
Research Article
Localization for Wireless Sensor Networks Assisted by Two
Mobile Anchors with Improved Grey Wolf Optimizer

Huanqing Cui ,1 Junyi Zhao,1 Chuanai Zhou,2 and Na Zhang1

1College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2College of Business, Qingdao Binhai University, Qingdao 266555, China

Correspondence should be addressed to Huanqing Cui; cuihq@sdust.edu.cn

Received 21 June 2022; Revised 30 November 2022; Accepted 13 December 2022; Published 29 December 2022

Academic Editor: Javier Prieto

Copyright © 2022 Huanqing Cui et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Localization is crucial to wireless sensor networks. Among the recently proposed localization algorithms, the mobile anchor-
assisted localization (MAL) algorithm seems promising. A MAL algorithm using a single mobile anchor has low energy
consumption but a high localization error. Conversely, a MAL algorithm with three or more mobile anchors has minor
localization errors but high energy consumption. By balancing energy consumption and localization accuracy, our study
developed a localization algorithm assisted by two mobile anchors. A mobile anchor traverses the network along a double
anchor SCAN (DASCAN) path, which divides the deployment region into grids and requires the two mobile anchors to
traverse different horizontal lines in a zigzag pattern. Sensor nodes estimate their locations using a multiple-disturbance
strategy grey wolf optimization (MDS-GWO) algorithm, which improves optimization by introducing a nonlinearly decreasing
weight, a random perturbation of grey wolves and a mirror grey wolf. Using MATLAB, DASCAN was compared with
GTURN, GSCAN, PP-MMAN, H-Curves, M-Curves, and SCAN paths by their energy consumption and localization rates.
The localization error of MDS-GWO was compared with trilateration, PSO, WOA, and GWO. The impacts of radio
irregularity, radio radius, and fading effect on MDS-GWO with different paths were also analyzed. The simulation results
showed that the energy consumption of DASCAN was, on average, 30.1% less than GSCAN, GTURN, and PP-MMAN, but
they had almost the same localization accuracy. The energy consumption of DASCAN was an average of 18.67% more than
M-Curves, H-Curves, and SCAN, but the localization error of DASCAN was average of 32.3% less than SCAN, H-Curves, and
M-Curves. The localization error of MDS-GWO was average of 25.5% less than trilateration, PSO, WOA, and GWO.
Moreover, the performance of the proposed algorithm was less affected by different setups than the compared methods.

1. Introduction

The wireless sensor network (WSN) consists of a large amount
of sensor nodes deployed in a given region of interest (ROI). It is
widely applied to environmental surveys, habitat monitoring,
medical diagnosis, and disaster rescue. Node localization is a
key technology ofWSNs. However, equipping each sensor node
with a global navigation satellite system (GNSS) device is
impractical due to cost and energy consumption constraints.
Only a few sensor nodes, called anchors, know their positions.
Other sensor nodes, unknown nodes, are localized with the help
of beacons broadcast by anchors.

More anchors result in higher localization accuracy, but
the anchors are more expensive than unknown nodes, so the

mobile anchor-assisted localization (MAL) algorithms have
attracted considerable interest. MAL algorithms require the
mobile anchor to traverse the ROI along a given path and
broadcast beacons periodically. The locations where the
mobile anchor broadcasts beacons are called virtual anchors.
If the MAL algorithm only uses one mobile anchor, obtain-
ing high localization accuracy with a short path is difficult. If
the MAL algorithm uses three or more mobile anchors,
localization becomes more accurate, but at the cost of high
energy consumption. This paper proposes a MAL algorithm
that uses two mobile anchors, balancing energy consump-
tion and localization accuracy. Our algorithm uses a double
anchor scan (DASCAN) as the moving path and a multiple
disturbance strategy for the grey wolf optimizer (MDS-
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GWO) to estimate the locations of unknown nodes. The
contributions of our study are:

(1) It presents the DASCAN path for two mobile
anchors, reducing the number of beacons and path
length. This allows the two anchors to scan adjacent
rows of ROI simultaneously so that three neighbor-
ing virtual anchors form an equilateral triangle.

(2) It presents an improved GWO algorithm with multi-
ple disturbance strategies to estimate the locations of
unknown nodes, which can improve localization
accuracy.

(3) It reports extensive experiments that compared the
performance of the proposed algorithm with similar
current algorithms. DASCAN was compared with
GTURN, GSCAN, PP-MMAN, H-Curves, M-
Curves, and SCAN paths in terms of energy con-
sumption and localization rate. MDS-GWO was
compared with trilateration, particle swarm optimi-
zation (PSO), whale optimization algorithm
(WOA), and grey wolf optimizer (GWO) regarding
localization errors. The impacts of radio irregularity,
radio radius, and fading effect on MDS-GWO with
different paths were also analyzed.

The rest of this paper is organized as follows. Section 2
introduces related work, and Section 3 presents the problem
statements and performance metrics. Section 4 describes the
proposed algorithm, including the DASCAN path and
MDS-GWO algorithm. Section 5 summarizes the simula-
tions and analysis. Section 6 concludes the paper. Table 1
lists the acronyms used in this paper and their definitions.

