
Research Article
Collaborative Caching in Edge Computing via Federated Learning
and Deep Reinforcement Learning

Yali Wang 1,2 and Jiachao Chen 1

1School of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan, China
2Engineering Lab of Intelligence Business and Internet of Things, Henan, Xinxiang 453007, China

Correspondence should be addressed to Yali Wang; 121071@htu.edu.cn

Received 11 October 2022; Revised 29 November 2022; Accepted 6 December 2022; Published 22 December 2022

Academic Editor: Dharmendra Singh Rajput

Copyright © 2022 Yali Wang and Jiachao Chen. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and
relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests,
how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by
predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues
caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on
federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in
the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the
cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize
the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost,
the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher
cache hit rate and lower average transmission delay.

1. Introduction

The explosive growth of mobile devices, including cell
phones, wearable devices, connected cars, and Internet-of-
Things (IoT) devices, has led to exponential growth in data
traffic. As a result, great pressure has been exerted on the
backhaul network, with resultant increases in network
latency. Resource-constrained mobile devices also face con-
siderable challenges in supporting computation-intensive
and time-critical applications, such as video services, voice
control, gesture recognition, 3D modeling, natural language
processing, and online interactive games. On the other hand,
video data is also growing explosively. With substantial stor-
age space and powerful computing ability, cloud data centers
are the best content repository for some video vendors, such
as YouTube and TikTok. However, mobile devices suffer
performance degradation when retrieving all data from the
cloud.

To address these issues, edge computing (EC), which is a
promising paradigm, has been introduced to provide a ser-
vice environment with computing and caching capacity. By
hiring computing and storage resources on edge servers,
mobile apps and content vendors (referred to as vendors
hereafter) can host their apps and content on edge servers
to provide low-latency and high-quality services for users
[1]. In this way, EC can greatly alleviate the congestion of
the backhaul network, improve the quality of user experi-
ence (QoE) by meeting the strict requirement of response
delay, and enhance location awareness.

Compared to cloud computing, MEC is still constrained
by limited storage capacity [2]. Edge servers can cache only
part of the content, and video users can retrieve data from
nearby edge servers instead of from remote cloud servers if
the data are already cached on those edge servers [3]. Edge
servers are prone to storing popular content to obtain higher
hit ratios. Thus, content popularity prediction [4] and cache

Hindawi
Wireless Communications and Mobile Computing
Volume 2022, Article ID 7212984, 15 pages
https://doi.org/10.1155/2022/7212984

https://orcid.org/0000-0002-1739-3053
https://orcid.org/0000-0002-7529-1063
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7212984


cooperation strategies between edge servers are important to
improve caching performance.

In recent years, traditional caching strategies, such as the
least recent use (LRU) and least frequent use (LFU)
approaches, have been extensively studied [5, 6]. However,
these methods are not very efficient because they do not take
content popularity into account. Most of the existing work
on edge caching handles the popularity based on the
assumption that the content popularity is known in advance,
which is impractical. Therefore, it is imperative to improve
the caching efficiency by properly predicting content popu-
larity [7]. Recently, centralized machine learning can learn
on its own from available data and make accurate decisions
or predictions on unseen data with the help of algorithms [8,
9]. In literature [10], an optimal cache resource allocation
scheme during the next update period is drawn using a neu-
ral network from the content history requests collected from
all users. In literature [11], a deep learning-based content
popularity prediction scheme is proposed. In literature
[12], the authors propose a popularity prediction model for
each content category in terms of historical popularity by
training a simplified bidirectional long and short-term mem-
ory (Bi-LSTM) network. In literature [13], the authors pro-
pose an evolutionary learning-based content caching
strategy that adaptively learns content popularity over time.
In literature [14], a user preference model is proposed to
predict content popularity and track popularity changes
based on user preferences and the features of the requested
content.

However, most existing caching schemes require users to
share their private preference data with a central server,
which may pose privacy and security risks [15]. Federated
learning (FL) is a distributed framework that learns global
models on a server while protecting participants’ privacy
by allowing each participant to share locally trained model
parameters with the server instead of their local data. A
mechanism to protect user privacy is introduced in the liter-
ature [16], where the content popularity obtained by the
user’s local model is weighted with user preferences. The
authors in the literature [17] propose an FL-based model
aggregation method that divides all users into multiple sub-
spaces based on their contextual information.

