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The energy efficiency for data collection is one of the most important research topics in wireless sensor networks (WSNs). As a
popular data collection scheme, the compressive sensing- (CS-) based data collection schemes own many advantages from the
perspectives of energy efficiency and load balance. Compared to the dense sensing matrices, applications of the sparse random
matrices are able to further improve the performance of CS-based data collection schemes. In this paper, we proposed a
compressive data collection scheme based on random walks, which exploits the compressibility of data vectors in the network.
Each measurement was collected along a random walk that is modeled as a Markov chain. The Minimum Expected Cost Data
Collection (MECDC) scheme was proposed to iteratively find the optimal transition probability of the Markov chain such that
the expected cost of a random walk could be minimized. In the MECDC scheme, a nonuniform sparse random matrix, which is
equivalent to the optimal transition probability matrix, was adopted to accurately recover the original data vector by using the
nonuniform sparse random projection (NSRP) estimator. Simulation results showed that the proposed scheme was able to
reduce the energy consumption and balance the network load.

1. Introduction

This paper considers the energy efficiency issue of compres-
sive data collection in wireless sensor networks (WSNs). A
WSN is consisted of low-cost, low-power, and energy-
constrained sensors which acquires and transmits informa-
tion to the sink through wireless links [1–5]. In the area of
Internet of Things (IoT), a WSN is regarded as a key technol-
ogy for the data sensing and collection [6, 7]. One of the most
important factors that affects the performance ofWSNs is the
energy limitation of sensors [8, 9]. A sensor will cease to
operate if it depletes its battery energy. We intend to design
an energy-efficient data collection scheme by applying the
compressive sensing (CS) technology and random walks.

A popular approach to the data collection problem is the
application of the CS technology [10, 11]. In the CS technol-
ogy, data are assumed to be sparse or sparse under some
basis, which is very appropriate for data in WSNs [12, 13].
The key idea behind CS is that, by exploiting the sparsity of
the original data vector, a high dimensional data vector can

be reliably recovered from a significantly lower number of
measurements. Early works mainly focus on applying the
CS technology with a dense sensing matrix [14–16]. Luo
et al. [14] proposed the Compressive Data Gathering
(CDG) scheme in which the sink collects linear combinations
of the original data vector instead of the individual data
sample. The sink is able to recover the original data vector
through solving an ℓ1-based convex optimization as long as
a sufficient number of linear combinations are collected.
Compared with traditional schemes, the CDG scheme not
only reduces the energy consumption but also evenly distrib-
utes loads across the network. The reference [15] improved
the CDG scheme and proposed a hybrid-CS scheme in which
data are only encoded at overloaded nodes. This significantly
reduces the load of nodes which are far away from the sink.
The authors showed that, compared with the CDG scheme,
the hybrid-CS scheme can further improve the throughput
of networks. Adopting the idea of the CDG scheme, the
reference [16] considered not only the energy efficiency but
also the delay of data collection. The authors proposed a joint
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optimization problem which aims to minimize the delay of
data collection with bounded transmissions. The NP-
hardness of the joint optimization problem was proved.
Thus, the authors proposed an approximation solution
which decomposes the joint optimization problem into a for-
warding tree construction subproblem and a link-scheduling
subproblem.

Without the sacrifice of recovery fidelity, sparse random
matrices have been proven to give better energy efficiency
than the dense random matrices [17, 18]. Under the CDG
framework of WSNs, the sparse random matrix can be either
uniform [17–20] or nonuniform [21–24]. In the uniform
sparse random matrix, each entry is equal to zero with an
identical probability. However, in the nonuniform sparse
random matrix, entries in different columns are equal to zero
with variational probabilities. Wang et al. [17] proposed a
class of uniform sparse randommatrices that do not compro-
mise the recovery performance when compared to a Gauss-
ian sensing matrix. In their scheme, each node aggregates
one measurement as a linear combination of the original data
vector. The sink collects measurements from nodes through
different shortest paths. Zheng et al. [18] proposed a random
walk-based data collection scheme and provided mathemati-
cal foundations from the perspectives of the CS and graph
theory. They showed that uniform sparse random matrices
which are constructed from the proposed random walk
scheme satisfy the expansion property of expander graphs.
Singh et al. [19] proposed an On-Demand Explosion-Based
Compressive Sensing (ODECS) technology to reduce the
required number of measurements for the recovery of data
vector by exploiting the rate of change of the data vector.
The ODECS technology is able to adapt itself to the occur-
rence of events. It has very low communication rate when
events are absent. Considering problems in existing schemes,
such as the semidynamic routing, the nonuniform sampling,
and the dependence on global coordinate information,
Zhang et al. [20] proposed a dual random walk-based com-
pressive data collection scheme. In the proposed scheme, a
dual random walk, which does not rely on coordinate infor-
mation, was first designed to achieve a uniform sampling.
Then, depending on the dual random walk, a dynamic and
distributed CDG-based scheme was proposed to enhance
the network dynamic adaptability.

