
Research Article
Determining the Image Base of Smart Device Firmware for
Security Analysis

Ruijin Zhu ,1 Baofeng Zhang,1,2 Yu-an Tan,3 Jinmiao Wang ,4,5 and Yueliang Wan4,5

1China Information Technology Security Evaluation Center, Beijing 100085, China
2Tsinghua University, Beijing 100084, China
3School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
4Run Technologies Co., Ltd. Beijing, Beijing 100192, China
5Beijing Engineering Research Center for Cyberspace Data Analysis and Applications, Beijing 100083, China

Correspondence should be addressed to Jinmiao Wang; jinmiao_wang@163.com

Received 28 June 2020; Revised 7 September 2020; Accepted 24 September 2020; Published 28 December 2020

Academic Editor: Ding Wang

Copyright © 2020 Ruijin Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The authorization mechanism of smart devices is mainly implemented by firmware, yet many smart devices have security issues
about their firmware. Limited research has focused on securing the firmware of smart devices, although increasingly more smart
devices are used to deal with the very sensitive applications, activities, and data of users. Thus, research on smart device
firmware security is of growing importance. Disassembly is a common method for evaluating the security of authorization
mechanisms. When disassembling firmware, the processor type of the running environment and the image base of the firmware
should first be determined. In general, the processor type can be obtained by tearing down the device or consulting the product
manual. However, it is not easy to determine the image base of firmware. Since the processors of many smart devices are ARM
architectures, in this paper, we focus on firmware under the ARM architecture and propose an automated method for
determining the image base. By studying the storage law of the jump table in the firmware of ARM-based smart devices, we
propose an algorithm, named determining the image base by searching jump tables (DBJT), to determine the image base. The
experimental results indicate that the proposed method can successfully determine the image base of firmware, which stores the
absolute address in the jump table.

1. Introduction

Wireless technologies for smart devices are developing rap-
idly and are widely used. Smart devices have been deployed
in several scenarios, such as smart phones, wearable devices,
and vehicles. A recent marketing research report forecasted
that the amount of smart devices will grow to approximately
10 billion in number worldwide by 2025 [1].

There have been a number of authorization security
incidents caused by defects in firmware in recent years. For
example, researchers found that several D-Link routers
contain authentication backdoors by disassembling the firm-
ware. If the attacker’s browser user agent string is xmlset_
roodkcableoj28840ybtide, then he/she can access the web
interface of the device, bypassing the authentication proce-
dure and viewing/changing the device settings [2]. A similar

incident occurred on the Tenda router, in which an authen-
tication backdoor was found by disassembling the firmware.
The backdoor allows for the execution of commands remotely
by sending them to specific strings and commands [3].

Unlike traditional embedded devices, smart devices are
more vulnerable to attack. Some incidents [4–8] indicate that
the security situation of smart devices is becoming increas-
ingly serious, which has a profound impact on a country’s
economic and social development. Therefore, the security
evaluation analysis and vulnerability assessment of smart
devices are the primary considerations at present.

However, limited papers have been found that focus on
securing the firmware of smart devices, although the firm-
ware running on these smart devices is vulnerable to attack.
Firmware provides the necessary instructions on how a smart
device determines its functionality and communicates with

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 8899193, 12 pages
https://doi.org/10.1155/2020/8899193

https://orcid.org/0000-0003-3984-7850
https://orcid.org/0000-0003-2020-3799
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8899193


other devices. The firmware can be obtained by downloading
it from the website of the vendor or extracting it from the
flash storage of the device hardware. Any firmware used in
smart devices should be assumed insecure, which may have
security vulnerabilities.

To evaluate and improve the security of firmware, a
necessary method is disassembling [9, 10]. In this case, a
disassembler, such as IDA Pro, needs to know the processor

type and image base of the firmware [11]. In general, the pro-
cessor type can be discerned by consulting the product
manual or physical examination of the hardware [12, 13].
However, the image base cannot be obtained directly. With-
out the image base, the disassembler is unable to create cross-
references based on absolute addresses [14]. When these
cross-references are lacking, it is difficult to navigate effi-
ciently in disassembly listing. Facing the obscure disassembly

(a) The image base is set to 0

(b) The image base is set to 0xC0018000

Figure 1: Comparison of incorrect and correct image base disassembly results.