In addition, most of the above articles consider the user’s
perspective to optimize user request latency and improve the
QoE. However, for content providers, how to increase profit
and reduce costs are additional factors to consider. In litera-
ture [18], the multicell collaborative caching problem is
studied to minimize the total cost for content providers.
The literature [19] considers the caching resource allocation
problem in a scenario where a network operator coexists
with multiple content providers. This problem is modeled
as a multileader multifollower Stackelberg game, and the
optimal caching strategy for the content providers is
obtained.

In this paper, we propose a cooperative caching strat-
egy in edge caching by considering the cost of optimizing
content providers and the privacy security of users. Aiming
to ensure the privacy security of users, we adopt FL to predict
user preferences in different edge nodes in a distributed man-

ner and apply the approach to the design of the caching pol-
icy. For the cost problem for content providers, we use a deep
reinforcement learning (DRL) based collaborative caching
(Dueling DDQN) algorithm, which combines DDQN and
Dueling DQN to make caching decisions for edge nodes.
The contributions of this paper are as follows:

(i) Due to the dynamic changes in video popularity on
the network, the FL framework is used to accurately
predict the content popularity in a given region. The
proposed model can learn the influence of multidi-
mensional content features to formulate an effective
caching strategy

(ii) To reduce the cost of video providers, a video collab-
orative caching strategy based on deep reinforcement
learning is proposed. We construct a collaborative
edge cache model based on transforming storage
and energy consumption into costs. By combining
DDQN and Dueling DQN, the proposed algorithm
can effectively reduce the high valuation of DQN
and accelerate the convergence speed. The experi-
mental results verifies the validity of our approach

(iii) Experimental verification and comparative analysis
are conducted on the proposed cache strategy, and
our strategy is compared with other baseline algo-
rithms. The experimental results show that our
strategy optimizes the cost of video providers and
has a high cache hit ratio

The rest of this paper is organized as follows: Section 2
summarizes the relevant work; Section 3 defines the system
model and problem description; Section 4 details the pro-
posed cache collaboration scheme; Section 5 uses simulation
results to evaluate the cache performance; finally, Section 6
summarizes this paper.

2. Related Work

Many different strategies and algorithms have been for edge
caching. In [20, 21], the user can only obtain the requested
content from the local base station or cloud data center,
while the noncooperative content caching scheme that can-
not be obtained from the nonlocal base station is proposed.
Since the cache capacity of a single base station is limited,
to alleviate the storage capacity limitation of edge cache
nodes, a collaborative cache strategy is adopted to solve the
problem that limited cache node capacity affects cache effi-
ciency and degrades system performance. Literature [22]
proposes a cooperative cache strategy for heterogeneous cel-
lular networks by transforming the optimal strategy design
of content caching into an integer linear programming prob-
lem that is solved by the subgradient method. Literature [23]
describes the problem of optimal collaborative content cach-
ing as a 0-1 integer program to minimize the average down-
load delay. A greedy algorithm based on content popularity
is used to solve the problem. Compared with the popular
cache strategy, this strategy can substantially improve the

2 Wireless Communications and Mobile Computing



content cache hit ratio and reduce the average content deliv-
ery delay.