Recently, nonuniform sparse random matrices were
proved to give similar performance as the uniform sparse
random matrices [21–24]. Liu et al. [21] proposed a novel
compressive data collection scheme which compresses data
under an opportunistic routing. The proposed scheme
requires fewer compressed measurements and allows a sim-
pler routing strategy without excessive computation and
overheads. Moreover, the authors proposed the nonuniform
sparse random projection (NSRP) algorithm to recover the
original data vector. They proved that the NSRP-based esti-
mator can achieve the optimal estimation error bound. Con-
sidering the large transmission energy consumption and low
recovery accuracy problem in traditional schemes, Zhang
et al. [22] proposed a ring topology-based compressive sens-
ing data collection scheme. In the proposed scheme, the total
number of hops is reduced by a ring topology-based random

walk, and the recovery accuracy is improved by the dual
compensation-based compressive sensing measurements.
Huang and Soong [23] proposed a cost-aware stochastic
compressive data collection scheme, where the cost diversity
and the stochastic data collection process are considered by
using the Markov chain model. The proposed scheme is
aimed at minimizing the expected cost of a randomwalk sub-
jected to constraints on the global degree of randomness and
recovery error. Without loss of the recovery accuracy, the
proposed scheme not only reduces the expected cost but also
prolongs the network lifetime due to the load balance feature.
The reference [24] proposed a mobile CDG scheme includ-
ing a random walk-based algorithm and a kernel-based
method for sparsifying sensory data from an irregular
deployment. The sensing matrix, which is constructed from
the proposed random walk algorithm combined with a
kernel-based sparsity basis, was proved to satisfy the
restricted isometry property. Moreover, the authors proved
that Oðk log ðn/kÞÞ measurements, which can be collected
within Oðk log ðn/kÞÞ steps, were sufficient for the accurate
recovery of k-sparse signals in a network with n nodes.

In this paper, we propose a data collection scheme for
WSNs by integrating the compressive sensing technology
and random walks. The total amount of energy consumption
is reduced by exploiting the compressibility of the original
data vector. Measurements are collected along random walks
so that the local energy consumption is balanced. Specifically,
each measurement is a linear combination of the original
data in nodes which occur in a random walk. Each random
walk is formulated as follows. Initially, a node except for
the sink is selected as the starting node with a probability that
is determined by the residual energy of every node in the net-
work. Then, data are forwarded to the sink in a multihop
manner. During the transmission process, each node selects
the next hop node from its candidate nodes according to a
probability distribution that is determined by the residual
energy of its candidate nodes. We can model this stochastic
process as an absorbing Markov chain. The key problem is
that how to determine the transition probabilities of nodes
in every random walk. We formulate this problem as an opti-
mization problem which aims to find the optimal transition
probability matrix such that the expected cost of a random
walk is minimized. The Minimum Expected Cost Data Col-
lection (MECDC) scheme is proposed to iteratively find the
optimal transition probability matrix. After obtaining the
optimal transition probability matrix, the sink is able to con-
struct an equivalent sensing matrix based on the optimal
transition probability matrix. Eventually, by using the
NSRP-based estimator [21], the original data vector can be
accurately recovered. For the compressive data collection
problem, the reference [23] adopted a similar idea as this
paper. However, in their scheme, each random walk starts
at a fixed node, which results in the rapid energy expenditure
of the fixed node. This paper extends the reference [23]
mainly in five aspects: (1) the starting node of random walks
is variational; (2) nodes’ residual energy is considered for the
balance of network load; (3) the MECDC scheme along with
its distributed realization is proposed; (4) the process of
collecting measurements is accelerated by partitioning the
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network into layers; (5) computation of optimal transition
probability matrix is simplified.