2 Wireless Communications and Mobile Computing



code, people often lose their direction when they look for the
assembly code in which they are most interested. Conversely,
knowledge of the correct image base is critical in understand-
ing the firmware as a whole [12].

Heterogeneous hardware architectures are used in firm-
ware images; however, many smart devices are based on the
ARM architecture [15–17]. Therefore, this work mainly
focuses on ARM-based firmware. As shown in Figure 1,
Figure 1(a) shows the disassembly code with the wrong
image base and Figure 1(b) shows the disassembly code with
the correct image base. IDA Pro cannot establish a cross-
reference when the wrong image base is set, and the absolute
addresses are marked in red. When the correct image base is
set, IDA Pro establishes cross-references to these absolute
addresses, which are important for reverse engineers to
understand the intention of the assembly code.

To determine the image base of firmware, many
researchers have put in a great deal of effort, and several
manual solutions have been proposed.

Skochinsky [18] proposed a general principle for deter-
mining the image base of a file with an unknown format.
He suggested that some kinds of hints, such as self-
relocating code and initialization code, can be used.

Basnight et al. [12, 19] presented two methods for infer-
ring the image base. The first method uses immediate values
in instruction to infer a reasonable image base. The second
method uses a hardware debugger to halt a programmable
logic controller and obtain a memory dump. Then, the image
base can be found by manually analyzing common instruc-
tion patterns in the memory dump.

Dacosta et al. [20] noted that when the case values in a
switch-case statement of a C program are sequential and
dense, the memory addresses of the case are usually stored
in a jump table; this fact can be used to infer the memory
address of the nearby code and eventually obtain the
image base. Dacosta’s approach manually analyzed the
instruction of jump to default statement block (in this
case, the BHI instruction) first, obtained the offset of the
default statement block, and then analyzed the memory
address of the default statement block to calculate the
image base.

All of the above methods are not automated and heavily
rely on reverse engineers’ experience and intuition. We have
proposed [21–23] three methods for automatically determin-
ing the image base. These automated methods are applicable
to different types of ARM firmware, which cannot determine
the image base of all types of firmware.

In this paper, we proposed a method for determining
the image base of firmware that uses a jump table to store
absolute addresses. The source code of firmware usually
contains switch-case statements, and the compiler may
generate jump tables for such code. By searching the
sequence of instructions, the jump table can be located.
Then, according to the absolute addresses in the jump
table and the offset of the case statement block, we can
obtain the image base. The experimental result indicates
that the proposed method can effectively determine the
image base of firmware that uses the jump table to store
the absolute addresses.

2. Jump Table in Firmware

The switch-case statement often appears in the source code
of firmware and may generate a jump table after being com-
piled. After the code in Listing 1 is compiled into a binary file,
IDA Pro can be used to disassemble the binary file, and the
disassembly results are shown in Figure 2.

It can be seen that when there is a switch-case statement
in the code, the compiler may generate a jump table. The
content in the jump table is the addresses of the case state-
ment block; for example, 0x8268 in the jump table is the
address of the first case statement block.

Next, we analyze the calculation process of the jump table
in two cases.

(1) Suppose that variable n in the code of Listing 1 is less
than or equal to 4 (e.g., 3), then register R3 in the
instruction at memory 0x8248 in Figure 2 is 3. After
executing the instruction “CMP R3, #4” at offset
0x00008248, the LDRLS instruction is executed.
According to the ARM manual [24], the memory
address accessed by LDRLS is

address = PC + R3 ∗ 4ð Þ
= Current + 8ð Þ + R3 ∗ 4ð Þ
= 0x824C + 8ð Þ + 0x3 ∗ 4ð Þ
= 0x8260:

ð1Þ

As shown in Figure 2, the word at address 0x8260 is
0x828C. This means that the PC register will be assigned a
value of 0x828C, and the program will jump to 0x828C to
continue execution

switch(n)
{
case 0:

printf("n =0\n");
break;

case 1:
printf("n =1\n");
break;

case 2:
printf("n =2\n");
break;

case 3:
printf("n =3\n");
break;

case 4:
printf("n =4\n");
break;

default:
printf("default.\n");

}

Listing 1: Example of switch-case statements.