Due to the dynamic nature of the network and the com-
plexity of the environment, an efficient cache strategy must
take user requirements into account. However, accurate user
requirements are difficult to obtain. Literature [10–14]
design cache strategies based on machine learning technol-
ogy, estimating the future needs of users according to the
content popularity and user preference data set with
dynamic characteristics of the time series. Literature [24]
proposes an online active cache scheme using the bidirec-
tional deep recursive neural network (BRNN) model to
predict time series content requests and update the edge
cache accordingly. Literature [25] proposes a collaborative
cache strategy of edge servers based on the software-
defined network (SDN), in which multilayer sensory neu-
ral networks are used to predict video content request
probability by mobile users and to construct an objective
minimization function to maximize the utilization of edge
servers’ resources. The approach adopts a branch-and-
bound algorithm to determine the optimal global solution.
Literature [26] proposes a deep reinforcement learning
approach and an improved branch delimitation strategy
to solve the problem of jointly optimizing cooperative edge
caching and wireless resource allocation in IoT networks,
respectively. However, centralized access to user data may
lead to user privacy exposure. Federated learning is a distrib-
uted machine learning framework that can effectively solve
this problem [16, 17]. Thus, it is necessary to extract, analyze,
and identify content popularity, user preferences, and user
movement patterns while respecting user privacy. Literature
[27] proposes a federated K-means scheme for privacy pro-
tection that is used for active caching in the next-generation
cellular network. This scheme protects user privacy by means
of two privacy-protection technologies: FL and secret shar-
ing. Literature [28, 29] propose an intelligent F-RANS frame-
work based on FL that can accurately predict the content
popularity distribution in a network by applying FL to user
demand prediction.

Due to the limited storage capacity of edge servers, it is
impossible to guarantee that all content provided by the con-
tent provider (CP) will be cached to the edge server, and a
user’s request will directly affect the income of the CP.
Therefore, the study of collaborative cache strategy must also
consider maximizing the income of the CP [18, 19]. To
reduce the delay and cost in the cloud-side collaboration
environment, literature [30] proposes a content collabora-
tion caching strategy. The strategy considers the delay gain
and cache cost gain brought by the cached content to the
cooperative domain and designs the cached content accord-
ing to the gain. Because of the considerable request delay
problems and high operation costs in the current video
service-based caching strategy, literature [31] proposes a
moving edge computing video caching strategy with coordi-
nated optimization of delay and energy consumption. The
method adopts a branch-and-bound algorithm to solve the
optimization problem with the aim of reducing request
delays for users and lowering costs for suppliers. This paper
proposes an edge cache strategy algorithm based on rein-

forcement learning that considers cache placement and pri-
vacy security while protecting user privacy and reducing the
costs of video providers. The recent work summary can be
seen in Table 1.

3. System Architecture

In this section, we introduce a collaborative edge caching
system architecture that supports FL frameworks. The archi-
tecture consists of a network model, content request model,
local popularity model, cooperative cache model, and
request cost model. The main parameter symbols are listed
in Table 2.

3.1. Network Model. Figure 1 shows the system scenario.
This scenario contains a set of BSs Mf1, 2,⋯, f ,⋯,Mg,
and UEs Uf1, 2,⋯, u,⋯,Ug. Each BS can serve multiple
UEs that have disjoint coverage areas. Mobile edge servers
are deployed at each BS to provide edge caching service for
UEs and to make wireless resource allocation decisions. Let
sM be the caching capacity of BSm; then, all BSs capacity sets
can be defined as S = fs1, s2,⋯,sMg. All the MEC servers can
exchange cache information and share data through back-
haul links and the cache manager (CM). Mobile devices send
content requests at the beginning of each time slot t.

3.2. Content Request Model. The content repository set
located in the cloud server is denoted as F = f1, 2,⋯, Fg,
and the size of content f ∈ F is denoted as zf . The set of
requesting users at BSm in time slot t is defined as Ut

m, and
the number of UEs requesting content from BSm during time
slot t is defined as Nt

m. Each UE is assumed to be associated
with only one BS in each time slot, i.e., each UE can be
served by only one BS in a given time slot. The number of
requests from all users can be defined as Rt

u,m = ½Rt
1,m, Rt

2,m,
⋯, Rt

u,m,⋯, Rt
U ,m�.

3.3. Local Popularity Model. Due to the diversity of the con-
tent preferences in different BSs, the local content popularity
of all content in BSm at time slot t is defined as a content pop-
ularity vector Pt

m = ½Pt
m,1, Pt

m,1,⋯, Pt
m,f ,⋯, Pt

m,F �. In addition,
considering the privacy and security of users, FL is applied to
accurately predict content popularity without the UE upload-
ing all individual user preference data to the BS.

