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Multitrack music generation technology is becoming more and more mature, but the existing generation technology cannot reach
the desired effect in terms of harmony and matching degree, and most of the generated music does not conform to the music
theory knowledge. In order to solve these problems, we propose a multitrack music generation network based on transformer
to produce music with high musicality under the guidance of music theory rules. This paper uses an improved version of
transformer to learn the information inside a single-track sequence and between different tracks. Then, a combination of music
theory rules and crossentropy loss is used to guide the training of the generated network, and the well-designed loss objective
function is optimized while the discrimination network is trained. Compared with other multitrack music generation models,
the validity of our model is proved.

1. Introduction

As the human demand for music increased, intelligent
composition technology emerged. Generally, musical instru-
ments can be divided into single-track and multitrack types,
while music generation models can be divided into symbolic
[1, 2] and audio techniques [3, 4]. However, piano, guitar,
and bass serve as the primary instruments in contemporary
music. As such, this study investigated the generation of
multitrack symbolic music.

End-to-end sequence models, such as recurrent neural
networks (RNNs), long short-term memory (LSTM), and
hierarchical RNNs, are a common technique used for
intelligent music composition in previous studies. The music
models proposed for multitrack music generation include
HRNN [5], MiDiNet [6], and MuseGAN [1]. A large num-
ber of experiments have found that these models only allow
the network to learn the relationship between note features
from the real music data, but not the harmony and rules that
the composer needs to follow from the whole music. As a

result, the resulting music seems to lack harmony and to
be incongruous with human hearing habits.

Therefore, in order to solve all the problems encountered
above, we propose a novel network, which is improved on
the basis of transformer [7] to get a crosstrack transformer
network which can learn the information between different
tracks well and combined with discrimination network to
produce multitrack music in line with the public’s musical
literacy under the guidance of music rules. Finally, a set of
music evaluation indexes is proposed. Through the evalua-
tion, it is found that the model proposed by us is closer to
the real music works than the benchmark and other multi-
track music generation models.

Our main contributions are as follows: (1) based on
transformer network, a generative network based on music
theory knowledge is proposed to guide the generation of
confrontation network in line with human music literacy.
(2) In view of the importance of the internal information
of single-track sequence and the information between differ-
ent track sequences in the generation of multitrack music,
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transformer is improved to produce works satisfying the
correlation of internal information of single-track and the
harmony between different tracks. (3) In view of the impor-
tance of music theory rules in music, a new discriminant
method combining music rule mathematical model and
discrimination network is put forward.

2. Related Work

Many methods of music generation have been proposed by
researchers. For example, in 2016, Mogren proposed a
continuous recurrent neural network (C-RNN-GAN) model
with confrontation training based on an RNN, to generate
melody [8]. In 2018, Roberts et al. established a hierarchical
RNN to generate 16-bar musical notes [9]. However, com-
mon RNN and LSTM networks cannot solve the problem
of long-term dependence between contexts. As such, Huang
et al. modified the relative attention mechanism in a trans-
former sequence model used for text translation [10] or text
continuation [11] and generated a musical clip with the
same pitch, length, and interval structure [12].

In the generation of multitrack music, researchers have
started to use neural network with VAE, GAN, and trans-
former for multitrack music generation [8, 13, 14]. In
2016, Chu et al. proposed an RNN-based hierarchical model
(HRNN), in which the lower structure generated melody
while the high-level structures generated chords and percus-
sion for accompaniment; compared with the traditional
music generation method, the rhythm has been greatly
improved [5]. In 2019, Zhang proposed a technique to gen-
erate multitrack music using a decoding structure with a
transformer serving as the generator and an encoding struc-
ture functioning as the discriminator [15]. However, these
models have no regular limits in terms of melody and
rhythm, and the resulting samples are not ideal. Therefore,
in 2020, Jin et al. proposed the MTMG model method that
could well learn the relationship between different sound
tracks [16]. However, the existing models of music genera-
tion are deficient in melody, rhythm, overall harmony, and
matching degree, and most of the generated music does
not conform to the basic knowledge of music theory.

Therefore, based on the existing achievements, this
paper proposes a multitrack music generation model guided
by music rules, combining transformer model and discrimi-
nation network according to the process of human music
creation, and proves the effectiveness of the model through
experiments.