3Wireless Communications and Mobile Computing



(2) When the value of variable n is greater than 4, i.e., the
value of R3 is greater than 4, the instruction “B loc_
82A4” at offset 0x00008250 will be executed. The
program will jump to location loc_82A4 to continue
execution

According to the above analysis, we can understand the
calculation process of the jump table. Take the firmware of
ABB NETA-21 as a case, as shown in Figure 3. The CMP
instruction at offset 0x000AB124 is followed by the LDRLS

instruction, the B instruction, and a jump table. The jump
table begins at offset 0x000AB130 with four addresses, as
shown by the red background in Figure 3, which are
0xC00B326C, 0xC00B3160, 0xC00B3150, and 0xC00B3140.
In general, the minimum memory address in the jump table
points to the first case statement block, and the first case
statement block is usually next to the jump table. The mini-
mum memory address in the jump table is 0xC00B3140, and
the first case statement block starts at offset 0x000AB140.
That is, the case statement block with offset 0x000AB140 is

Figure 2: Disassembly code.

4 Wireless Communications and Mobile Computing



mapped to the memory address 0xC00B3140, and then, the
image base can be calculated.

3. DBJT Algorithm

According to the above analysis, when compiling the switch-
case statement, the compiler usually generates the CMP
instruction, LDRLS instruction, B instruction, and jump
table in turn. The program jumps according to the addresses
in the jump table. The model is shown in Figure 4.

In general, the minimum memory address in the jump
table points to the first case statement block. A jump table
can be used to deduce the memory address of the first case
statement block; thus, the difference between the memory
address and offset of the first case statement block can be
used to obtain the candidate image base.

Figure 5 shows that the firmware that contains a case
block with offset offset_case1 is mapped to memory. The
image base of firmware is denoted as the base, and the
minimum memory address in the jump table is denoted
as min_addr. According to the analysis in Section 2, the
first case block with offset offset_case1 is mapped to mem-
ory location min_addr, i.e., min addr = base + of f set case1,
and then, we can obtain the image base as base =min ad
dr − of f set case1.

Based on the model of the switch-case statement, we
can scan from the starting position of the firmware to
locate the switch-case statement. If in a location, the cur-
rent instruction is CMP, the second instruction is LDRLS,
and the third instruction is B, then we consider it to be a
switch-case statement, and the B instruction is followed by

the jump table. Then, read in all the content of the jump
table, obtain the minimum element of the jump table, and
subtract the offset of the first case block from the mini-
mum element to obtain a candidate image base. With
one jump table, we can obtain a candidate image base.
All candidate image bases can be calculated from all jump
tables of the firmware. Then, we count the frequency of
each candidate image base. If the frequency of a particular
candidate image base is much larger than those of others,
then we consider this candidate to be the actual image
base. Based on the above analysis, we propose the deter-
mining the image base by searching jump tables (DBJT)
algorithm to determine the image base. The pseudocode
of the algorithm is shown in Listing 2.

The time complexity of the DBJT algorithm is O(file-
Size), where fileSize is the size of the firmware file. The
algorithm first locates the jump table according to three
consecutive instructions (CMP instruction, LDRLS instruc-
tion, and B instruction) and then sorts all the addresses in
the jump table to obtain the minimum memory address. A
candidate image base is obtained by the difference between
the offset of the case statement block and the minimum
memory address, and the candidate image base is added
to multiset M. Finally, count the number of occurrences
of each candidate image base in the multiset M, and then,
sort them in descending order by occurrences. If a candi-
date image base appears much more frequently than other
elements, then it is considered the correct image base.
Otherwise, the outputs do not contain the correct image
base because the DBJT algorithm cannot be applied
successfully to this firmware.

Figure 3: Jump table in ABB NETA-21 firmware uImage (the image base is set to 0).

5Wireless Communications and Mobile Computing



4. Experimental Results and Analysis

To test the proposed algorithm, we collected 10 firmware
from well-known vendors’ official websites. The DBJT algo-
rithm was implemented in the C language and was compiled
with Visual C++6.0. The experiments were performed on a

personal computer with an Intel i7-2600 3.4GHz processor
and 18GB memory, running Microsoft Windows 7 SP1.