2. Related Works

The MAL algorithm needs to define a moving trajectory for
a mobile anchor, and the location algorithm to estimate the
location of unknown nodes. The path-planning algorithm
may be dynamic or static [1]. The dynamic form determines
the path according to the distribution of unknown nodes
and environments, which may not cover all unknown nodes
and requires additional hardware support. The static form
determines the path in advance and requires the mobile
anchor to move along a given path during localization,
which is cheaper than the dynamic approach. Song et al.
[2] proposed a path for self-adaptive anchors based on the
Gaussian–Markov model, and they applied an alternating
minimization algorithm to estimate the positions of
unknown nodes. However, the random path may not cover
the whole ROI. SCAN, Double-SCAN, and Hilbert proposed
in [3] are simple, but their parameters must be carefully
designed to avoid collinearity. H-curve [4] is an H-shaped
path that generates collinear beacons. SLMAT (a mobile
anchor node based on trilateration and scan) [5] ensures
that each unknown node is covered by an equilateral triangle
formed by beacons. ∑-SCAN [6] combines SCAN and zig-
zag paths to achieve high localization accuracy and cover
the ROI with a short path. M-curve [7] is an M-shaped path

and applies dolphin optimization algorithm to localize
unknown nodes, but it may not localize unknown nodes
near the borders of ROI. The static search-and-decide
(SSD) and dynamic search-and-decide (DSD) [8] paths are,
respectively, static and dynamic, which consist of a search
phase and a decision phase. In the first phase, SSD visits a
subset of virtual anchors to determine the grids occupied
by unknown nodes. In the decision phase, the mobile anchor
revisits the grids containing unknown nodes for localization.
DSD differs from SSD in the second phase: It generates
anchors based on perpendicular bisectors. The localization
accuracy of these MAL algorithms with a single mobile
anchor is low, but they consume comparatively little energy.
GSCAN and GTURN [9] use three mobile anchors. The
mobile anchors in GSCAN repeatedly broadcast beacons at
the same location; GTURN avoids this problem using a lon-
ger path. However, GSCAN and GTURE need to use two
boundary strategies to guarantee that they can cover the
whole ROI. PP-MMAN [10] also uses three mobile anchors,
but it requires them to move horizontally simultaneously to
overcome the drawbacks of GSCAN and GTURN. These
MAL algorithms using multiple mobile anchors improve
localization accuracy at the cost of high energy consump-
tion. The enhanced RSSI-based tree-climbing mechanism
(ERTC) [11] requires the mobile anchor to be equipped with
both omnidirectional and directional antennae, where the
omnidirectional antenna broadcasts the message and direc-
tional antennas to receive messages of sensor nodes. It iden-
tifies the trajectory of the mobile anchor with the virtual
force of unknown nodes in the network, and it uses a cir-
cumcenter algorithm to localize unknown nodes. It is more
complicated than the other MAL algorithms and needs addi-
tional hardware support.

The location of unknown nodes can be estimated as an
optimization problem. Nowadays, swarm intelligence opti-
mization has been widely applied in localization due to its
low complexity and easy implementation. H-Best PSO [12]
is an improved PSO algorithm to estimate the locations of
unknown nodes where the mobile anchor traverses along a
Hilbert curve. Song et al. [13] proposed a localization algo-
rithm based on glowworm swarm optimization of a hybrid
chaotic strategy to control the moving distance of each firefly
by chaos mutation and chaotic inertial weight when the fire-
fly falls into a local optimum. The algorithm proposed in
[14] reduces the hop distance error by leading to the average
hop distance error correction value. It applies differential
evolution to optimize the localization result of the unknown
node. Considering the impact of obstacles, the algorithm
proposed in [15] divides the anchors into multiple groups.
If the anchors of a group cannot accurately localize the
unknown node, the other anchors in the nearby groups are
used to assist localization. In [16], WOA is applied to opti-
mize the relationship between RSSI (received signal strength
indicator) and signal transmission distance to improve local-
ization accuracy.

Because the traversal of mobile anchors forms some spe-
cific curves, the location of unknown nodes can be estimated
by some geometry principles. For example, PI (perpendicu-
lar intersection) [17] is based on the perpendicular
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intersection principle, which utilizes the geometric relation-
ship of a perpendicular intersection to compute the locations
of unknown nodes. The algorithm proposed in [18] is based
on the principle that the perpendicular bisector of a chord of
a circle passes through the center of the circle, so the
unknown node is localized by two chords constructed by a
mobile anchor. These methods are easy to implement, but
they heavily depend on the mobile anchor’s path and the
density of virtual anchors.

The MAL algorithm with one mobile anchor has diffi-
culty obtaining high localization accuracy with low energy
consumption, while the MAL algorithm using three or more
mobile anchors has high localization accuracy but high
energy consumption. To balance energy consumption and
localization accuracy, this paper proposes a MAL algorithm
with two mobile anchors. DASCAN produces a path that is
as short as possible and provides sufficient virtual anchors to
each unknown node. Compared with the other evolutionary
algorithms, GWO has high optimization efficiency and is
simple to implement because of fewer control parameters.
MDS-GWO makes the best of these advantages and
improves its ability to jump out of local optima.

3. Problem Statements and
Performance Metrics

3.1. Problem Statement. AWSN consists of a set of unknown
nodes fUiji = 1, 2,⋯,Ng randomly deployed in an ROI with
height H and length L. The two mobile anchors are denoted
by MA1 and MA2. Let ðuxi, uyiÞ be the actual location of Ui,
and ðcuxi,cuyiÞ be its estimated location, denoted by Û i. The
proposed algorithm applies RSSI to measure the distance

between the mobile anchor and the unknown node. The
RSSI-based ranging technique is based on

Pr dð Þ = P0 d0ð Þ − η10 log d
d0

� �
+ Xσ, ð1Þ

where PrðdÞ is the received power at distance d, P0ðd0Þ
denotes the received power at reference distance d0, η is
the path-loss exponent, and Xσ is a log-normal random var-
iable with variance σ2 to account for fading.