3. Proposed Method

3.1. Data Representation. The inputs and outputs used by the
model are MIDI files. In order to adapt the MIDI file to the
generation task of this model, it is necessary to extract eight
features of MIDI file and encode them into event sequences
according to the features (see Figure 1), where each event is
represented as a tuple, namely, bar, position, chord, tempo
value, tempo class, note on, note velocity, and note duration
[17]. Bar is the number of bars, position represents the
position of each event type, chord represents the set chord

progression, tempo class represents tempo type (fast, moder-
ate, and slow), tempo value represents the value that quan-
tifies the rhythm type, note in indicates the start time of
the pitch (pitch quantization range “0-127”), note velocity
indicates the perceived loudness of notes (quantization
range “0-127”) and note duration indicates the length of
each note.

3.2. Overall Framework. Based on transformer, this paper is
oriented by music theory knowledge rules and combined
with discrimination network to generate multitrack music
(see Figure 2). Firstly, three tracks are encoded into time
sequence, respectively, and the internal information of
single-track sequence is learned through three generators,
and the state yt of the next moment is generated. Secondly,
six CT-transformer modules are used to learn the sound
track sequence in pairs, and the piano sequence after learn-
ing the guitar track sequence and the bass track sequence
is pieced together to obtain the piano sequence containing
the information of the other two tracks. The learning of
the guitar track sequence and the bass track sequence is
the same as that of the piano track sequence. Finally, the real
sample sequence and the generated sample sequence were
discriminated by discriminator Dφ, and the generation was
guided by music theory rules.

3.3. Generation Network. In the generation stage, the model
needs to learn two parts: first, single-track sequence infor-
mation learning and generation (Gp, Gg, and Gb). Second
is information learning and generation between multitrack
sequences (CT-transformer).

In the single-track sequence information learning sec-
tion, only the decoding portion of the transformer [10] was
used in the single-track generation network. The input fea-
ture sequence was mapped to embedding through using a
learning embedding matrix, used to group information after
the kth step through Ng self-attention blocks (Ng is equal to
5). This masking mechanism ensures that characters refer
only to information prior to time k. The output of the last
self-attention block is then mapped to a vocabulary space
and activated by a softmax layer to produce the output fea-
ture distribution (see Figure 3). In the pretraining stage,
the single-track generator is trained to minimize the cross-
entropy loss between the predicted character and the input
characters. In the generation phase, characters are produced
individually in an autoregressive manner.

Figure 1: An example of a section of a MIDI file being converted
into a sequence of events.
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In the part of information learning and generation
between multitrack sequences, this module improves the
self-attention mechanism based on transformer, namely,
CT-transformer, and the core part is the crosstrack attention
mechanism. The piano sequence is taken as the learning
object, and the guitar sequence is taken as the learning
object, respectively, represented as Xp ∈ R

Tp×dp and Xg ∈
RTg×dg . Tð:Þ and dð:Þ represent sequence length and feature
dimension, respectively. Let us define the query as QðpÞ =
XpWQp

and the key-value pairs as KðgÞ = XgWKg
and

V ðgÞ = XgWVg
, where WQp

∈ Rdp×dk , WKg
∈ Rdg×dk , and

WVg
∈ Rdg×dv are weights (see Figure 4). Z½i�

p⟶g is the state

obtained at the moment i, i = ½1, 2,⋯, 6�. At time i, the char-

acter gets Ẑ
½i�
p⟶g after passing through the crosstrack learning

module CT-transformer. After layer normalization, it gets

f
θ
½i�
p⟶g

ðLNðẐ½i�
p⟶gÞÞ through the feedforward layer and sums

with the sequence normalized by the layer to get the state

Z½i�
p⟶g at the next time, as shown in Equation (1), where

Z½i�
p⟶g is the piano sequence learning the guitar sequence,

and the multihead crosstrack attention output sequence

through layer i is shown in Equation (2); Ẑ
½i�
p⟶g is the sum

of the previous time state after the previous time state is
normalized with the layer through crosstrack learning.

Z i½ �
p⟶g = f

θ
i½ �
p⟶g

LN Ẑ
i½ �
p⟶g

� �� �
+ LN Ẑ

i½ �
p⟶g

� �
, ð1Þ

Ẑ
i½ �
p⟶g = CT LN Z i−1½ �

p⟶g

� �
, Z 0½ �

p⟶g

� �
+ LN Z i−1½ �

p⟶g

� �
, ð2Þ

CT Xp, Xg

À Á
=W head1; ;headh½ �, ð3Þ

Headh = softmax
QpK

T
gffiffiffiffiffi

dk
p

 !
Vg: ð4Þ

After getting multihead crosstrack attention, in order to
make the output sequence and the input sequence have the
same dimension, the output sequence is normalized by layer,
and then, input the feedforward sublayer to make residual
connection with the normalized output sequence, so as to

get the output sequence Z½i�
p⟶g after the learning module of

layer i. Similarly, take the piano track and learn the bass track

information Z½i�
p⟶b.