The main contributions of this paper are summarized as
follows:

(i) We propose a random walk-based compressive data
collection scheme which exploits the compressibility
of the original data vector. Random walks are
responsible for the collection of measurements. In
order to reduce the energy consumption and balance
the network load, the residual energy of nodes is
considered in the process of data collections

(ii) The absorbing Markov chain model is adopted to
characterize the stochastic of a random walk. We
formulate an optimization problem to minimize
the expected cost of a random walk and propose
the MECDC scheme to find the optimal transition
probability matrix

(iii) A distributed realization of the MECDC scheme is
proposed, where the update of transition probabili-
ties for each node can be obtained only based on
the information of its neighbors

(iv) Simulation results are provided to demonstrate that
the proposed scheme can both reduce the energy
consumption and balance the network load

The remainder of this paper is organized as follows. In
Section 2, we present preliminaries of this paper. Next, we
introduce the systemmodel and problem formulation in Sec-
tion 3. The MECDC scheme is proposed in Section 4. In Sec-
tion 5, we present simulation results. Finally, Section 6
concludes the paper.

2. Preliminaries

We will use boldface letters to denote vectors and matrices.
The ith entry of vector x is denoted by xi. The entry in the i
th row and jth column of matrix A is denoted by aij. Denote
½n�≔ f1, 2,⋯,ng. A vector x is said to be k-sparse if the num-
ber of nonzero entries does not exceed k. Consider the fol-
lowing linear model:

y =Ax, ð1Þ

where A ∈ℝm×n (m≪ n) is referred as the sensing matrix,
each entry yi in vector y is referred as a measurement, and
x ∈ℝn is the data vector to be recovered. It is well known that
the Gaussian random matrix can be used as the sensing
matrix. When m ≥Oðk log nÞ, a k-sparse data vector can be
recovered with high probability via linear programming
[25, 26].

It has been shown that sparse random matrices provide
similar recovery performance as the Gaussian randommatrix
[17, 27]. A sparse random matrix is a matrix whose entries
are zero with some probability. Importantly, if aij = 0, we will
not need the data xj when collecting yi, because yi is a linear
combination of entries in x. By exploiting the sparsity of the

sensing matrix, potential improvement including the
reduced energy and data collection delay can be obtained
[8, 9]. In this paper, we consider the problem of recovering
a compressible data vector by using a nonuniform sparse ran-
dom matrix. Compressible data vectors can be seen as a sub-
set of sparse data vectors. Specifically, a compressible data
vector x can be represented as x =Ψθ, where Ψ is an n × n
orthonormal basis and θ is a coefficient vector that decays
according to the power law [28]. If we rearrange entries of
θ according to the magnitude, then the ith largest entry θðiÞ
satisfies

∣θ ið Þ∣ ≤ ci−1/z , i ∈ n½ �, ð2Þ

where c is a constant and z controls the rate of decaying.
Throughout this paper, we assume that the data vector x is
compressible in some basis. The best k-term approximation
of x is to keep the largest k coefficients and set the others to

zero. Let bθk be the coefficient vector of the best k-term
approximation of x. Then, we have that [28].

∥x − x̂k∥2 = ∥θ − bθk∥2 ≤ ζrck
−1/r+1/2, ð3Þ

where x̂k =Ψbθk and ζr are constant that only depends on r.
For a compressible data vector x, the reference [21] proposed
a nonuniform sparse random projection-based estimator
which gives comparable recovery performance as the best k
-term approximation provided that m =Oðk2 log nÞ and
entries in A ∈ℝm×n are drawn i.i.d. from the following distri-
bution [17, 21, 23].

aij =

+1, with probability
πj

2 ,

−1, with probability
πj

2 ,

0, with probability 1 − πj,

8>>>>><>>>>>:
ð4Þ

where 0 ≤ πj ≤ 1 is a probability. Unlike the uniform sparse
random matrices, the probability of being zero for entries
in different columns of the nonuniform sparse random
matrix varies.

3. System Model and Problem Formulation

3.1. Network Model. In this paper, we consider a multihop
wireless sensor network consisting of n nodes with node n
being the sink. Sensors are randomly deployed in a sensing
field to sense the surrounding environment and then period-
ically report readings to the sink through multihop transmis-
sions. Define xti as the reading of sensor i at time instant t.
The sink aims to collect data xt = ½xt1, xt2,⋯,xtn−1� for different
time instants. Previous works [17, 28] have shown that most
natural classes of signals, such as smooth signals with
bounded derivatives and bounded variation signals, are
compressible in some transform domain. As stated in the
previous section, we assume that the data xt is compressible.
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Without loss of generality, we assume that sensors are
randomly deployed in a unit square, and each sensor is
equipped with an identical battery with the initial power E0.
Any two nodes are able to communicate with each other if
the Euclidean distance between these two nodes is no more
than the communication range R. The WSN is modeled as
a connected graph G = ðV , EÞ with V = ½n� the set of nodes
including the root/sink n and E the set of edges/wireless links.
Each edge is associated with a weight which is related to
the residual energy of nodes. Specifically, we define wij,

