of end users and provide
better image quality; on the other hand, while high-
resolution video provides more details in content, it also adds
burdens to the entire production and consumption ecosys-
tem: more expensive capture and storage devices on the

image acquisition side, additional computing resource
requirement for video editing on the media creation side,
and more data transmission pressure on the communication
network side. All these above have become important factors
that restrict further improvement of video clarity and quality.
In order to solve this problem, a common way is to use an
image postprocessing procedure where the LR input frame
is interpolated by a superresolution method [1–7], leading
to a resolution-enhanced HR one. This software-based tech-
nique does not change the existing image acquisition and
data transmission systems and thus is of great value in fields
of videotelephony, virtual reality, augmented reality, and HD
video games.

Natural images are highly structured, which reflects the
strong time-spatial redundancy and self-similarity underly-
ing pixels and performs a key role in solving inverse
problems such as image denoising, deblurring, inpainting,
and superresolution. By considering the fact that the
human visual system is sensitive to the image edge struc-
ture [7–11], a novel digital video resolution enhancement
algorithm via adaptive directional filtering is proposed in
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this paper, in which the characteristics of the edge contour
and the nonlocal self-similarity within current frame as
well as the corresponding adjacent frames are both consid-
ered. We first establish the regularization equation that
conforms to the prior model of a video frame and then
take the classic bicubic interpolation result as the initial
estimation to iteratively solve the restoration equation,
where the edge structures and contours in LR input are
reconstructed to estimate and refine the desired HR
output.

The rest of the sections are organized as follows. In Sec-
tion 2, we introduce the core idea of the proposed adaptive
directional interpolation scheme for estimating the missing
details of the LR image and then use the nonlocal self-
similarity prior to further improve the interpolation perfor-
mance. The details of the video resolution enhancement algo-
rithm are provided in Section 3. Section 4 presents the
experimental validations of the proposed algorithm and
comparison with the classic bicubic interpolation method;
conclusions are drawn in Section 5.

2. The Core Idea

Directional regularity has widely existed in textures, edges,
and contours of natural images (shown as in Figure 1).
Denote vector f i ∈R

n2 as the image patch centered around

the ith pixel and with sizes n × n, and Lθ ∈Rn2×n2 as the filter
matrix corresponding to the directional filter with angle θ (in
this paper, the directional controllable steerable filter [12] is

used). Obviously, the filtered vector Lθ f i is the sparsest
(namely, Lθ f i is approximate to zero) when θ is parallel with
the main direction of f i. Generally, an image patch may
include more than one main direction due to its complexity
(examples are shown in Figures 1(c) and 1(d)); we can search
for these direction angles using the following algorithm:

In our previous works [3, 13], we have shown the details
to construct a blurring matrix from its corresponding linear
degradation operator (as well as the downsampling matrix
H). Here, we simply present the steps to construct the direc-
tional filter matrix L from a 2-D filter kernel B, as follows:

(i) Let L be a n2 × n2 zero matrix;

(ii) For each pixel of the filtered image patch d = Lfi:
(a) Compute the 2-D coordinate ðr, cÞ of pixel d½i�

from its 1-D index i;

(b) For each element B½u�½v� of filter kernel B, set the
element L½i�½ðc − v − 1Þn2 + r − u� = B½u�½v�.

The structure of filter matrix L is presented in Figure 2.
Figure 3 shows the main direction searching results of

test images barbara and butterfly using the algorithm
above.

Denote yi =Hfi as the LR image patch, whereH ∈Rm2×n2

is the downsampling matrix [3]. When the downsampling
factor D is an integer, we have m = n/D, and the correspond-
ing LR input can be represented as yðh, vÞ = f ðh/D, v/DÞ.
With the constraint of the directional regularity posed above,

(a) (b)

(c) (d)

Figure 1: Directional regularity in natural images: (a) an image patch contains one main direction (120 degrees); (b) an image patch contains
one main direction (40 degrees); (c) an image patch contains two main directions (30 degrees and 170 degrees); (d) an image patch contains
three main directions (40 degrees, 80 degrees, and 165 degrees).
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(a) (b)

Figure 3: Main direction searching results: (a) barbara (P = 1); (b) butterfly (P = 2. Directions with similar degrees are merged).
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Figure 2: Structure of the directional filter matrix.

Main direction searching
Partition f into overlapping patches f f1, f2,⋯g, and for each patch, do the following steps:

• Initialization: Set main direction angle set S =∅, candidate angle setΘ = fθ1, θ2,⋯θKg, the largest number of direction angles
P. Set start point d = fi.