4.1. Experimental Results. In the experiment, the DBJT
algorithm proposed in this paper is used to identify the jump
table in the firmware and calculate the image base. The

Memory
0x00000000

offset_case1

min_addr

Firmware

Map

1st case block

1st case block

Base = min_addr-offset_case1

Figure 5: Map firmware into memory.

DCD addr_1
DCD addr_2
DCD addr_3
...
DCD addr_n

offset_case1:

offset_case_m:

offset_case2:

Jump table

The first case block

The second case block

...

...

The m-th case block

CMP
LDRLS
B

...

Figure 4: The assembly model of the switch-case statement.

6 Wireless Communications and Mobile Computing



Input: firmwareFile
Output: A sorted result of the elements and their occurrence in multiset M
function DBJT (firmwareFile)

fileSize ⟵Obtain the size of firmwareFile
offset ⟵0
while(0 ≤ offset < fileSize) do

CMP_FLAG ⟵ FALSE
LDRLS_FLAG ⟵ FALSE
B_FLAG ⟵ FALSE
if Current instruction is CMP instruction, then

CMP_FLAG ⟵ TRUE
else

offset ⟵ offset +4
continue

end if
if The second instruction is LDRLS instruction, then

LDRLS_FLAG ⟵ TRUE
else

offset ← offset +4
continue

end if
if The third instruction is B instruction, then

B_FLAG ⟵ TRUE
else

offset ⟵ offset +4
continue

end if
if CMP_FLAG ==TRUE && LDRLS_FLAG == TRUE && B_FLAG == TRUE then

jt[n] ⟵ Read the jump table
min_addr ⟵ Obtain the minimum element of the array jt[n]
offset_case1 ⟵ Obtain offset of the first case block
base ⟵ min_addr - offset_case1
if base % 4 ==0 then

M ⟵ base
end if
offset ⟵ offset_case1

end if
offset ⟵ offset +4

end while
Count the number of occurrences of each element in the multiset M
Sort the elements and their occurrence in descending order by number of occurrences
Output: Sorted elements and their occurrences

end function

Listing 2:Determining the image base by searching jump tables (DBJT).

Table 1: Experimental results of the DBJT algorithm.

Device Firmware Jump table Correct Base Time (ms) Validated

ABB NETA-21 uImage 261 108 0xC0008000 250 Yes

Advantech 4570-CE 57791ec9.bin 222 38 0x7F000000 172 Yes

Advantech 2748FI Switch 3551.bin 279 272 0x00400000 93 Yes

Emerson ES-03001 es-03001-1.ffd 0 0 N/A 31 N/A

Phoenix 400 PND-4TX-IB 2985563_321.fw 448 437 0x20800F28 546 Yes

Phoenix OT 4M Terminal v1.23.nb0 0 0 N/A 15 N/A

Rockwell DriveLogix 5730 pn-82672.bin 0 0 N/A 47 N/A

Schneider 140CRA31200 cra31200.bin 318 153 0x00001000 156 Yes

Schneider 140CRA31200 140cra31200.bin 217 111 0x02001000 109 Yes

Schneider M241 PLC vxBoot.bin 43 20 0x00801FC0 93 Yes

7Wireless Communications and Mobile Computing



C0
00

69
30

C0
00

74
D

4
C0

00
77

28
C0

00
7A

F4
C0

00
7F

C0
C0

00
7F

C4
C0

00
7F

CC
C0

00
80

00
C0

00
80

04
C0

00
80

08
C0

00
80

0C
C0

00
80

10
C0

00
85

C0
C0

00
86

5C
C0

00
86

90
C0

00
87

18

0

20

40

60

80

100

120

O
cc

ur
re

nc
e n

um
be

r

Memory location

(a) uImage of ABB NETA-21

3F
FE

A
0

3F
FF

74

3F
FF

D
4

40
00

00

40
00

04

0

50

100

150

200

250

300

O
cc

ur
re

nc
e n

um
be

r

Memory location

(b) 3551.bin of Advantech EKI-2748FI

Figure 6: Image base determination results.