the ijth entry of the weight matrix W ∈ℝðn−1Þ×ðn−1Þ, as
the weight of edge ði, jÞ representing the cost of transmit-
ting data from node i to node j. Note that we omit edges
related to the sink. Suppose each node knows information
of its neighbors. Expect for the sink, we partition nodes
into layers Lk, k = 1,⋯, T , where Lk is consisted of the
nodes at distance k from the sink. For any node i ∈ Lk,
its neighbors are divided into two disjoint sets: the succes-
sors set Si ≔ fj ∣ ði, jÞ ∈ E, j ∈ Lk−1g and the predecessors set
Di ≔ fj ∣ ði, jÞ ∈ E, j ∈ Lk+1g. Let ErðiÞ be the residual energy
of node i. At the beginning of data collection, each node
contains an identical initial energy E0.

3.2. Opportunistic Routing. In this subsection, we describe
howmeasurements are collected by the sink through random
walks. The process of collecting measurements can be mod-
eled as a discrete absorbing Markov chain [29] with the state
set fs1, s2,⋯,sng and the transition probability matrix P. Each
node in the network corresponds to a state in the discrete
absorbing Markov chain. Specifically, we assume that node
i ∈ ½n� corresponds to the state si, and sn is the absorbing state.
The ijth entry in P, i.e., the state transition probability pij,
corresponds to the probability that the data is transmitted
from node i to node j.

Our goal is to collect m measurements through m ran-
dom walks. Each measurement corresponds to a random
walk that starts from a randomly selected node and ends at
the sink. Figure 1 shows the process of collecting a measure-
ment, say the jth measurement yj, which corresponds to the
jth random walk. Initially, node 1 in layer Lk is chosen as the
starting node. Then, it transmits data +x1 or −x1 to the ran-
domly selected node 2 ∈ S1. Note that S1 ⊆ Lk−1. Subse-
quently, node 2 adds or subtracts the received value to its
own data and transmits the result, i.e., ±x1 ± x2, to a randomly
selected node, say node 3 ∈ S2. The above process is repeated
until the sink receives the measurement yj =∑k

i=1 ± xi. We
can observe that the length of jth random walk is exactly the
layer index of the starting node.

In general, the process of collecting each measurement
starts at a randomly chosen node. In this paper, a node
iði ≠ nÞ is selected as the starting node with probability pi.
Then, node i randomly selects a successor according to a cer-
tain probability distribution and subsequently transmits its
compressed data to the selected successor. After receiving
data, the selected successor adds or subtracts its own data
to the received data and transmits the result towards the sink.
The process is repeated until the sink collects every measure-
ment. Figure 2 shows the process of collecting seven mea-
surements. In this figure, nodes are partitioned into layers
based on its length to the sink, and there are five layers in
Figure 2.

3.3. The Transition Probability Matrix and the Sensing
Matrix. The long-term behavior of random walks is closely
related to the sensing matrix under the CS framework. In
order to see this, let us write the transition probability matrix
in the canonical form [29].

P =
Q ∗

0 1

 !
, ð5Þ

L
k–1 L

k–2 L1L
k

1 2 3 k s
± x1 ± x1 ± x2 ∑ ± x

i
± x1 ± x2 ± x3

Figure 1: The example of collecting a measurement through a random walk. The random walk starts at node 1 ∈ Lk and ends at the sink.

Walk 3

Walk 4

Walk 7

Walk 6

Walk 5

Walk 2

Layer 3

Layer 4

Layer 2Sink
Layer 1

Layer 5

Walk 1

Figure 2: The process of collecting seven measurements.
Measurements are collected through random walks. Each random
walk starts from a randomly selected node.
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where Q ∈ℝðn−1Þ×ðn−1Þ is the transition probability matrix of
transient states and 0 is a row vector with zero entries. It is
well known that the fundamental matrix, i.e., F= ðI −QÞ−1,
represents the long-term behavior of the discrete absorbing
Markov chain. Specifically, the ijth entry of F, f ij, gives the
expected number of times that the chain is in the transient
state sj, if it is started in the transient state si. In other words,
f ij is the expected number of occurrence of node j if the ran-
dom walk starts at node i. In our formulations, every node
occurs at most once in a random walk. Therefore, f ij repre-
sents the probability of a random walk that passes the node
j if it is started at the node i. Furthermore, excepting for the
sink n, node i is selected as the starting node with probability
pi. Then, we have that

πj = 〠
n−1

i=1
pi f ij, ð6Þ

where πj, the probability of node j in a random walk, is
referred as the compression probability. As stated in the
references [21, 23], πj is exactly the nonzero probability of
entries in the jth column of the sensing matrix A.