Finally, Z½i�
p⟶g and Z½i�

p⟶b 144 are spliced to obtain the
piano sequence Zp containing the information 145 of guitar
sequence and bass sequence, as shown in Equation (5).
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Figure 2: Multitrack music generation network framework.
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Figure 3: Single-track music generation structure.

3Wireless Communications and Mobile Computing



Guitar sequence Zg and bass sequence Zb are similar to
piano sequence Zp.

Zp = Concat Z i½ �
p⟶g, Z

i½ �
p⟶b

� �
: ð5Þ

3.4. Discrimination Network. After the corresponding pre-
dicted token ŷt is obtained by generating the network, this
paper takes the note vector Xt+1 input at the next moment
as the target value ŷt+1 at the current moment; that is, it
forms a supervised learning environment and updates the
model parameters according to the predicted value and the
original sample. In this paper, softmax layer is taken as the
output layer, that is, the probability distribution of the
output notes, so crossentropy is used to construct the loss
function. As shown in Equation (6), when multitrack music
is generated, the parameters can be greatly optimized and
the quality of music works can be improved through cross-
entropy training of the model.

Dφ = −
1
I
〠
I

i=1
yt log ŷt + 1 − ytð Þ log 1 − ŷtð Þ½ �: ð6Þ

The emotion represented by each mode in the music is
different. When composing music, the composer needs to
set the range of notes in a music in advance. Once there
are notes higher or lower than the range, the quality and
emotion of a music will be greatly reduced. In order to
improve the quality of generated music, this paper adds this
restriction to the music theory rules. In pop music, the
pitches of the piano, guitar, and bass tracks are within the
C2-C6, E2-E3, and E2-C4 ranges, respectively. In Equation
(7), ymin and ymax are the lowest and highest notes set in
advance according to the musical mode, yt is the pitch at
timet, and Rm1ðS1:t , ytÞ represents the reward value of the
state at timet (we set different reward values according to

the impact on the music itself caused by conforming to this
rule and not conforming to this rule. The reward value in
subsequent rules is also different. The setting of the value
is as follows: first, find the rule that has the greatest impact
on the quality of generated music, set its reward value to
+1 or -1, and then get its reward value according to the com-
parison between each rule and this strongest rule).

Rm1 S1:t , ytð Þ =
0:1, yt ∈ ymin, ymax½ �,
−0:6, yt ∉ ymin, ymax½ �:

(
ð7Þ

Furthermore, the number of notes for the piano, guitar,
and bass is fewer than 8, 6, and 1, respectively. In as Equa-
tion (8), at represents the number of notes at time t, n
represents the maximum number of notes sounded, and
Rm2ðatÞ represents the bonus value for the number of notes
within the required range.

Rm2 atð Þ =
0:2, at ≤ n,

−0:5, at > n:

(
ð8Þ

The chords set in this paper are triads, such as F-G-Am-
F. For chord notes, in strong music, the strong beat is basi-
cally in the odd beat position. Assume that Ct

1, C
t
2, and Ct

3
are chord notes at the moment t, and yt represents the notes
selected by the generation network at that moment t, as
shown in Equation (9), where RcðS1:t , ytÞ is the reward value
provided by this rule (we set the corresponding reward value
according to the compliance with this rule, and for subse-
quent rules, the reward value is determined by the degree
of impact on the quality of the generated music).

RC S1:t , ytð Þ =
0:7, yt ∈ Ct

1, C
t
2, C

t
3 t%2j = 1

À Á
,

1, yt ∉ Ct
1, C

t
2, C

t
3 t%2 = 1jÀ Á

:

(
ð9Þ
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Figure 4: Piano sequence learning guitar sequence module.
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Different weight ratios are assigned according to the
importance of different rules in music, as shown in Equation
(10), where RG represents the reward value for meeting the
set rules and αi represents the weight of rule i, i = 1, 2, 3.