• Main loop (repeat P times):
- Calculate the filtering result Lθ1d, Lθ2d,⋯LθKd;
- Find the best angle θopt = argminθ j∥Lθ jd∥1;
- Update S← S ∪ fθoptg, Θ←Θ/fθoptg and d← Lθoptd for the next iteration.

• Output: The main direction angle set S of the ith image patch fi.

Algorithm 1:

3Wireless Communications and Mobile Computing



the following interpolation equation can be used to estimate
the original HR patch fi that

f̂i = argminfi∥yi −Hfi∥22 + λ∥Lifi∥22, ð1Þ

where λ is the regularization parameter and Li =
QP

p=1Lθp is
the adaptive directional filter matrix. This equation posed
above has the well-known closed-form solution

f̂i = HTH + λLTi Li
� �−1HTyi: ð2Þ

It is easy to know from the structure of the downsampling
matrixH thatHTH is diagonal. For the downsampling factor
D = 2, we have

HTH =

En

0n
⋯

En

0n

2
666666664

3
777777775
∈Rn2 × n2, ð3Þ

f fi1

𝜔1

𝜔2

𝜔3

𝜔4

fi

fi2

fi3

fi4

(a) (b)

(c)

Figure 4: The NAR image model. As an example of (a), one image patch in (b) can be linearly represented by several nonlocal neighbors in (c).
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where En = diag ð1, 0, 1, 0,⋯, 1, 0Þ ∈Rn×n and 0n ∈Rn×n is a
zero matrix. Plugging the SVD decomposition LTi Li =UΛ
UT =U diag ðσ1, σ2,⋯, σn2ÞUT into expression (2), this
leads to

f̂i =U HTH +Λ
� �

− 1UTHTyi

=

1 + θ1

θ2

1 + θ3

⋯

θn2

2
66666666664

3
77777777775

1

UTHT , yi:
ð4Þ

Recall that Lifi ≈ 0, and thus, Li is approximately singular,
implying that one or more singular values of LTi Li are close to
zero, and therefore, the inverse of the restoration kernel HT

H + λLTi Li is ill-posed that can not be well handled. To solve
this problem, we explore the self-similarity prior widely exist-
ing in natural images to further improve the interpolation
performance. In this paper, the nonlocal autoregressive
(NAR) model of images [14] is used to add additional con-
straint to the restoration kernel and reduce the degree of free-
dom of desired unknown pixels; this will help to yield a more
stable result.

According to our previous works [15–17], we show that
each patch in an image can be approximatively represented
as a linear combination of M nonlocal neighbors at different
locations (shown as in Figure 4) that

fi ≈ 〠
M

j=1
ωjfij = Fiωi: ð5Þ

The neighbor set Fi = ½ fi1, fi2,⋯, fiM� ∈Rn×M consists of
M nonlocal patches around fi, which can be seen as an adap-
tive local dictionary that refers to the target vector fi, and the
corresponding representation coefficient ωi can be easily
computed by ridge regression

ωi = FTi Fi + γnI
� �−1FTi fi, ð6Þ

where the parameter γ is set manually to lead to the best
results. Moreover, we have also proved in [15, 17] that ωi
is sparse when the atoms of Fi are similar to fi in terms of
normalized inner products. Considering that sparsity is
very powerful that is broadly used in solving various
inverse problems and has shown the ability to handle the
image superresolution task [3, 6, 14, 15, 18], we here pro-
pose the following algorithm (Algorithm 2) to construct
the adaptive dictionary Fi:

Figure 5 shows the dictionary construction results of two
patches of test images lena using the algorithm above. For
video sequence, the above algorithm is also adapted to con-
struct a dictionary for image patch of frames. At this time,
each atom of Fi comes from those nonlocal neighbors belong-
ing to the current frame and its adjacent Q frames, shown as
in Figure 6. Considering that video scene changes smoothly
for most time, the differences between neighbor frames are
small; this means it will be easier to find more similar candi-
date patches and thus finally leads to a sparser/better repre-
sentation coefficient ωi, which helps in improving the
interpolation performance further.

Replacing the constraint posed in (5) by an equivalent
penalty and adding it to Equation (1), we obtain

f̂i = argminfi∥yi −Hfi∥22 + λ∥Lifi∥22 + μ∥fi − Fiωi∥
2
2: ð7Þ

Combining this equation with Equation (6), we get the
desired HR patch estimator

(a) (b)

Figure 5: Image patch (top-left, n = 8 × 8) and its adaptive dictionary (bottom, M = 256).
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f̂i = HTH + λLTi Li + μI
� �−1

γFi FTi Fi + γnI
� �−1FTi fi +HTyi

� �
:

ð8Þ

Contrast the expression above with formula (2), we can
see that the restoration kernel is full rank now, while keeping
the advantage of diagonal, leading to a cheap computation of
matrix inversion.