3.4. Problem Formulation. The energy efficiency is the key
issue in this paper. We intend to decrease the energy con-
sumption of data collection and meanwhile balance the load
of sensors. Since the opportunistic routing is a stochastic
method, a natural idea to minimize the expected cost of a
random walk. Specifically, we define ci, the ith entry in the
vector c ∈ℝn−1, as the expected cost of a random walk if node
i is selected as the starting node. The goal is to minimize the
expected cost of a random walk which is given by

〠
n−1

i=1
pici: ð7Þ

Furthermore, for any ci, we have that

ci =〠
j∈Si

qij wij + cj
� �

: ð8Þ

An immediate observation is that ci > cj if i ∈ Lk, j ∈ Lr
with k > r. In other words, the expected cost of a random
walk with the starting point in a high layer is more than that
in a low layer.

Similar to the reference [23], we introduce the concept of
randomness for data collection in order to avoid the vulner-
ability to attack and load unbalance. Specifically, by using the
Shannon entropy [30], the local randomness of node i is
denoted by

hi = −〠
j∈Si

qij log qij: ð9Þ

Obviously, the uniform distribution achieves the maxi-
mum local randomness for each node. Let us consider a

random walk with starting node k. The randomness of such
a random walk is defined as the sum of weighted local
randomness of nodes in the random walk:

Hk = 〠
n−1

i=1
f kihi = −〠

n−1

i=1
f ki〠

j∈Si

qij log qij: ð10Þ

Eventually, the expected randomness of a random walk is
given by

H = 〠
n−1

k=1
pkHk = −〠

n−1

k=1
pk 〠

n−1

i=1
f ki〠

j∈Si

qij log qij: ð11Þ

The expected randomness of a random walk measures
the uncertainty of the measurement that is collected through
this random walk.

Recall that the goal is to estimate the transition probabil-
ity matrix Q such that the expected cost of a random walk is
minimized. Specifically, given the expected randomness of
any random walk H and the probabilities of each node being
the starting node p = ½p1, p2,⋯,pn−1�T , the problem can be
formulated as follows.

min
Q

〠
n−1

i=1
pici, ð12Þ

s:t:〠
j∈Si

qij wij + cj
� �

= ci, i ∈ n − 1½ �, ð13Þ

−〠
n−1

k=1
pk 〠

n−1

i=1
f ki〠

j∈Si

qij log qij =H, ð14Þ

0 ≤ qij ≤ 1, ð15Þ

〠
j∈Si

qij = 1, i ∈ n − 1½ �, ð16Þ

where constraint (13) shows how to compute the cost of a
random walk with a given starting node, constraint (14)
guarantees the uncertainty of the collected measurements,
and constraint (16) states that the sum of the probabilities
of selecting successors must be one.

In order to save the energy consumption and balance net-
work loads, we relate the energy efficiency issue to the weight
of edges and pi’s. The idea is to assign smaller edge weight
and larger starting probability to nodes that contain more
residual energy. Specifically, let wij and pi be functions of ri
where ri ≔ ErðiÞ/E0 is defined as the proportion of the resid-
ual energy of node i normalized by the initial energy E0. Sup-
pose the starting probability of node i in a random walk is
proportional to ri, i.e., pi = αri, where α is a constant. In order
to calculate the constant α, let us recall that the sink needs to
collect m measurements so that the data vector can be pre-
cisely recovered. This means that m random walks are
required for the data recovery. Since pi is also the expected
number of random walks that starts at node i, we have that
∑n−1

i=1 pi =m. Therefore, the constant α is given by
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α = 1
m

〠
n−1

i=1
ri: ð17Þ

The similar idea is also applied to the computation of
edge weights. For a node i, we assign larger weight to the edge
which is connected to the successor with smaller proportion
of the residual energy. The weight of transmitting data from
node i to node j is defined as

wij =
1
r j
〠
j∈Si

r j, j ∈ Si: ð18Þ

4. Minimum Expected Cost Data Collection

In this section, we propose a network layer-based Minimum
Expected Cost Data Collection (MECDC) scheme by using
the absorbing Markov chain model. The MECDC scheme is
consisted of two phases. In the Phase I, the transition proba-
bility matrixQ is calculated, and the sensing matrix A is con-
structed based on Q. In the Phase II, measurements are
collected by applying random walks with the transition prob-
ability matrixQ. After receiving enough number of measure-
ments, the sink is able to recover the original data vector by
using the NSRP decoder with the sensing matrix A [21, 23].