Ideally, the communication range of a sensor node is a
circle with radius R. However, signal propagation is easily
affected by the environment. This paper uses the degree of
irregularity (DOI) to represent communication irregularity.
DOI is defined as:

Ki =
1 i = 0
Ki−1 ± r1 × DOI 0 < i < 360

(
, ð2Þ

where Ki represents the DOI in the i-th direction and sat-
isfies jK0 − K359j ≤DOI, and r1 is a random number in (0,1).

Let the neighboring virtual anchors of unknown node Ui
be fV jjj = 1, 2,⋯,Mig where Mi is the number of neighbor-
ing virtual anchors. The objective of localization is formu-
lated as

min f x, yð Þ = 1
Mi

〠
Mi

j=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − vxj
À Á2 + y − vyj

� �2r
− dij

�����
�����, ð3Þ

where ðvxj, vyjÞ is the location of V j, and dij is the measured

Table 1: List of acronyms.

Acronym Definition

WSN Wireless sensor network

ROI Region of interest

GNSS Global navigation satellite system

MAL Mobile-anchor-assisted localization

GWO Grey wolf optimizer

DASCAN Double anchor scan

MDS-GWO Multiple-disturbance strategy grey wolf optimization

SLMAT Mobile anchor node based on trilateration and scan

SSD Static search-and-decide

DSD Dynamic search-and-decide

PP-MMAN Path planning method for multiple mobile anchor nodes

ERTC Enhanced RSSI-based tree-climbing mechanism

PSO Particle swarm optimization

WOA Whale optimization algorithm

PI Perpendicular intersection

RMSE Root mean square error

RSSI Received signal strength indicator

DOI Degree of irregularity

CRLB Cramer-Rao lower bound
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Table 2: Symbol list.

Symbol Meaning

Ui i -th unknown node

N Number of unknown nodes

MA1,MA2 Two mobile anchors

uxi, uyið Þ Actual position of Uicuxi,cuyiÀ Á
, Û i Estimated position of Ui

η Path-loss exponent

σ Variance of fading effect

R Radio radius of sensor nodes

DOI Degree of irregularity

vxj, vyj
� �

Position of j -th virtual anchor

LR Localization rate

e Average localization error

RMSE Root mean square error of localization error

RMSECRLB RMSE of localization error variance

Eva Energy consumption for the mobile anchor to broadcast a beacon

Elen Energy consumption for the mobile anchor to move a meter

MaxIter Number of iterations of MDS-GWO

l Distance between two neighboring virtual anchors horizontally

0

0

n 1
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Figure 1: Virtual anchors in the deployment area.
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distance between Ui and V j. ðx, yÞ is the unknown quantity
to be found, and its solution is ðcuxi,cuyiÞ.
3.2. Performance Metrics. The localization error of Ui is
defined as

ei =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficuxi − uxi
À Á2 + cuyi − uyi

À Á2q
: ð4Þ

An unknown node in two-dimensional space can be
localized only if it receives at least three noncollinear bea-
cons. Let N loc be the number of localized unknown nodes,
and LR be the localization rate, that is

LR = N loc
N

: ð5Þ

The average localization error is

e = 1
N
〠
N

i=1
ei: ð6Þ

In addition, the root mean square error (RMSE) of local-

ization error is

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
e2i

vuut : ð7Þ

The Cramer–Rao lower bound (CRLB) provides the
lower bound on the variance of any unbiased estimator. This
paper uses the CRLB introduced in [19] as the standard
benchmark where η is a fixed constant. Let S = fsiji = 1, 2,
⋯,N +Mg be the union set of unknown nodes and virtual
anchors, where fsiji = 1, 2,⋯,Ng is the set of unknown
nodes and fsiji =N + 1,N + 2,⋯,N +Mg is the set of virtual
anchors. The real position of si is ðxi, yiÞ, so ðxi, yiÞ = ðuxi,
uyiÞ for i = 1, 2,⋯,N and ðxi, yiÞ = ðvxi, vyiÞ for i =N + 1,
N + 2,⋯,N +M: Let ð~xi, ~yiÞ be the CRLB of error variance
of estimating ðxi, yiÞ; it is proved in [19] that

~xi = Jxx − Jxy J
−1
yy J

T
xy

� �−1
ii
,

~yi = Jyy − JTxy J
−1
xx Jxy

� �−1
ii
,

ð8Þ

Input: H, L, h, l.
Output: List1, List2: The lists of virtual anchors of MA1 and MA2.
1. List1 ⟵ fA0,0g, List2 ⟵ fB1,0g
2. f lag⟵ 1,i⟵ 0,j⟵ 1,k⟵ 0
3. While (i < n − 1)
4. Ifð f lag = 1Þ
5. List1 ⟵ List1 ∪ fAi,1, Ai,2,⋯,Ai,m, Bi+1,m−1g
6. List2 ⟵ List2 ∪ fBi+1,0, Bi+1,1,⋯,Bi+1,m−2, Bi+1,m−2, Ai+2,mg
7. f lag⟵ 2
8. Else ifð f lag = 2Þ
9. List1 ⟵ List1 ∪ fAi,m−1, Ai,m−2,⋯,Ai,0, Bi+1,0g
10. List2 ⟵ List2 ∪ fBi+1,m−1, Bi+1,m−2,⋯,Bi+1,1, Bi+1,1, Ai+2,0g
11. f lag⟵ 1
12. End if
13. i⟵ i + 2
14. End while
15. Ifð f lag = 1Þ
16. Ifði = nÞ
17. List1 ⟵ List1 ∪ fAn,1, An,2,⋯,An,mg
18. Else ifði = n − 1Þ
19. List1 ⟵ List1 ∪ fAn−1,1, An−1,2,⋯,An−1,mg
20. List1 ⟵ List1 ∪ fBn,0, Bn,1,⋯,Bn,m−1g
21. End if
22. Else ifð f lag = 2Þ
23. Ifði = nÞ
24. List1 ⟵ List1 ∪ fAn,m−1, An,m−2,⋯,An,0g
25. Else ifði = n − 1Þ
26. List1 ⟵ List1 ∪ fAn−1,m−1, An−1,m−2,⋯,An−1,0g
27. List1 ⟵ List1 ∪ fBn,m−1, Bn,m−2,⋯,Bn,0g
28. End if
29. End if