RG = α1R
m1 S1:t , ytð Þ + α2R

m2 atð Þ + α3R
C S1:t , ytð Þ: ð10Þ

The objective function of the model is obtained by
assigning different weights to the reward function and the
crossentropy loss function through the discrimination net-
work, as shown in Equation (11), where JGθ

is the objective
function value after assigning weight values β1 and β2 to
the reward value and the loss function value.

JGθ
= β1RG + β2Dφ: ð11Þ

The Adam optimizer used in the experiment sets the
learning rate as 0.0001. The number of iterations set in the
training process is 20000. If the number of iterations of
training is less than 20000, the value of loss function con-
verges, and the model training is terminated immediately.
If the number of iterations of training has reached 20000,
but the loss function value has not converged, the model
training will end automatically. In the process of model
training, when the model obtains the reward value of identi-
fying network feedback at each step, it will automatically
update the network parameters, so as to maximize the
long-term reward of the objective function. This section uses
the objective function constructed by Equation (11) to
update the gradient of the generated network parameter θ
of the model, as shown in Equation (12). The network
parameters θ of the generated network can be optimized
according to Equation (13). After the model is trained, the
test set of 500 MIDI files is used to test the model. The event
of one section at the beginning of each MIDI file is used as
the input, and the predicted section event is used as the
input of the next round of prediction, and the model is
continued in turn.

∇θ JGθ
= 〠

T

t=1
Gθ yt S1:tjð Þ ∗ RG S1:t , ytð Þ, ð12Þ

θ⟵ θ + ∇θ JGθ
: ð13Þ

4. Experiment and Analysis

4.1. Data Set and Implementation Details. All experiments in
this paper used the Lakh MIDI data set [18], which included
176,581 different multitrack MIDI files. The music contain-
ing piano, guitar, and bass was screened out from the data
set, and then, these three tracks were extracted through the
pretty MIDI library and combined to obtain 55,213 MIDI
files. Finally, the MIDI files of 4/4 beats are selected. At this
point, the data set contains only 34,610 MIDI files. We used
24,610 MIDI files as the training set and 10,000 MIDI files as
the test set. The generation and discrimination networks in
the proposed model were trained using an Adam optimizer
and a reward network, to minimize the crossentropy level

and optimize the output. The learning rate ε was set to
0.0002, and the number of iterations was 10000. This section
tests the MuseGAN model, the MultINN network, and
MTMG using our data set and compares the results gener-
ated by our proposed network with the same character
length generated by all four methods.

4.2. Analysis of Experimental Results

(1) Subjective evaluations: we divided all participants
into two groups, professional composers and non-
composers. Participants in the professional groups
are those with degrees in music creation or electronic
music creation and production education, including
the Central Conservatory of Music, Communication
University of China, and Zhengzhou University

Human and AI. We prepared a mix of five pieces of
music by professional human composers and five pieces cre-
ated by our model for people to decide whether they were
created by humans or by AI [19]. Forty professional com-
posers were asked to rate each piece of music they heard in
terms of musical creation theory, while 60 noncomposers
were asked to rate their subjective feelings. Each listener will
evaluate and score the test samples (points 1 to 10).

Among professional composers, the average score for
human music was higher than AI (see Table 1). However,
across all participants, our AI music scored higher than real
human works (8.11 vs. 7.93), indicating that the quality of
our AI music creation was quite close to that of human com-
posers. According to a few single ratings, there are even
works that transcend 8 human work. Interestingly, for all

Table 1: Human vs. AI evaluation results.

Average (pro) Average (all)

Human 8.02 7.93

AI 7.83 8.11

Table 2: Score results of four models.

Indicators Our MuseGAN MTMG HRNN

Rhythm 8.05 5.79 6.36 5.33

Melody 8.63 7.75 8.21 6.47

Emotion 7.88 8.36 7.29 6.36

Harmony 8.22 5.96 7.48 4.50

Table 3: To quantitatively compare the different modes of
multitrack music generation.

Method Chord matching Harmony BLEU

Our 0.681 0.765 0.660

MTMG 0.527 0.731 0.523

MuseGAN 0.579 0.699 0.641

HRNN 0.363 0.525 0.592
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the reviewers, the music of the human composers was con-
sidered to have been produced by artificial intelligence.