4.1. Solution of the Optimization Problem. Let us first discuss
how to derive the transition probability matrixQ. By leverag-
ing the idea in the reference [23], we apply the Lagrange mul-
tiplier method to iteratively update transition probabilities.
The Lagrange for the optimization problem is given by

L = 〠
n−1

i=1
pici + 〠

n−1

i=1
λi ci − 〠

j∈Si

qij wij + cj
� �" #

+ 〠
n−1

i=1
μi 〠

j∈Si

qij − 1
 !

+ η 〠
n−1

k=1
pk 〠

n−1

i=1
f ki〠

j∈Si

qij log qij +H

" #
,

ð19Þ

where λi, μi, and η are the Lagrangian multipliers.
By setting ∂L/∂qkl = 0, we have that

−λk wkl + clð Þ + η log qkl + 1ð Þ〠
n−1

i=1
pi f ik + μk + η〠

n−1

i=1
pi 〠

n−1

j=1

∂f ij
∂qkl

hj = 0,

ð20Þ

where hj = −∑k∈Sjqjk log qjk. After some simple manipula-

tions, we obtain that

qkl = exp λk wkl + clð Þ
ηβk

−
ξkl
βk

−
μk
ηβk

− 1
� �

, ð21Þ

where βk =∑n−1
i=1 pi f ik and

ξkl = 〠
n−1

i=1
pi 〠

n−1

j=1

∂f ij
∂qkl

hj: ð22Þ

Applying equation (21) for l ∈ Sk to the fact that
∑l∈Skqkl = 1, we have that

exp −
μk
ηβk

− 1
� �

= 〠
l∈Sk

exp λk wkl + clð Þ
ηβk

−
ξkl
βk

� � !−1

:

ð23Þ

Substituting equation (23) into equation (21), we
obtain that

qkl =
exp λk wkl + clð Þ/ηβkð Þ − ξkl/βkf g

∑l∈Sk exp λk wkl + clð Þ/ηβkð Þ − ξkl/βkf g : ð24Þ

In order to update qkl for a given Q, we need to com-
pute parameters λk and ξkl . Setting ∂L/∂ck = 0, we have
that

λk =
−pk, if k ∈ Lt ,

−pk − 〠
r∈Dk

λrqrk, otherwise:

8><>: ð25Þ

Thus, the Lagrange multiplier λk can be computed
layers by layers.

Next, we compute ξkl =∑n−1
i=1 pi∑

n−1
j=1 ð∂f ij/∂qklÞhj. Denote

LðiÞ the layer of node i. For different nodes i, j, and k, three
cases may occur: (1) LðkÞ > LðiÞ > LðjÞ; (2) LðiÞ > LðjÞ >
LðkÞ; (3) LðiÞ > LðkÞ > LðjÞ. Note that f ij = 0 if LðiÞ ≤ LðjÞ.
We observe that ∂f ij/∂qkl = 0 if cases (1) and (2) occur.
Under the case (3), we have that

∂f ij
∂qkl

= f ik f l j: ð26Þ

By substituting equation (26) into equation (22), we
obtain that

ξkl = 〠
n−1

i=1
pi f ik 〠

n−1

j=1
f l jhj: ð27Þ

Given a guess of Q, transition probabilities can be
updated based on equation (24). Note that it is impossible
to obtain an analytical expression of the Lagrange multiplier
η [23]. It controls the degree of randomness of a random
walk. Larger value of η implies larger degree of randomness.
Algorithm 1 shows how to compute the transition probabil-
ity matrix Q iteratively. In line 5 of the Algorithm 1, ε repre-
sents the threshold of the stopping criterion.

The sensing matrix A can be constructed based on Q.
Given Q, the fundamental matrix is given by F= ðI −QÞ−1.
Then, each entry in A is identically and independently drawn
from the following distribution
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aij =

+1, with probability
πj

2 ,

−1, with probability
πj

2 ,

0, with probability 1 − πj,

8>>>>><>>>>>:
ð28Þ

where πj =∑n−1
i=1 pi f ij.

After obtaining the transition probability matrix Q,
Phase II collects measurements through random walks.
Except for the sink, any node i starts a random walk with
probability pi. Then, packets are transmitted towards the sink
in a layer-by-layer manner as stated in Section 3.2. Given A,
m =Oðk2 log nÞ measurements are sufficient for the sink to
recover the original data vector by using the NSRP-based
estimator [21, 23] .

4.2. Distributed Realization of MECDC. In this subsection, we
show that the update of transition probabilities can be real-
ized locally and distributively. In other words, qkl can be
computed only using information of neighbors. In order to
see this, let us consider the node k. Suppose each node knows
the probability of being the starting node. Then, all of the
parameters which are required to update qkl can be computed
based on the neighboring nodes as follows.