Algorithm 1: DASCAN Path.
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where

Jxx½ �ij =

10η
σ log 10

� �2
〠

k∈H ið Þ

xi − xkð Þ2
xi − xkð Þ2 + yi − ykð Þ2À Á2 i = j

−
10η

σ log 10

� �2
IH ið Þ jð Þ xi − xj

À Á2
xi − xj
À Á2 + yi − yj

� �2� �2 i ≠ j

8>>>>>>><>>>>>>>:
,

Jxy
Â Ã

ij
=

10η
σ log 10

� �2
〠

k∈H ið Þ

xi − xkð Þ yi − ykð Þ
xi − xkð Þ2 + yi − ykð Þ2À Á2 i = j

−
10η

σ log 10

� �2
IH ið Þ jð Þ

xi − xj
À Á

yi − yj
� �

xi − xj
À Á2 + yi − yj

� �2� �2 i ≠ j

8>>>>>>>><>>>>>>>>:
, and

Jyy
Â Ã

ij
=

10η
σ log 10

� �2
〠

k∈H ið Þ

yi − ykð Þ2
xi − xkð Þ2 + yi − ykð Þ2À Á2 i = j

−
10η

σ log 10

� �2
IH ið Þ jð Þ

yi − yj
� �2

xi − xj
À Á2 + yi − yj

� �2� �2 i ≠ j

8>>>>>>>><>>>>>>>>:
:

ð9Þ

In the abovementioned equations, HðiÞ is the set of sen-
sor nodes and virtual anchors that make a pairwise observa-
tion with si. IHðiÞðjÞ is defined as

IH ið Þ jð Þ =
1 if j ∈H ið Þ
0 otherwise

(
: ð10Þ

Based on the abovementioned equations, the RMSE of

localization error variance is

RMSECRLB =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
~x2i + ~y2i
À Ávuut : ð11Þ

The energy consumption of the mobile anchors depends
on the path length and number of virtual anchors:

Energy = Eva ×M + Elen × L, ð12Þ

where Eva and Elen are, respectively, the energy consumption
of broadcasting a virtual anchor and moving per meter; M
and L are, respectively, the numbers of virtual anchors and
path length.

Table 2 presents a list of symbols used in this paper.

4. Proposed Methodology

4.1. DASCAN Path. As Figure 1 shows, ROI is divided into n
horizontal rows, numbered 0, 1, 2,⋯, n from bottom to top,
and the gap between neighboring rows is h. In addition, ROI
is divided into m vertical columns horizontally, numbered
0, 1, 2,⋯,m from left to right, and the gap between two
neighboring columns is l.

The virtual anchors on even and odd rows are, respec-
tively, indicated by A and B. The bottom left point of ROI
is taken as the coordinate origin, so the locations of virtual
anchors are:

(1) Ai,j = ðj × l, i × hÞ, where i ≤ n is an even number,
and j = 0, 1, 2,⋯,m.

(a) n is odd, f lag = 2 (b) n is even, f lag = 1

Path of MA1
Path of MA2

(c) n is odd, f lag = 1

Virtual anchors in even rows
Virtual anchors in odd rows

(d) n is even, f lag = 2

Figure 2: Four types of DASCAN.
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Input: Li, MaxIter, w
Output: ðcuxi,cuyiÞ
1. Vi1 ⟵ the virtual anchor with the largest RSSI in Li
2. Vi2 ⟵ the virtual anchor with the second-largest RSSI in Li
3. If (∃V ∈ Li satisfying △Vi1Vi2V is an equilateral triangle)
4. Vi3 ⟵V
5. Else
6. Vi3 ⟵ the virtual anchor with the third-largest RSSI in Li
7. End if
8. Get ðcuxi′,cuyi′Þ by eq. (26)
9. SPi ⟵ ½cuxi′− l,cuxi′+ l� × ½cuyi′− l,cuyi′+ l�
10. Initialize a grey wolf population in SPi

11. Initialize A
*
, C
*
, a and P by Eq. (14), Eq. (15), Eq. (20), and Eq. (25)

12. Calculate the fitness of each wolf by Eq. (3)
13. α⟵ the best wolf
14. β⟵ the second-best wolf
15. δ⟵ the third-best wolf
16. t⟵ 0
17. Whileðt <MaxIterÞ
18. For each wolf X
19. Get Xðt + 1Þ by Eq. (19)
20. r8 ⟵ a random number in [0,1]
21. Ifða > P >w∧r8 ≥ 0:5Þ
22. Get Yðt + 1Þ by Eq. (21)
23. Get the final Xðt + 1Þ by Eq. (22)
24. Else ifðP ≥ a >w∧r8 ≥ 0:5Þ
25. Get Zðt + 1Þ by Eq. (23)
26. Get the final Xðt + 1Þ by Eq. (24)
27. End if
28. End for

29. Update A
*
, C
*
, a and P by Eq. (14), Eq. (15), Eq. (20), and Eq. (25)

30. Calculate the fitness of each wolf by Eq. (3)
31. Update α, β, and δ
32. t⟵ t + 1
33. End while

34. Returnðcuxi,cuyiÞ⟵ X
*

α

Algorithm 2: Location estimation of Ui:

Table 3: Simulation parameters.