Contrast experiment. Our second test was to compare the
generated samples with the three baseline models. We did a
hearing test comparing MTMG, MuseGAN, and HRNN.
Participants (15 composers and 30 noncomposers) received
20 pieces of music from four different models, each of which
generated five pieces of music, but were given the same start-
ing notes and instrumental timbers. The participants were
then asked to rate and rate the music in terms of melody,
harmony, rhythm, and emotion. After summarizing the
scores, the participants were given another round of assess-
ment, which was repeated three times in turn to summarize
the final score.

Compared with the three generation models of Muse-
GAN, MTMG, and HRNN, the overall quality of our model
has been significantly improved (see Table 2). Except for
emotion, the scores of other indicators are significantly
higher than those of the other three models, indicating that
the music we generate is more in line with the requirements
and rules of composition. It reflects the need to strengthen
research on emotion in future work.

(2) Objective evaluations: in this paper, a test set con-
taining 500 MIDI files is used to analyze and evaluate
our model, MuseGAN, MTMG, and HRNN models
from three aspects of harmony degree, chord accu-
racy, and BLEU score (the BLEU score is used to
measure the similarity between the test set and the
generated sample [20]). The model parameters and
training set are the same. In order to test whether
the model proposed in this paper improves chord
accuracy, chord accuracy is defined to evaluate the
accuracy between the chords of the samples gener-
ated by the model and the specified chords, as shown
in Equation (12), where P is the number of segments,
~ym is the m chord detected in the generated melody,
ym is the corresponding m chord in the given chord
progression, and Eðym, ~ymÞ represents the error value
between ~ym and ym:

Chordmatching =
∑P

m=1E ym, ~ymð Þ
P

,

E ym, ~ymð Þ =
1, ~ym = ym,

0, ~ym ≠ ym

( ð14Þ

The harmony of music is the basic standard to evaluate
the quality of music, so it is meaningful to evaluate the har-

mony degree. We also analyzed the harmony degree of the
samples generated by the four models and defined that the
two tracks have similar chord progression; that is, the two
tracks are harmonious, as shown in Equation (15), where P
and K , respectively, represent the number of segments gen-
erated by music and the number of instrument tracks and
CK
P is the chord corresponding to the P section of the K

instrument track.

Harmony =
∑P

p=1δ ∩
k
1C

K
P

P
, ð15Þ

δ að Þ =
1, a ≠∅,

0, a =∅:

(
ð16Þ

The model we proposed is higher than the other three
models in terms of chord matching degree, harmony degree,
and BLEU, indicating that the introduction of rules into the
discrimination network can guide the generation of music to
a certain extent, and CT-transformer can also be of great
help in learning information between different tracks (see
Table 3).

Comparison of music theory characteristics: in order to
verify whether the music rules and their rewards and pun-
ishments in our model play a guiding role in music genera-
tion, this section quantifies their expression forms according
to the set music rules and carries out a series of comparative
experiments on the music theory rules. This experiment
compares 500 music works generated by three models:
MTMG, MuseGAN, HRNN, and our model without music
theory rules. In order to ensure the fairness of the experi-
ment, the parameters of the three models, the number of
bars, and starting notes of the generated music are the same
when generating samples. Select a series of effective feature
information from the music samples of the above three
models, compare the music theory rules, and summarize
the specific statistics, as shown in Table 4.

It can be seen from Table 4 that our model effectively
reduces the repetition of notes compared with the music
works generated by other models. Compared with the model
without music theory rules, the complete model has certain
advantages in many indicators, which also shows that the
music theory rules after mathematical modeling play a cer-
tain guiding role in generating music.

5. Conclusions

In this paper, we propose a novelty model for multi-
track music generation. It combines sequence-to-sequence

Table 4: Comparison of music theory characteristics.

Method Ours MTMG MuseGAN HRNN Ours (without music rules)

Note repetition 19.4% 52.6% 0.660 25.4% 35.1%

The notes are out of tune 5.1% 13.4% 0.523 7.2% 8.7%

Unique maximum note 54.6% 47.6% 0.641 51.7% 52.3%

Unique minimum note 57.1% 47.9% 0.592 48.3% 59.2%
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generation and multitrack learning techniques in a unified
framework to achieve optimal convergence of multitrack
learning and codecs. In this model, we combine with the dis-
crimination network on the basis of transformer to produce
multitrack music in line with the music literacy of the public
under the guidance of music rules. The experimental results
show that this model has significant advantages over some
existing techniques in terms of rhythm, audibility, fluency,
and compliance with music rules. In the future, we will
strengthen the research on emotion and more than three
tracks.
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