3.4. Cooperative Cache Model. The content requests of
mobile devices are first received by BSs. If the requested con-
tent has been cached in the local BS, it will be pushed to
users immediately. A binary local content delivery variable
xtu,m,f ∈ f0, 1g indicates whether the local BS provides ser-

vices for the UE: xtu,m,f = 1 if a response is requested and

xtu,m,f = 0 otherwise. If the requested content is not cached
in the local BS, the BS will obtain the requested content from
other BSs through the CM. Let xtu,i,f ∈ f0, 1gði ∈M, i ≠mÞ
denote a nonlocal BS serving the UE: xtu,i,f = 1 if another

BS responds to the request and xtu,i,f = 0 otherwise. If the
CM cannot find the requested content in any BS, the local
BS will obtain the requested content from the cloud server

3Wireless Communications and Mobile Computing



Table 1: Comparison of existing papers addressing edge caching problems.

Reference Optimization objective Method Disadvantages

[22] Download latency Hungarian algorithm No quantitative benefits

[23] Cache hit ratio Greedy algorithm High complexity

[24] Cache hit ratio Bidirectional recurrent neural networks Privacy security

[25] Energy consumption Branch and bound algorithm Privacy security

[26] Estimating content popularity Federated k-means scheme High complexity

[27] Minimize traffic cost Federated learning Lower model accuracy

[29] User response latency Heuristic algorithm Homogeneous user demand distribution

[30] The cost of the video provider Branch and bound algorithm High time consuming

Table 2: Key notations and descriptions.

Notation Description

M Set of BSs

U Set of UE

F Set of content

Ut
m Set of UE requesting content from BSm in period t

Rt
u,m Request vector for each UE in slot t

Pt
m Local content popularity for all content in BSm in time slot t

xtu,m,f , x
t
u,i,f , x

t
u,c,f Content delivery variables via local, collaborative and cloud

dm,f Caching decisions for content f

z f Size of content

p Energy consumption of each bit of data cached by MEC server

pu,m, gu,m The transmission power from BSm to UEu, the channel gain between BSm and UEu
σ2 The variance of additive Gaussian white noise

ϕo,m, ϕc,o Transmission rate from BSm to UEu, transfer rate from CM to cloud server

Em,f , Ei,f , Ec,f Costs delivered via on-premises, collaboration and cloud

cos ttotal, cos tca, cos ttran Total cost, cache cost, transmission cost

xnf The feature vector of the content f

yf The category label of the content f

pt,u,f , p̂t,u,f
The probability that user u in time slot t requests content f , the predicted probability that

user u in time slot t requests content f

Ru The cumulative number of requested samples for user u

wu,wr+1
u wm

The user preference model parameter vector of user u, the user preference model parameter vector
learned by user u at the r-th iteration. The parameter vector of the regional integrated model

Loss wu, xf , yf
� �

The logistic loss of user u

grg1:r
The gradient vector of the r-th sample with respect to wu’s logistic loss, the sum of the

gradient vectors of the logistic loss of the first r samples

λ1, λ2; α, β Positive regularization parameter; tuning parameters

ηr , ηr,n, σ
The nonincreasing learning rate, the learning rate of the n-th feature, and the parameter

related to the learning rate ηr
N Feature dimension

4 Wireless Communications and Mobile Computing



and deliver it to the UE. Let xtu,c,f ∈ f0, 1g denote whether
the UE obtains the content from cloud server c in time slot
t: xtu,i,f = 1 if the UE obtains content f from the cloud server

and xtu,i,f = 0 otherwise.

3.5. Request Cost Model. The cost of the system is com-
posed of two main parts: the storage energy consumption
and the transmission energy consumption of the content
on the MEC. If the content is cached in the BS, there will
be additional storage energy consumption. Assuming that
all BS servers have the same performance, the storage cost
of BS caching content [31] within period T can be
expressed as

cos tca = 〠
F

f=1
dm,f · zf · p · T ð1Þ

where the caching decision dm,f ∈ f0, 1g indicates whether
content f is cached in BSm and p is the energy consump-
tion of the MEC server to cache each bit of data. The
wireless transmission rate between BSm and UEu can be
obtained by the Shannon formula:

ϕu,m = B log2 1 +
pu,mgu,m

σ2

� �
, ð2Þ

where B represents the bandwidth of the base station, pu,m
denotes the transmission power from BSm to UEu, gu,m is
the channel gain between BSm and UEu, and σ2 is the vari-
ance of additive Gaussian white noise. Then, the transmis-
sion energy consumption of UEu to download content f
from its local BSm is

Em,f =
zf
ϕu,m

· pe, ð3Þ

where zf /ϕu,m denotes the time taken for file f to be transmit-
ted from the user to the local base station, pe is the transmis-
sion power between BSs. We define the transmission rate
between a BS and the CM as ϕo,m and that between the CM
and the cloud server as ϕc,o. The transmission energy con-
sumption of UE acquiring content from nonlocal BSs is
expressed as:

Ei,f =
2zf
ϕc,m

· pe + Em,f , ð4Þ

where zf /ϕc,m denotes the time taken for file f to be transmit-
ted from CM to the nonlocal base station. The energy con-
sumption of UE downloading content f from cloud server c
can be expressed as:

Fronthaul

Figure 1: Illustration of the edge cache scenarios.

5Wireless Communications and Mobile Computing



Ec,f =
zf
ϕc,o

· pc +
zf
ϕo,m

· pe + Em,f , ð5Þ

where pc is the transmission power of the cloud server.
ϕo,m > ϕc,o can be seen from the transmission rate, so the
transmission energy consumption is Ec,f > Ei,f > Em,f . There-
fore, the transmission cost can be expressed as follows:

cos ttran = 〠
Nt

m

u=1
〠
F

f=1
xtu,m,f · Em,f + xtu,i,f · Ei,f + xtu,c,f · Ec,f

� �
:

ð6Þ

Thus, the total cost can be expressed as

cos ttotal = cos tca + cos ttran: ð7Þ

3.6. Formalization. In this paper, the provider cost-based
edge cocaching approach aims to minimize the total cost by
efficiently caching content on edge servers. This problem
can be expressed mathematically as:

min  〠
M

m=1
cos ttotal,

s:t: C1 : dm,f ∈ 0, 1f g,
C2 : xtu,m,f , x

t
u,i,f , x

t
u,c,f ∈ 0, 1f g,

C3 : 〠
F

f=1
dm,f · zf ≤ sm:

ð8Þ

where constraints C1 and C2 indicate that the cache decision
and content delivery variables are binary. C3 indicates that
the data in each BS should not exceed its storage capacity.

4. Problem Solution

In this section, we predict the user’s request behavior via the
factor machine (FM) algorithm [32] to account for different
users’ personality preferences in different scenarios. The FM
algorithm can solve the feature combination problem under
sparse data conditions. In addition, considering users’ pri-
vacy security, we accurately predict the content popularity
by applying FL to the content popularity prediction algo-
rithm, which does not require the UE to upload all individ-
ual user preference data to the BS.

4.1. FL-Based Content Popularity Prediction Model

4.1.1. Creation of the Local Model. For each content f , define
xnf = fx1f , x2f ,⋯,xdf g as its feature vector. yf is the category tag.
If the content is requested, yf = 1; otherwise, yf = 0. We
define pt,u,f as the probability of requesting content f for
UEu in time slot t. The correspondence between the fea-
ture vector for the requested content and the category
label is approximated based on the sigmoid function, and

the FM model represents the user preferences. The for-
mula is expressed as follows:

p̂t,u,f =
1

1 − eŷ f
, ð9Þ

ŷ f =wu,0 + 〠
d

i=1
wu,ixf ,i + 〠

d

i=1
〠
d

j=i+1
wu,ijxf ,ixf ,j, ð10Þ

where d denotes the sample feature dimension and xf ,i is the
value of the i-th feature of content f . wu,0wu,iwu,ij are model
parameters. In the case of sparse data, very few samples will
satisfy the nonzero cross term. When the number of training
samples is insufficient, insufficient and inaccurate training
of the parameters wu,ij is likely, which affects the model’s
effectiveness. Therefore, an e-dimensional auxiliary vector
vi = ðvi,1, vi,2 ⋯ vi,l ⋯ vi,eÞ, l ∈ ½1, e� is introduced for each
feature xf ,i. Then, the second-order parameter can be

expressed as wu,ij = vi · vjT . The above equation (10) can be
converted to

ŷ f =wu,0 + 〠
d

i=1
wu,ixf ,i + 〠

d

i=1
〠
d

j=i+1
vi, vj

 �

xf ,ixf ,j, ð11Þ

where hvi, vji =∑e
l=1vi,l · vj,l. The training parameters are

integrated into wu = ðwu,0, fwu,1,wu,2,⋯,wu,dg, fv1,1, v1,2,⋯,
vd,egÞ, and the quadratic term learning parameters are d ∗ e.