Parameter Value

H, L 100m

N 100

Eva 1.4 J

Elen 0.2 J

η 3.5

MaxIter 100

Number of particles of each optimization algorithm 50

l 10 to 25m in 5m steps

R 0.8 l to 1.4 l in 0.2 l steps

DOI 0.05 to 0.2 in 0.05 steps

σ 4
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(2) Bi,k = ððk + 1/2Þ × l, i × hÞ, where i ≤ n is an odd
number, and k = 0, 1, 2,⋯,m − 1.

Because the virtual anchors deployed as equilateral trian-
gles can achieve better localization accuracy [9, 10], DAS-
CAN requires ΔAi,jAi,j+1Bi+1,j and ΔAi,jAi,j+1Bi−1,j to be

equilateral triangles, so h =
ffiffiffi
3

p
l/2. The points in Figure 1

are virtual anchors. Algorithm 1 shows the process of
obtaining DASCAN, where the trajectory of the two mobile
anchors is carefully designed to be as short as possible.

In Algorithm 1, List1 and List2 are, respectively, the lists
of virtual anchors to be traversed by MA1 and MA2. Lines 1
and 2 initialize the two lists and parameters. Lines 3–14 gen-
erate the two lists when i < n − 1. The variable flag decides
the traversal direction. MA1 and MA2 move from left to
right if flag = 1; they move from right to left if flag = 2. Lines
15–29 decide List1 and List2 when i ≥ n − 1. If i = n − 1, MA1
traverses row n − 1 and MA2 traverses row n. If i = n, MA1
traverses the top row. Moreover, the traversal direction also
depends on flag.

According to different n and flag after the while (line 14),
DASCAN has four types of paths, as Figure 2 shows.

4.2. Location Estimation Using Improved GWO Algorithm.
GWO has a higher optimization efficiency and is easier to

implement than other evolutionary algorithms. Its main draw-
back is that, once it falls into a local optimum, it is difficult for
the algorithm to jump out. Thus, we propose the MDS-GWO
algorithm to estimate the positions of unknown nodes.

4.2.1. Improved GWO Algorithm. GWO is a swarm intelli-
gence optimization algorithm that imitates a wolf group’s
hunting behavior. In GWO, the best, the second-best, and
the third-best wolves are, respectively, denoted by α, β, and
δ. The rest of the wolves are denoted by ω. When hunting,
α directs ω to surround, hunt, and attack their prey. In addi-
tion, β and δ assist the work of α then capture the prey.

The mathematical model of encircling prey is as follows:

D
*

= C
*

· Xp

*
tð Þ − X

*
tð Þ

��� ���, and
X
*

t + 1ð Þ = Xp

*
tð Þ − A

*
· D
*
,

ð13Þ

where t is the current iteration number, Xp

*
is the position

vector of prey, and X
*

is the position vector of a grey wolf.

The coefficient vectors A
*
and C

*
are

A
*

= 2 a* · r2
* − a* , and ð14Þ
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C
*

= 2 r3
* , ð15Þ

where r2
*

and r3
*

are random vectors in (0,1), and each ele-
ment of a* is

a = 2 1 − t
MaxIter

� �
, ð16Þ

where MaxIter is the maximum iteration number.
The mathematical model of hunting prey is as follows:

Dα

*
= C1

*
· Xα

*
− X

*��� ���,
Dβ

*
= C2

*
· Xβ

*
− X

*��� ���,
Dδ

*
= C3

*
· Xδ

*
− X

*��� ���,
ð17Þ

X1
*

= Xα

*
− A1

*
· Dα

*� �
,

X2
*

= Xβ

*
− A2

*
· Dβ

*� �
,

X3
*

= Xδ

*
− A3

*
· Dδ

*� �
,

and ð18Þ

X
*

t + 1ð Þ = X1
*

+ X2
*

+ X3
*

3 , ð19Þ

where Xα

*
, Xβ

*
, and Xδ

*
, respectively, represent the position

vectors of α, β, and δ in the current iteration; Dα

*
, Dβ

*
, and

Dδ

*
are the distances between the current grey wolf and the

three best wolves.
Inspired by [20, 21], this paper introduces multiple dis-

turbance strategies into GWO to conquer the drawback of
GWO, and this improved GWO algorithm is referred to as
MDS-GWO. The improvements are:

(1) Nonlinear decrease of a. The convergence speed of
the GWO algorithm depends on the speed at which
a decreases from 2 to 0. Using Equation (16), a
decreases at the same speed, which cannot balance
the global and local search, so this paper updates a by

a = 2 t
MaxIter

� �2
−

2t
MaxIter + 1

 !
: ð20Þ

Based on Equation (20), a decreases quickly in the early
stage to make GWO converge fast, and a decreases slowly
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later to improve the ability of global search while preventing
GWO from falling into a local optimum.

(2) Random perturbation. Furthermore, random pertur-
bation is introduced to GWO to enhance the ability
of global search. For each wolf of ω, a new individual
is introduced as

Y
*

t + 1ð Þ = ub
*

− r4 ub
*

− lb
*

� �
, ð21Þ

where ub
*

and lb
*

are, respectively, the upper and lower
bounds of the search space, and r4 is a random number in
[0,1], so the grey wolf is updated as

X
*

t + 1ð Þ =
Y
*

t + 1ð Þ if f Y
*

t + 1ð Þ
� �

< f X
*

t + 1ð Þ
� �

X
*

t + 1ð Þ otherwise

8><>: ,

ð22Þ

where f ðY* ðt + 1ÞÞ and f ðX* ðt + 1ÞÞ are the fitness values of
Y
*

and X
*
, respectively.