3. Video Resolution Enhancement Algorithm

To sum up, we use the interpolation algorithm (Algorithm 3)
listed below for digital video resolution enhancement:

A graphic demonstration of this algorithm is displayed in
Figure 7.

In each interpolation loop, the time consumption T loopð
NÞ mainly consists of three parts, including the main direc-
tion searching TmðNÞ, the adaptive dictionary constructing

Adaptive dictionary construction
Partition f into overlapping patches ff1, f2,⋯g, and for each patch, do the following steps:

• Initialization: Set nonlocal neighbor number M and search window size W.
• Dictionary construction:

- Sweep over all possible patches fi1, fi2,⋯ over the searching window centered around fi, and compute the normalized can-
didate atom set Gi = ½ ðfi1/∥fi1∥Þ, ðfi2/∥fi2∥Þ,⋯�;

- Compute the normalized inner product vector r =GT
i fi;

- Select the atoms with the largest M values in ∣r ∣ to construct dictionary Fi.
• Output: The adaptive dictionary Fi of the ith image patch fi.

Algorithm 2:

Target patch Non-local neighbors

Frame #iFrame #i–1 Frame #i+1

Figure 6: Dictionary construction. As an illustration, for a target patch in the ith frame of a video sequence, the corresponding adaptive
dictionary is composed of nonlocal neighbors scattered over frames i, i − 1, and i + 1 (take Q = 1 for example).

Resolution enhancement algorithm
For each LR frame y of the input digital video sequence, do the following steps:

• Initialization: Set f the bicubic interpolation of y.
• Main loop (repeat C times):

- Use Algorithm 1 to search the main direction for each patch of ~f, calculate the corresponding adaptive directional filter
matrix Li;

- Use Algorithm 2 to construct the adaptive dictionary Fi;
- Taking ~fi as an initial estimation of the desired HR output fi, use Equation (8) to compute the resolution enhancement

result f̂i;
- Update ~f← f̂ for the next iteration when all image patches have been restored.

• Output: The resolution enhanced output f̂.

Algorithm 3:
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TaðNÞ, and the HR output estimating TeðNÞ, where N
denotes the size of the LR input frame. That is

T loop Nð Þ = Tm Nð Þ + Ta Nð Þ + Te Nð Þ: ð9Þ

For the first term TmðNÞ, we know from Algorithm 1 that
searching each direction for every target patch needs K filter-
ing operations. Considering the fact that filtering a fixed-size
image patch with size n × n can surely be done in constant
time t1, therefore

Tm Nð Þ = N − n + 1ð Þ2 · P · K · t1ð Þ ~O N2� �
: ð10Þ

For the second term TaðNÞ, we need to sweep over W2

candidate patches around each target LR patch for searching
atoms. Similarly, since the normalization and inner product
computing can also be finished in constant time t2, thus

Ta Nð Þ = N − n + 1ð Þ2 · W2 · t2 + T top Mð Þ� �
~O N2� �

+O N2� �
· T top Mð Þ:

ð11Þ

In the above expression, T topðMÞ represents the time
consumption of selecting the top M largest elements from
vector∣r ∣ = ∣GT

i fi∣ ∈RW2
, where this task can be simply

implemented by a fast ordering algorithm with time com-

plexity OðW2 log ðWÞÞ, and this leads to

Ta Nð Þ ~O N2� �
+O N2� �

·O W2log Wð Þ� ��
~O N2� �

: ð12Þ

For the last term TeðNÞ, the time consumption is mainly
determined by the computation of the inverse matrices

ðHTH + λLTi Li + μIÞ−1 and ðFTi Fi + γnIÞ−1. For the reason
that the size of H, Li, Fi, and I are fixed and indifferent to N
, thus these operations can also be done in constant time t3.
We have

Te Nð Þ = N − n + 1ð Þ2 · t3 ~O N2� �
: ð13Þ

Plugging Equations (10), (12), and (13) into (9), we
obtain

T loop Nð Þ ~O N2� �
+O N2� �

+O N2� �
~O N2� �

: ð14Þ

The equation above means that the computational com-
plexity of our proposed interpolation algorithm is propor-
tional to the pixel number (N2) of the LR input frame.