4.1.2. Training of the Local Model. To track the changes in
user preferences and protect user privacy, we design a local
model training process using user request records as the
input data for model training. To measure the learning
performance of the model, we use the cross-entropy loss
function to represent the loss ofUEu for the binary classifica-
tion problem. The formula is as follows:

Loss wu, xf , yf
� �

= −yf log p̂t,u,f − 1 − yf
� �

log 1 − p̂t,u,f
� �

:

ð12Þ

When the user preference model update starts, we
assume that UEu receives Ru requests. Based on the collected
samples, we iteratively learn the user preference model
parameters by minimizing the logistic loss for each sample,
denoted as

wr+1
u = argmin Loss wu, xf , yf

� �� �
r = 1, 2,⋯, Ru, ð13Þ

where wr+1
u is defined as the model parameters learned by

UEu in the k-th iteration.
Due to the constructed dataset’s extensive feature

dimensionality and sparseness, overfitting may occur. Fol-
low-the-regularized-leader (FTRL) [14] is used to solve
Equation (14). FTRL is an online optimization method
based on the online gradient descent (OGD) method, and
Equation (15) is the iterative strategy of OGD. FTRL

6 Wireless Communications and Mobile Computing



introduces both L1 and L2 mixed regularization terms into
the optimization process. The L1 regularization term
increases the sparsity of the model solution, and the L2
regularization term helps to prevent the model from over-
fitting. The update strategy of FTRL is

wr+1
u =wr

u − ηrgr , r = 1, 2,⋯, Ru, ð14Þ

wr+1
u = argmin g1:r ·wu +

1
2
〠
r

s=1
σs wu −ws,u


 

2

2

 

+ λ1 wuk k1 +
1
2
λ2wu

2
2

�
, r = 1, 2,⋯, Ru,

ð15Þ

where ηr denotes a nonincreasing learning rate. σ is a
parameter related to ηr that satisfies ∑r

s=1σs = 1/ηr . λ1
and λ2 denote regularization parameters with positive
values, and g1:r =∑r

s=1gs is the sum of the gradient vectors
of the first r samples. The gradient vector gr of the r-th
sample is represented as follows

gr = ∇Loss wu, xk, ykð Þ

=

p̂u − yr wu =wu,0,

p̂u − yrð Þxr,i wu =wu,i,

p̂u − yrð Þ xr,i 〠
d

j=1
vj,lxr,j − vi,lx

2
r,i

 !
wu = vi,l:

8>>>>>><
>>>>>>:

ð16Þ

By continuing the expansion of Equation (16), we can
obtain:

wr+1
u = argmin g1:r ·wu +

1
2
〠
r

s=1
σs wu

Twu − 2wu
Tws,u +ws,u

Tws,u
À Á 

+ λ1 wuk k1 +
1
2
λ2 wuk k22

�

= argmin g1:r − 〠
r

s=1
σs

 !
·wu +

1
2
〠
r

s=1
σs ws,u

Tws,u
À Á 

+
1
2

〠
r

s=1
σs + λ2

 !
wu

Twu

À Á
+ λ1 wuk k1

!

= argmin zr
T ·wu +

1
2

〠
r

s=1
σs + λ2

 !
wuk k22 + λ1 wuk k1

 

+
1
2
〠
r

s=1
σs · ws,u


 

2

2

!