(i) λk. From the equation (25), λk can be calculated by
using the information of predecessors. Specifically,
λk = −pk for any k ∈ LT . Then, λk for any k ∈ Li can
be computed based on nodes in Dk ⊆ Li+1. In such a
manner, the values of λk can be computed layers by
layers

(ii) βk. Similar to λk, the value of βk can be computed
based on predecessors of node k. Recall that βk =
∑n−1

i=1 pi f ik, which can be rewritten as

βk =
0, if k ∈ LT ,
pk + 〠

i∈Dk

βiqik, otherwise:

8<: ð29Þ

Therefore, starting from the layer LT , the values of βk can
be obtained layers by layers.

(i) hk. Recall that hk = −∑l∈Skqkl log qkl , which can be
computed based on successors of node k

(ii) ξkl . Denote gl =∑n−1
j=1 f l jhj. In order to obtain ξkl , we

first compute gl for each l ∈ ½n − 1�. Based on the
information of successors, we obtain that gl =∑ j∈Sl
qljgj. Thus, starting from the layer L1, the parameter
gl can be computed layers by layers as follows:

gl =

0, if l ∈ L1,
hl, if l ∈ L2,
〠
j∈Sl

qljgj, otherwise:

8>>><>>>: ð30Þ

Based on the values of gl and the equation (27), we have
that ξkl = βkgl.

In summary, the computation of transition probabilities
can be realized distributively by saving the information of
parameters λk, βk, hk, and gk in every node.

5. Simulation Results

In this section, we numerically evaluate the performance of
the proposed scheme with the baseline scheme. Suppose n
nodes are uniformly and randomly deployed in a unit square
area. The sink is located at the top right corner. There exists

1 Input the graph G = ðV , EÞ, the weight matrixW, the starting probabilities of nodes p1, p2,⋯, pn−1 and the randomness of random
walks η.
2. Compute layers L1, L2,⋯, LT , the successors set Si and the predecessors set Di for every node i ∈ ½n − 1�.
3. Output an estimator of Q.
4. Initialize the step index t = 0 and Q =Q0 such that.

q0ij = fð1/∣Si ∣ Þ, if i ∉ L1, j ∈ Si, 0, otherwise,
where q0ij is the ij-th entry of Q0:

5. while max
q,l

jqtkl − qt−1kl /qt−1kl j ≥ ε do

6. Compute F= ðI −QÞ−1.
7. Compute ci =∑j∈Si qijðwij + cjÞ for any i ∈ ½n − 1�.
8. Compute λk based on equation (25) in a layer-by-layer manner.
9. Compute βj =∑n−1

i=1 pi f ij for any j ∈ ½n − 1�.
10. Compute hj = −∑k∈Sj qjk log qjk for any j ∉ L1.
11. Compute ξkl based on equation (27) for any k ∈ ½n − 1�, l ∈ Sk.
12. Update qtkl based on equation (24) for any k ∈ ½n − 1�, l ∈ Sk.
13. Update the step index t = t + 1.
14. end while

Algorithm 1: Iteratively solve for transition probabilities.
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an edge between two nodes if the distance between these two
nodes is not greater than the communication range 0:2. We
assume that m = k2 log n measurements are required to
recover the data vector. The sparsity of the data vector is set
to k = 5. Initially, each node is equipped with an identical bat-
tery that contains 100 joules of the energy. For simplicity, we
assume that a packet transmission consumes 0.1 joules of the
energy. In the baseline scheme, except for the sink, each node
is selected as the starting node of a random walk with prob-
ability p =m/ðn − 1Þ. In a random walk, each node transmits
data to its successors with an identical probability, i.e., qij =
1/∣Si ∣ for any j ∈ Si. In the proposed scheme, we first compute
the starting probability of every node and the transition

probability matrix Q at the beginning of collecting every
sample. Then, measurements are collected through random
walks with the obtained parameters.

Let us first look at the convergence speed of Algorithm 1.
Figure 3 shows the number of iterations until the proposed
algorithm converges when the network size increases. In
Figure 3, we set the threshold of the stopping criterion ε =
0:1. We observe that Algorithm 1 converges very fast when
the network size is not large. The convergence rate increases
as the network size increases. One possible reason is that the
candidate edge ðk, lÞ with jðqtkl − qt−1kl Þ/qt−1kl j achieving the
maximum value increase as the network size increases. Fur-
thermore, we observe that the slope of the convergence rate
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Figure 3: Number of iterations until the Algorithm 1 converges versus the number of nodes in the network. The threshold of the stopping
criterion is set to ε = 0:1.
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curve decreases as the network size increases. This implies
that there may exist an upper bound for the convergence rate
of Algorithm 1.