(3) Mirror grey wolf. When a grey wolf surrounds the
prey, a mirror wolf is produced at a position sym-
metrical to the prey, which is:

Z
*

t + 1ð Þ = X
*

tð Þ + 2 r5
* ∙ Xα

*
− r6

* ∙ X
*

tð Þ
� �

, ð23Þ

where Z
*
is the position of the mirror wolf, and r5

*
and r6

*
are

random vectors in [0,1]. The grey wolf is updated as

X
*

t + 1ð Þ =
Z
*

t + 1ð Þ if f Z
*

t + 1ð Þ
� �

< f X
*

t + 1ð Þ
� �

X
*

t + 1ð Þ otherwise

8><>: :

ð24Þ

Finally, the grey wolf is updated according to the value of
P, defined by

P =w + r7 2 −wð Þ, ð25Þ

where 0 <w < 2 is a predefined constant, and r7 is a random
number in [0,1]. In each iteration, if a > P >w, the grey wolf
has a 50% chance to update its position using Equation (22);
If P ≥ a >w, the grey wolf has a 50% chance to update its
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position using Equation (24). In other cases, the grey wolf
updates its position using Equation (19).

4.2.2. Location Estimation Using MDS-GWO. The virtual
anchors of DASCAN form equilateral triangles, so the
neighboring virtual anchors of an unknown node are likely
to form equilateral triangles. Therefore, an unknown node
can choose three neighboring virtual anchors forming an
equilateral triangle to get an initial estimation. The location
estimation of unknown node Ui consists of three steps:

(1) Use an RSSI-weighted centroid algorithm to estimate
the approximate location ðcuxi′,cuyi′Þ

(2) Determine the search space SPi of MDS-GWO for
Ui according to ðcuxi′,cuyi′Þ

(3) Use MDS-GWO to estimate the coordinates ðcuxi,cuyiÞ of Ui

Each unknown node Ui maintains a virtual anchor list,
Li, which contains the locations and RSSIs of neighboring
virtual anchors. The virtual anchors with the first- and
second-largest RSSIs are, respectively, denoted by Vi1, and
Vi2. If a virtual anchor in Li can form an equilateral triangle
with Vi1 and Vi2, it is chosen as Vi3. Otherwise, the virtual
anchor with the third-largest RSSI is chosen as Vi3. ðcuxi′,cuyi′Þ is calculated as

cuxi′,cuyi′� �
=
∑3

j=1ωij vxij, vyij
� �

∑3
j=1ωij

, ð26Þ
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Table 4: Localization errors of location estimation algorithms (Unit: m).

Trilateration PSO WOA GWO MDS-GWO

GTURN 0.230 0.213 0.193 0.189 0.161

GSCAN 0.233 0.216 0.188 0.179 0.161

PP-MMAN 0.239 0.221 0.189 0.181 0.162

H-curves 0.266 0.250 0.213 0.202 0.186

M-curves 0.246 0.219 0.196 0.187 0.176

SCAN 0.370 0.350 0.329 0.306 0.273

DASCAN 0.232 0.215 0.187 0.180 0.160
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where ωij =
ffiffiffiffiffiffiffiffiffiffiffiffiRSSIij

p
. The search space is ½cuxi′− l,cuxi′+ l� ×

½cuyi′− l,cuyi′+ l�.
Algorithm 2 presents the details of MDS-GWO-based

location estimation. Note that this algorithm is run by each
unknown node simultaneously.

In this algorithm, lines 1–7 got three virtual anchors Vi1,
Vi2, and Vi3, and lines 8 and 9 decided the search space
based on these three virtual anchors. Lines 10–16 initialize
the wolf population and necessary parameters of MDS-
GWO, and lines 17–33 are the main process of location esti-
mation by MDS-GWO. When it has not reached MaxIter,
lines 18–28 update each grey wolf according to different
conditions, and lines 29–32 update the parameters necessary
to prepare for the next iteration. Finally, line 34 returns the
position of wolf α as the estimated location of unknown
node Ui.

5. Results and Discussion

This section reports the performance of the proposed algo-
rithm compared with the other algorithms. It also presents
the impact of parameters on localization performance in
terms of energy consumption, localization rate, and localiza-
tion error. The simulation parameters are shown in Table 3.
The other parameters are the same as in the corresponding
references.

5.1. Comparisons of Different Paths. This section compares
the different paths of mobile anchors of GTURN, GSCAN,
PP-MMAN, H-Curves, M-Curves, SCAN, and DASCAN.

(1) Energy Consumption of Mobile Anchors. The energy
consumption of a mobile anchor depends on the
path length and the number of virtual anchors.

0

0.1

25

0.2

0.3

DASCAN

Av
er

ag
e l

oc
al

iz
at

io
n 

er
ro

rs
 (m

)

20

0.4

SCAN

l (m)

0.5

M-curves
15 H-curves

0.6

PP-MMAN
GSCAN10

GTURN

MDS-GOW

(e) MDS-GWO

Figure 7: Localization errors of different location estimation algorithms.

0.3

0.25

0.2

0.15

0.1

0.05

0

Localization methods and CRLB

CRLB

RM
SE

Trilateration PSO WOA MDS-GWOGWO

Figure 8: RMSE of localization error of five localization algorithms.

14 Wireless Communications and Mobile Computing



Figure 3 presents the lengths of all paths, which
become shorter as l increases. On average, GTURN
is the longest path, followed by GSCAN, PP-MMAN,
DASCAN, H-Curves, M-Curves, and SCAN.
GTURN, GSCAN, and PP-MMAN use three mobile
anchors, which are longer than the other paths.
DASCAN is shorter than the other multianchor
paths and longer than one-anchor paths. On average,
DASCAN is 53%, 36.5%, and 14% shorter than
GTURN, GSCAN, and PP-MMAN, respectively; it
is 14%, 15.5%, and 34% longer than M-Curves, H-
Curves, and SCAN, respectively.