(a) The image base is set to 0xC0008000 (b) The image base is set to 0

Figure 7: The disassembly result of the correct and incorrect image base.

8 Wireless Communications and Mobile Computing



experimental results are shown in Table 1. The column
“Jump table” lists the number of jump tables identified by
the DBJT algorithm in each firmware file. The column “Cor-
rect” lists the frequency of the correct image base identified
by the DBJT algorithm, and the column “Base” lists the cor-
rect image bases of the corresponding firmware. The column
“Time” lists the execution time of the proposed algorithm.
The symbol N/A means that the method is not applicable
to the corresponding firmware; the reasons for this are
discussed in Section 4.2. The manual validation results are
shown in the “Validated” column of Table 1.

We take the firmware uImage of ABB NETA-21 as an
example to analyze the experimental results. As shown in
Table 1, 261 jump tables are identified by the DBJT algo-
rithm, 108 of which point to the same candidate image base
0xC0008000. Figure 6(a) shows the candidate image base
and the corresponding occurrence frequency. It can be seen
that the candidate image base 0xC0008000 appears 108
times, which is much higher than the frequency of other
candidate image bases. The practical significance is that the
candidate image base calculated by 108 jump tables is
0xC0018000. Therefore, we consider 0xC0018000 to be the
correct image base of the firmware.

To verify whether the experimental results are correct, we
load the firmware file uImage using IDA Pro and set the
processor type to “ARM little-endian” and the image base
to 0xC0008000. Then, we can see that the cross-references
for absolute addresses in the disassembly code are correct,
as shown in Figure 7(a). This indicates that the memory
address 0xC0008000 is the correct image base. In compari-
son, the same file loaded by IDA Pro without setting the
correct image base is shown in Figure 7(b).

As shown in Table 1, the execution time of the proposed
algorithm for uImage is 250ms. Compared to the time of
reverse engineering, the time to determine the image base is
insignificant.

Figure 6(b) shows the experimental results obtained for
the firmware sample 3551.bin from the Advantech EKI-
2748FI-managed Ethernet switch, the image base of which
is 0x00400000, which is manually verified as the correct
image base.

In Figure 6, we can see that there are some other points
near the image base. These points are caused by errors in the
algorithm. If the default statement block is in the first position
in the switch-case statement, then the minimum memory
address in the jump table no longer points to the first case
statement block, and the default statement block is next to
the jump table. This style of the C code is shown in Listing 3,
and its corresponding assembly code is shown in Figure 8.
Although such style of the C code is legitimate, most program-
mers never write in such style. This type of switch-case state-
ment will lead to the inaccuracy of the DBJT algorithm,
which will differ from the correct image base by a few bytes.

4.2. Possible Reasons for Determination Failure. In Table 1,
the number of recognized jump tables in some firmware is
0, and the image base is not determined successfully, indicat-
ing that the DBJT algorithm is not suitable for this firmware.
The possible reasons for this are as follows.

(1) The compiler generates a jump table only when the
value of the case in the switch-case is sequential and
dense. Otherwise, the compiler generates no jump
table. For example, the case value in Listing 4 is not
sequential, and there is no jump table generated, as
shown in Figure 9

(2) In some firmware, the jump table contains no abso-
lute addresses, and the DBJT algorithm cannot be
used to determine the image base, such as firmware
es-03001-1.ffd of Emerson ES-03001, firmware
v1.23.nb0 of Phoenix OT 4M Terminal, and pn-
82672.bin of Rockwell DriveLogix 5730. Figure 10
shows the assembly code of firmware es-03001-1.ffd

In Figure 10, the BHI instruction at address 0x00004E00
is the “Branch if Higher” instruction. Combined with the pre-
vious instruction, “CMP R1, #6,” if R1 is greater than 6, then
it will jump to the label def_4E0C. If R1 is less than or equal
to 6 (e.g., 2), then the ADR instruction will be executed. The
ADR instruction at address 0x00004E04 assigns register R2
to 0x00004E10. LDRB instruction loads a byte frommemory.
Then, R2 + R1 = 0x00004E10 + 0x2 = 0x00004E12. The 0x01
at address 0x00004E12 is loaded into register R2. The ADD
instruction at address 0x00004E0C will modify the value of
the PC register. The calculation process of the PC register is
as follows:

PC = PC + R2 ∗ 4
= Current + 8ð Þ + R2 ∗ 4ð Þ
= 0x4E0C + 8ð Þ + 0x01 ∗ 4ð Þ
= 0x4E18:

ð2Þ

switch(n)
{
default:

printf("default.\n");
break;

case 0:
printf("n =0\n");
break;

case 1:
printf("n =1\n");
break;

case 2:
printf("n =2\n");
break;

case 3:
printf("n =3\n");
break;

case 4:
printf("n =4\n");
break;
}

Listing 3: Example of switch-case statements.

9Wireless Communications and Mobile Computing



That is, the PC register will be assigned the value 0x4E18.
From the above calculation, it can be seen that there is no
absolute address stored in the jump table, so the algorithm
proposed in this paper cannot be used for this firmware.

5. Conclusions

The disassembly of firmware is a necessary step in the secu-
rity assessment of authentication mechanisms. However,
for the firmware of most smart devices, the image base
cannot be obtained directly, which is a major obstacle to
disassembly. In this paper, we research the storage law of
the jump table in the ARM firmware of smart devices and

Figure 8: Disassembly code.

switch(n)
{
case 1:

printf("n =1\n");
break;

case 100:
printf("n =100\n");
break;

default:
printf("default.\n");

}

Listing 4: Example of switch-case statements.

10 Wireless Communications and Mobile Computing



Figure 9: Disassembly code.

Figure 10: Jump table in Emerson ES-03001 firmware es-03001-1.ffd (the image base is set to 0).

11Wireless Communications and Mobile Computing



propose a method for determining the firmware image base
by using a jump table. The experimental results show that
the proposed method is effective for the firmware that stores
the absolute addresses in the jump table. For future work, it is
still a challenge to automatically determine the image base of
other types of firmware, such as firmware that contains no
jump table. We will continue to research new methods for
other kinds of firmware in smart devices. We believe that
these automated approaches can effectively reduce the diffi-
culty of reverse analysis.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant No. 61802439) and Beijing Youth
Backbone Personal Project (Grant No. 201800002685XG357).

References

[1] “IoT connections outlook|Mobility report - Ericsson,” https://
www.ericsson.com/en/mobility-report/reports/november-
2019/iot-connections-outlook.

[2] “Reverse engineering a D-Link backdoor,” http://www
.devttys0.com/2013/10/reverse-engineering-a-d-link-
backdoor/.

[3] “From China, with love,” http://www.devttys0.com/2013/10/
from-china-with-love/.

[4] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang,
“Exploring permission-induced risk in Android applications
for malicious application detection,” s, vol. 9, no. 11,
pp. 1869–1882, 2014.

[5] W. Li, W. Meng, Z. Tan, and Y. Xiang, “Design of multi-view
based email classification for IoT systems via semi-supervised
learning,” Journal of Network and Computer Applications,
vol. 128, pp. 56–63, 2019.

[6] W. Wang, Y. Shang, Y. He, Y. Li, and J. Liu, “BotMark: auto-
mated botnet detection with hybrid analysis of flow-based
and graph-based traffic behaviors,” Information Sciences,
vol. 511, pp. 284–296, 2020.

[7] W. Meng, W. Li, and L. Kwok, “EFM: enhancing the perfor-
mance of signature-based network intrusion detection systems
using enhanced filter mechanism,” Computers & Security,
vol. 43, pp. 189–204, 2014.

[8] Z. Guan, X. Liu, L. Wu et al., “Cross-lingual multi-keyword
rank search with semantic extension over encrypted data,”
Information Sciences, vol. 514, pp. 523–540, 2020.

[9] L. Zhang, S. Hao, J. Zheng, Y. Tan, Q. Zhang, and Y. Li,
“Descrambling data on solid-state disks by reverse-engineering
the firmware,” Digital Investigation, vol. 12, pp. 77–87, 2015.