Next, we compare the energy efficiency between the pro-
posed scheme and the baseline scheme. Figure 4 shows the
distributions of the normalized residual energy of nodes in
the network. In Figure 4, we set the network size to n = 500,
and the residual energy is obtained after 50 samples are col-
lected. Note that the residual energy is normalized based on
the initial energy. We observe that the residual energy of
nodes in both of the two schemes mainly concentrates on
the interval 90%-100%. This is because CDG-based schemes
can balance network loads. However, the number of nodes
with large residual energy in the proposed scheme is more
than that in the baseline scheme. This demonstrates that

the proposed scheme is able to further reduce the energy con-
sumption and balance the network loads.

Figure 5 compares the normalized expectation of the total
energy consumption between the proposed scheme and the
baseline scheme. In Figure 5, the residual energy is computed
after 50 samples are collected. The expectation of the total
energy consumption is normalized based on the initial total
energy of nodes in the whole network. We first observe that,
for a fixed number of nodes, the normalized expected total
energy consumption in the proposed scheme is smaller than
that in the baseline scheme. This demonstrates that the pro-
posed scheme is able to reduce the total energy consumption
by considering the residual energy of nodes and optimizing
the transition probability matrix. Another observation is
that, as the number of nodes increases, the normalized
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Figure 5: Comparison of the expected total energy consumption between the proposed scheme and the baseline scheme.
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Figure 6: Comparison of the minimum residual energy among nodes when the number of nodes increases.
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expected total energy consumption decreases in both of the
two schemes. This implies that collecting a fixed number of
samples consumes less normalized total energy for large-
scale networks. In other words, the proposed scheme is more
suitable for large-scale networks. Finally, we observe that the
gap of the normalized expected total energy consumption
between the proposed scheme and the baseline scheme
increases as the number of nodes increases. This also implies
that the proposed scheme performs better in large-scale
networks.

Next, let us consider the minimum residual energy of
nodes in the network. Large minimum residual energy
implies balanced load of the network. Figure 6 compares
the minimum residual energy of nodes between the proposed
scheme and the baseline scheme. The residual energy is com-
puted after 50 samples are collected. Similar to Figure 5, the
residual energy is normalized based on the initial energy. A
direct observation is that the minimum residual energy in
the proposed scheme is larger than that in the baseline
scheme. This demonstrates that the proposed scheme is able
to balance the network load. Another observation is that the
gap between the proposed scheme and the baseline scheme
increases as the number of nodes increases, which suggests
that the proposed scheme is more suitable for large-scale
networks.

Figure 7 compares the minimum residual energy of nodes
when the number of collected samples increases. In Figure 7,
we set the number of nodes n = 500. In order to collect a sam-
ple/data vector, the sink needs to collect m measurements so
that the data vector can be precisely recovered. The residual
energy is normalized based on the initial energy. We observe
that, for a fixed number of samples, the minimum residual
energy of the proposed scheme is larger than that of the base-
line scheme. This is because the proposed scheme is able to
balance loads of the network. Furthermore, the gap of the
minimum residual energy between the proposed scheme
and the baseline scheme increases as the number of collected

samples increases. This demonstrates that the proposed
scheme is more suitable for long-running networks.

6. Conclusions

In this paper, we studied the data collection problem in
WSNs. Random walks and the compressive sensing technol-
ogy with nonuniform sparse random matrices are adopted
to collect measurements. Each measurement is collected
through a random walk which is modeled as an absorbing
Markov chain. By exploiting the residual energy of nodes,
we formulate the process of collecting measurements as an
optimization problem, which seeks to find optimal transition
probabilities of nodes so that the expected cost is minimized.
An iterative method, which is referred as the Minimum
Expected Cost Data Collection (MECDC) scheme, is pro-
posed to solve this optimization problem and collect mea-
surements. A distributed realization of MECDC, where
only local information is needed in the collection of mea-
surements, is proposed. Simulation results show that the
proposed scheme not only reduces the energy consumption
but also balances the network loads.

Abbreviations

WSNs: Wireless sensor networks
CS: Compressive sensing
MECDC: Minimum Expected Cost Data Collection
IoT: Internet of Things
CDG: Compressive data gathering
NSRP: Nonuniform sparse random projection
ODECS: On-Demand Explosion-Based Compressive

Sensing.

Data Availability

Data settings can be found in the draft.
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