DASCAN uses two mobile anchors with a carefully
designed path, while GSCAN, GTURN, and PP-MMAN
use three mobile anchors and boundary compensations, so
DASCAN is shorter than GSCAN, GTURN, and PP-
MMAN. By contrast, M-Curves, H-Curves, and SCAN use
a single mobile anchor to traverse the ROI without repeated
scans, so they are shorter than DASCAN.

Figure 4 shows the number of virtual anchors. All paths
generate fewer virtual anchors as l increases. Generally,
GSCAN generates the most virtual anchors, followed by
GTURN, PP-MMAN, DASCAN, M-Curves, H-Curves, and
SCAN. The three mobile anchors of GSCAN repeatedly
broadcast beacons at the same locations, and GSCAN pro-
vides the second-longest path, so it has the most virtual
anchors. However, SCAN traverses the ROI along straight
lines, and its path is the shortest, so it has the fewest virtual
anchors. The proposed DASCAN has fewer virtual anchors

than the other multianchor paths and more virtual anchors
than one-anchor paths. The number of virtual anchors of
DASCAN is, respectively, 11% and 53% fewer than GTURN
and GSCAN, and it is, respectively, 12.3% and 32% more
than H-Curves and SCAN. The number of virtual anchors
of DASCAN is slightly less than PP-MMAN and slightly
more than M-Curves.

The boundary compensation methods of GSCAN,
GTURN, and PP-MMAN require these paths to generate
more virtual anchors, so GSCAN has redundant virtual
anchors. By contrast, DASCAN has no duplicate virtual
anchors or boundary compensation, so it has fewer virtual
anchors than GSCAN, GTURN, and PP-MMAN. SCAN tra-
verses ROI with straight lines and generates virtual anchors
periodically, while H-Curve and M-Curve generate virtual
anchors at each turn of the path. DASCAN makes slightly
more turns than M-Curve, so it has more virtual anchors
than SCAN, H-Curve, and M-Curve.

Figure 5 shows the energy consumptions. GSCAN con-
sumes the most energy, followed by GTURN, PP-MMAN,
DASCAN, M-Curves, H-Curves, and SCAN. Since GSCAN
and GTURN are the longest paths and have the most virtual
anchors, they consume the most energy. DASCAN con-
sumes less energy than the other multianchor paths and
consumes more energy than one-anchor paths. On average,
the energy consumption of DASCAN is, respectively,
42.2%, 38.8%, and 9.3% less than GSCAN, GTURN, and
PP-MMAN, and 9%, 14%, and 33% more than M-Curves,
H-Curves, and SCAN.
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Although DASCAN consumes less energy than GTURN,
GSCAN, and PP-MMAN, their localization rates and error
levels are almost identical. The localization rate and accuracy
of DASCAN are higher than H-Curves, M-Curves, and
SCAN, although it consumes more energy.

(2) Localization Rates. In this section, l = 15m. As
Figure 6 shows, the localization rates of all paths
decrease as DOI increases because the larger DOI
causes the unknown nodes to receive fewer virtual
anchors. The localization rates of all paths increase
as R increases because a larger R causes the unknown
node to receive more virtual anchors.

GSCAN, GTURN, PP-MMAN, and DASCAN use mul-
tiple anchors, and each anchor has a radio range, so they
are less affected by DOI than other paths using a single
mobile anchor. The average localization rate differences of
DASCAN, GSCAN, GTURN, and PP-MMAN are less than
2%, and their average localization rates are higher than H-
Curves, M-Curves, and SCAN. When R = l, the average dif-
ference in GSCAN, GTURN, PP-MMAN, and DASCAN is
only 0.56%, but the average localization rate of DASCAN
is, respectively, 13%, 38.3%, and 43.4% higher than M-
Curves, H-Curves, and SCAN.

5.2. Comparisons of Location Estimation Algorithms. This
section compares the location estimation algorithms in
terms of the localization error. These algorithms, with differ-
ent paths, included trilateration, PSO, WOA, GWO, and
MDS-GWO. In this section, R = 1:2l and DOI = 0:05 are
used. The average localization error over all l is shown in
Table 4. Figure 7 shows the results for different l values.

The localization errors of trilateration and PSO were the
two largest. Those of GWO and WOA were the same. With
each path, MDS-GWO achieved the highest localization
accuracy. In all cases, trilateration with SCAN had the lowest
localization accuracy. The localization errors of MDS-GWO
with GTURN, GSCAN, PP-MMAN, and DASCAN were
almost identical and smaller than MDS-GWO with the other
paths. Considering all paths, the average localization errors
of trilateration, PSO, WOA, GWO, and MDS-GWO were,
respectively, 0.259, 0.240, 0.213, 0.202, and 0.183m. The
localization error of MDS-GWO was, respectively, 42%,
31.7%, 16.9%, and 11.4% less than trilateration, PSO,
WOA, and GWO. Considering MDS-GWO with different
paths, the localization accuracy of DASCAN was almost
the same as GTURN, GSCAN, PP-MMAN, and the localiza-
tion error of DASCAN was, respectively, 70.6%, 16.3%, and
10% less than SCAN, H-Curves, and M-Curves. The virtual
anchors of DASCAN, GSCAN, GTURN, and PP-MMAN

0.05 0.1 0.15 0.2

DOI

GTURN

GSCAN
PP-MMAN

H-curves

M-curves

SCAN
DASCAN

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Av
er

ag
e l

oc
al

iz
at

io
n 

er
ro

rs
 (m

)

Figure 10: Localization errors under different DOI.