ð17Þ

where 1/2∑r
s=1σsws,u

2
2 is a constant that does not affect the

problem. Let zr = g1:r − ∑r
s=1σsws,u; we can then obtain the

zr iteration relationship as follows:

zr = zr−1 + gr + σrwr,u ð18Þ

For the requested content, there is a difference in the
weight change rate of each feature dimension, and the gra-
dient value of each feature dimension reflects this change
rate. Therefore, different learning rates are used for differ-
ent feature dimensions:

gr = gru,0, gru,1, g
r
u,2,⋯,gr

u,d
È É

, gr1,1, g
r
1,2 ⋯ gr

d,e
È ÉÀ ÁT ,

zr = zru,0, zru,1, z
r
u,2,⋯,zru,d

È É
, zr1,1, z

r
1,2 ⋯ zrd,e

È ÉÀ ÁT ,
wu = wu,0, wu,1,wu,2 ⋯wu,d

È É
, v1,1, v1,2 ⋯ vd,e
È ÉÀ ÁT ,

wr+1
u = wr+1

u,0 , wr+1
u,1 ,w

r+1
u,2 ⋯wr+1

u,d
È É

, vr+11,1 , v
r+1
1,2 ⋯ vr+1d,e

À ÁT
:

ð19Þ

The feature dimension is N = 1 + d + d ∗ e, and the n-th
feature learning rate can be denoted as ηr,n = α/ðβ +ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑r
s=1gs,n2

q
Þ = α/ðβ + ffiffiffiffiffiffiffiqs,n

p Þ, where α and β are tuning parameters

chosen to yield good learning performance. These two
parameters are FTRL optimization parameters. Equation
(18) can be split into subproblems for each feature

wr+1
u,n = argmin zr,nwu,n + λ1 wu,n

�� �� + 1
2

〠
r

s=1
σs + λ2

 !
wu,n
�� ��2 !

r

= 1, 2,⋯, Ru

ð20Þ

where the L1 norm is nondifferentiable at wu,n = 0. Define ∂
jwu,nj as the subgradient of the L1 norm when wu,n =
wr+1,u,n. The optimal solution should satisfy that the deriva-
tive is 0, so zr,n + λ1∂jwu,nj + 1/2ð∑r

s=1σs + λ2Þwu,n = 0 is
obtained by derivation of the above formula. Thus, we have:

wr+1
u =

0, f zr,n
�� �� < λ

λ1 sgn zr,nð Þ − zr,n
λ2 + β + ffiffiffiffiffiffiffiqs,n

pÀ Á
/α

, otherwise

8><
>: r = 1, 2,⋯, Ru:

ð21Þ

4.1.3. Model Aggregation. After each UE completes the local
model training process, to obtain the overall content popu-
larity, BSm must aggregate the models trained by all UEs,
using the federated average method for aggregation. The
parameters of the global model are formulated as:

wm = 〠
Ut

m

u=1

Ru ·wu

∑u∈Ut
m
Ru

: ð22Þ

At this time, the regional popularity Pt
m of BSm can be

obtained by Formula (10). The time complexity of the pro-
posed prediction model algorithm is OðUt

mRuNÞ, and the
specific algorithm is shown in Algorithm 1.

4.2. Deep Reinforcement Learning-Based Content Caching
Decision. After obtaining the content collection, it is

7Wireless Communications and Mobile Computing



necessary to determine which content must be placed in
the edge server to minimize the cost to the video provider.
Since edge cache environments usually have huge high-
dimensional state spaces, it is difficult to manually deter-
mine all valuable features from the environment. Deep
reinforcement learning can automatically obtain the opti-
mal policy from the original high-dimensional state input
to solve such problems. DQN is a general DRL framework,
but it often overestimates the Q value of the possible
actions in a given state. Additionally, DQN usually esti-
mates Q values for all actions of each state, but this is
not necessary for those states where actions have no effect
on the environment or Q values. Therefore, we propose a
content placement method based on Dueling-DDQN,
which combines double DQN and Dueling DQN to effec-
tively reduce the overestimation of DQN and accelerate
the learning process. The main purpose of double DQN
is to mitigate the overestimation problem. Dueling DQN
decomposes the action-value function into a state-value
function and a dominance function to speed up conver-
gence without estimating the Q value of each action in
each state.