[10] Z. Liu, Y. Huang, J. Li, X. Cheng, and C. Shen, “DivORAM:
towards a practical oblivious RAM with variable block size,”
Information Sciences, vol. 447, pp. 1–11, 2018.

[11] P. Shirani, L. Collard, B. L. Agba et al., “BINARM: scalable and
efficient detection of vulnerabilities in firmware images of
intelligent electronic devices,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer, 2018.

[12] Z. Basnight, J. Butts, J. Lopez, and T. Dube, “Firmware modi-
fication attacks on programmable logic controllers,” Interna-
tional Journal of Critical Infrastructure Protection, vol. 6,
no. 2, pp. 76–84, 2013.

[13] J. C. Mulder, M. D. Schwartz, M. J. Berg, J. R. Van Houten,
J. M. Urrea, and A. N. Pease, “Reverse engineering industrial
control system field devices,” in International Conference on
Critical Infrastructure Protection, Albuquerque, NM, USA,
2012.

[14] C. D. Schuett, Programmable logic controller modification
attacks for use in detection analysis, DTIC Document, 2014.

[15] B. Chen, X. Dong, G. Bai, S. Jauhar, and Y. Cheng, “Secure and
efficient software-based attestation for industrial control
devices with arm processors,” in Proceedings of the 33rd
Annual Computer Security Applications Conference, New
York, NY, USA, 2017.

[16] Y. J. Kwon, H. K. Kim, K. M. Koumadi, Y. H. Lim, and J. In
Lim, “Automated vulnerability analysis technique for smart
grid infrastructure,” in IEEE Power & Energy Society Innova-
tive Smart Grid Technologies Conference (ISGT), Washington,
DC, USA, 2017.

[17] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and Eurecom,
“A large-scale analysis of the security of embeddedfirmwares,” in
Proceedings of the 23rd USENIX conference on Security Sympo-
sium, San Diego, CA, 2014.

[18] I. Skochinsky, “Intro to embedded reverse engineering for PC
reversers,” in REcon Conference, Montreal, Canada, 2010.

[19] Z. H. Basnight, Firmware counterfeiting and modification
attacks on programmable logic controllers, Air Force Institute
of Technology, Ohio, 2013.

[20] I. Dacosta, N. Mehta, E. Metrock, and J. Giffin, “Security anal-
ysis of an IP phone: Cisco 7960G,” in Principles, Systems and
Applications of IP Telecommunications. Services and Security
for Next Generation Networks, Springer-Verlag, 2008.

[21] R. Zhu, Y. Tan, Q. Zhang, Y. Li, and J. Zheng, “Determining
image base of firmware for ARM devices by matching literal
pools,” Digital Investigation, vol. 16, pp. 19–28, 2016.

[22] R. Zhu, Y. Tan, Q. Zhang,W. Fei, J. Zheng, and Y. Xue, “Deter-
mining image base of firmware files for ARM devices,” IEICE
Transactions on Information and Systems, vol. E99.D, no. 2,
pp. 351–359, 2016.

[23] R. Zhu, B. Zhang, J. Mao, Q. Zhang, and Y. Tan, “Amethodol-
ogy for determining the image base of ARM-based industrial
control system firmware,” International Journal of Critical
Infrastructure Protection, vol. 16, pp. 26–35, 2017.

[24] ARM Limited, ARM Architecture Reference Manual, ARM
Limited, 2014.

12 Wireless Communications and Mobile Computing

https://www.ericsson.com/en/mobility-report/reports/november-2019/iot-connections-outlook
https://www.ericsson.com/en/mobility-report/reports/november-2019/iot-connections-outlook
https://www.ericsson.com/en/mobility-report/reports/november-2019/iot-connections-outlook
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/
http://www.devttys0.com/2013/10/reverse-engineering-a-d-link-backdoor/
http://www.devttys0.com/2013/10/from-china-with-love/
http://www.devttys0.com/2013/10/from-china-with-love/

	Determining the Image Base of Smart Device Firmware for Security Analysis
	1. Introduction
	2. Jump Table in Firmware
	3. DBJT Algorithm
	4. Experimental Results and Analysis
	4.1. Experimental Results
	4.2. Possible Reasons for Determination Failure

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