16 Wireless Communications and Mobile Computing



formed equilateral triangles. The localization rates of these
paths were almost the same as mentioned above, so their
localization errors were almost the same. SCAN, H-Curves,
and M-Curves use only one mobile anchor, which is heavily
affected by DOI, so their localization errors were higher than
the other paths.

Figure 8 shows the RMSE of localization algorithms
when l = 20m, R = 1:2 l, DOI = 0:05, and the mobile anchors
use DASCAN as the moving path. MDS-GWO had the min-
imal RMSE, followed by GWO, WOA, PSO, and trilatera-
tion. On average, the RMSE of MDS-GWO was,
respectively, 8.2%, 19%, 35.1%, and 38% less than GWO,
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WOA, PSO, and trilateration. Figure 9 shows the CDF of
localization errors. MDS-GWO localized all sensor nodes
with an error of less than 0.3m, and more than 90% of the
unknown nodes were localized with an error of less than
0.1m. Comparatively, GWO and WOA, respectively, local-
ize about 85% and 80% of unknown nodes with localization
errors less than 0.1m. Furthermore, the RMSE of MDS-
GWO was only 0.03 larger than RMSECRLB. MDS-GWO
made the most of GWO’s advantages and applied multiple
strategies to jump out of the local optimum, so we concluded

that MDS-GWO was superior to the other localization
methods.

5.3. Impacts of Different Parameters on Localization Errors.
This section analyzes the impact of DOI, R, and σ on local-
ization errors of MDS-GWO over different paths.

(1) Impact of DOI. In this part,l = 20m and R = 25m.
Figure 10 shows that SCAN had the most significant
localization error under all DOI, followed by H-
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Curves and M-Curves. With the increase in DOI, the
localization errors of all paths increased. For every
0.05 increase in DOI, the localization error of SCAN
increased by 0.02m on average, which is the largest
among all paths. DASCAN was less affected by
DOI than H-Curves, M-Curves, and SCAN, and
almost the same as GTURN, GSCAN, and PP-
MMAN. Under all DOI, the localization error of
DASCAN was the same as GTURN, GSCAN, and
PP-MMAN and less than H-Curves, M-Curves,
and SCAN. The localization error of DASCAN was,
respectively, 0.03, 0.02, and 0.07m less than H-
Curves, M-Curves, and SCAN.

(2) Impact of R. In this part, l = 20m, R = 25, 30, 35,
and 0m, and DOI = 0:05. As Figure 11 shows local-
ization errors of all paths increased with R. The
localization error of SCAN was the largest in all cases
because unknowns may not receive sufficient bea-
cons to be localized, and many virtual anchors of
SCAN were collinear. The localization errors of
GTURN, GSCAN, PP-MMAN, and DASCAN were
almost the same. For every 5m increase in R, the
localization errors of M-Curves and SCAN increased
by 0.013m and 0.15m, respectively, while those of
GTURN, GSCAN, PP-MMAN, DASCAN, and H-
Curves grew by less than 0.01m. Of all paths, DAS-
CAN was the least affected by R. Under all R values,
the localization error of DASCAN was slightly
smaller than GTURN, GSCAN, and PP-MMAN
and was significantly less than H-Curves, M-Curves,
and SCAN. On average, the localization error of
DASCAN was, respectively, 0.05, 0.03, and 0.08m
less than H-Curves, M-Curves, and SCAN.

(3) Impact of σ. In this part, l = 20m, R = 25m, DOI =
0:05, and σ = 4, 6, 8, and 10. Figure 12 shows that
the localization error of SCAN was the largest,
followed by H-Curves and M-Curves. For every
two increases of σ, the localization errors of H-
Curves, M-Curves, and SCAN, respectively,
increased 0.23, 0.218, and 0.27m on average, and
the localization errors of GTURN, GSCAN, PP-
MMAN, and DASCAN increased by 0.2m. DAS-
CAN was less affected by σ than H-Curves, M-
Curves, and SCAN, and it was almost the same as
GTURN, GSCAN, and PP-MMAN. On average,
the localization error of DASCAN was, respectively,
0.1, 0.05, and 0.2m less than H-Curves, M-Curves,
and SCAN.

(4) Analysis of RMSE and CDF. In this part, l = 20m, R
= 25m, and DOI = 0:05. Figure 13 shows that the
RMSE of seven paths with DASCAN had the least

RMSE, followed by GSCAN, GTURN, PP-MMAN,
M-Curves, H-Curves, and SCAN. The RMSE of DAS-
CAN was, respectively, 20.3%, 21.7%, and 29% less
than H-Curves, M-Curves, and SCAN, and it was only
0.015 higher than RMSECRLB. As Figure 14 shows, the
CDF of DASCAN, GTURN, and GSCAN increased
faster than the other paths, which means they could
localize all unknown nodes with higher accuracy than
the other paths. After a localization error of 0.11m,
the CDF of DASCANwas always larger than the other
paths. For example, DASCAN localized more than
89% of unknown nodes with a localization error of less
than 0.15m, which was the largest among all paths.

6. Conclusions

This paper proposes a localization algorithm using two
mobile anchors to balance the localization accuracy and
energy consumption. The study developed a specified path,
DASCAN, which uses two mobile anchors to traverse differ-
ent rows after dividing the ROI into regular grids. The
neighboring virtual anchors generated by the two mobile
anchors form equilateral triangles to provide noncollinear
beacons for each unknown node to be localized. The paper
also proposes an improved GWO algorithm (MDS-GWO)
to estimate the positions of unknown nodes. MDS-GWO
introduces multiple disturbance strategies into GWO to
improve its ability to jump out of local optima.
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