For color video sequence interpolation, the YUV color
model can be considered: we start by splitting the input color
frame into luminance channel and chrominance channel and
then enhance each channel using the proposed algorithm and
classic bicubic interpolation, respectively. The final

Bicubic
interpolation

LR video
frame sequence

Frame #2

Frame #3

…… …

Frame #1
HR frame #1

HR frame #2

HR frame #3

Main direction
searching

Main direction
searching

Main direction
searching

Dictionary
construction

Dictionary
construction

Dictionary
construction Resolution

enhancement

Resolution
enhancement

Resolution
enhancement

Figure 7: The flowchart of the proposed resolution enhancement algorithm for a video sequence.

Proposed
interpolation method

LR video frame
YUV

channel
splitting

Y

UV Bicubic
interpolation method

Merging
to RGB

color space
HR video frame

Figure 8: The flowchart of the proposed resolution enhancement algorithm for a color video sequence.
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(a) (b)

(c)

Figure 10: LR image plane and the 2 × 2 interpolation results: (a) LR image; (b) bicubic (PSNR = 29:59); (c) proposed (PSNR = 32:78).

(a) (b)

(c)

Figure 9: LR image leaves and the 2 × 2 interpolation results: (a) LR image; (b) bicubic (PSNR = 26:64); (c) proposed (PSNR = 29:23).
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(a) (b)

(c)

Figure 11: LR image butterfly and the 3 × 3 interpolation results: (a) LR image; (b) bicubic (PSNR = 21:77); (c) proposed (PSNR = 23:45).

(a) (b)

(c)

Figure 12: LR image peppers and the 3 × 3 interpolation results: (a) LR image; (b) bicubic (PSNR = 30:75); (c) proposed (PSNR = 32:29).
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Figure 13: LR video sequence foreman and the 2 × 2 interpolation results. Row 1: LR frames (#5, #10, #15, #20, and #25). Row 2: the
corresponding HR output frames.

Figure 14: LR video sequence ice and the 2 × 2 interpolation results. Row 1: LR frames (#5, #10, #15, #20, and #25). Row 2: the corresponding
HR output frames.
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resolution enhanced frame can be obtained by converting
these channels back to RGB color space. The diagram is
shown in Figure 8.

4. Experimental Results

In this section, several experimental results of the proposed
resolution enhancement algorithm are reported to show the
performance and compared with the widely used bicubic
interpolation method, in terms of subjective image quality
and objective PSNR index. The LR input image/video frame
is generated by directly decimating the original HR one by
a factor of T in each axis and then interpolated back to the
original size for performance evaluation. The chosen param-
eters are as follows: P = 2, n = 8, λ = 1, γ = 800, μ = 5,M = 12,
C = 4, andW = 20, the candidate angle set for main direction
searching isΘ = f0,10,20,⋯170g, and the width of the direc-
tional controllable steerable filter is 5 (with Gaussian kernel
standard deviation σ = 0:7). According to our tests, perform-
ing a 2 × 2 interpolation for a single frame costs about 2.3 sec-
onds on Intel Core i7 8750H with 6 cores at 3.9GHz,
Windows 64 bit, Matlab 2017b, accelerated by C-MEX inter-
face in typical settings of N = 512 × 512 and D = 2. Using a
GPU-accelerated architecture (CUDA or OpenCL) may be
helpful to reduce computation time extremely, we shall study
this in future research.

Figures 9–12 present the resolution enhancement results
on test still images leaves, airplane, butterfly, and peppers,
with factor D = 2 and 3. Figures 13 and 14 further show the
2 × 2 interpolation results of test video sequences foreman
and ice, with reference frame number Q = 2. From these fig-
ures, we see that the proposed algorithm works very well in
reconstructing image contours and fine details, with few

noticeable staircase artifacts in tiny structures, when com-
pared to the bicubic interpolation method which produces
a large amount of aliasing in edges and textures, and thus,
the performance is very poor. Moreover, Figure 15 also gives
the objective quality evaluation of foreman and ice for the
first 50 frames. As expected, our method achieves satisfying
PSNR values (with about 2 dBs higher than bicubic on aver-
age); this is consistent with the subjective visual quality
shown above.

5. Conclusion

In this paper, we present an effective algorithm for
enhancing digital video/still image resolution based on
the directional regularization and nonlocal self-similarity
structure, where the missing pixels of an image patch
can be estimated from its nonlocal neighbors via an adap-
tive directional filtering operation. The appeal of this work
is its simplicity, with no requirement of solving complex
optimization equations, and is easily implemented. Exper-
imental results show that the proposed algorithm can
effectively improve the digital video quality in terms of
clarity and resolution and thus will be of great value in
theory and application.

Data Availability

Please contact the first author (sundong@ahu.edu.cn) to
obtain the Matlab demo codes.
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= 35:22).
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