The method has the following three steps. (1) First, the
cooperative content caching problem is formulated as a con-
strained Markov decision process (CMDP). (2) Second, the
cache placement process is analyzed, and the reward func-
tion for the cache decision is constructed. (3) Finally, deep

reinforcement learning is used to obtain the optimal content
placement policy. The CM is considered a proxy in a given
scenario, making caching decisions for all MEC servers.
The CMDP element can be represented as a four-tuple con-
sisting of (S, A, R, and C), where S is the state space, A is the
action space, R is the reward, and C is the constraint. The
detailed definition is as follows:

(1) State space: S denotes the set of edge cache node
states, and St = fSt1, St2,⋯,StMg denotes the specific
state of edge cache nodes in time slot t. The CM col-
lects information such as content popularity vector
and cache capacity of each edge base station

(2) Action space: action space A is defined as At = fDt
1

,Dt
2,⋯,Dt

Mg, where At is the action space set of time
slot t and represents the buffering decisions of Dt

M in
time slot t. The CM will select at from the action
space as the buffer decision of the BS according to
the information received from each base station

(3) Reward: RðSt , atÞ represents the reward obtained by
a BS for performing action at in state St . From For-
mula (8), we can see that the optimization goal of
this paper is to minimize the cost of the video pro-
vider. Therefore, RðSt , atÞ, the profit gained from
storing a single file, can be defined as:

1: Input: αu, βu, αv , βv , Lu1 , Lu2 , Lv1, Lv2
2: Initialization: wu, zu, qu
3: For u = 1, 2,⋯,Ut

m do
4: For r = 1, 2,⋯, Ru do
5: Calculate gru,0 by (17)

6: σr
u0 = ð1/αuÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qr−1u,0 + ðgr−1u,0 Þ2

q
−

ffiffiffiffiffiffiffiffi
qr−1u,0

q
Þ

7: zru,0 = zr−1u,0 + gr
u,0 + σru,0 +wr

u,0
8: qru,0 = qr−1u,0 + ðgru,0Þ2
9: For i ∈ d do
10: Calculate gru,0 by (17)

11: σrui = ð1/αuÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qr−1u,i + ðgr−1u,i Þ2

q
−

ffiffiffiffiffiffiffiffi
qr−1u,i

q
Þ

12: zru,i = zr−1u,i + gru,i + σru,i +wr
u,i

13: qru,i = qr−1u,i + ðgru,iÞ2
14: For l ∈ e do
15: Calculate grd,e by (17)

16: σril = ð1/αvÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qr−1i,l + ðgr−1i,l Þ2

q
−

ffiffiffiffiffiffiffiffi
qr−1i,l

q
Þ

17: zri,l = zr−1i,l + gr
i,l + σri,l +wr

i,l
18: qri,l = qr−1i,l + ðgri,lÞ2
19: End for
20: End for
21: End for
22: End for
23: Calculate wu by (21)
24: Calculate wm by (22)
25: Calculate p̂t,u,f

Algorithm 1: The proposed content popularity prediction algorithm based on FL.

8 Wireless Communications and Mobile Computing



R St , at
À Á

= − cos tf : ð23Þ

(4) Constraints: in making cache decisions, it is neces-
sary to ensure that the files cached by each BS do
not exceed its capacity. The capacity constraint is
defined as follows:

〠
F

f=1
dm,f · zf ≤ sm: ð24Þ

The Dueling-DDQN algorithm is a deep neural network
algorithm used to predict the size of the Q value. The Q
value can be understood as the state action value, i.e., the
expected benefit of the agent acting in a certain state. The
algorithm divides the entire model structure into two parts:
the state value function and the advantage function. The
state value function is used to estimate the value of a state,
while the advantage function is used to estimate the advan-
tage of an action taken in a state. The value function can
be expressed as:

Q St , at , θ
À Á

= V St , θ
À Á

+ A St , at , θ
À Á

: ð25Þ

It is impossible to obtain a unique determination of V
and A based on a given value of Q. Therefore, Equation
(25) is not identifiable. To solve this problem, a centralized
treatment of the dominance function part Q function is
given by

Q St , at , θ
À Á

= V St , θ
À Á

+ A St , at , θ
À Á

−
1
Aj j〠

a′
A St , a′, θ
� � !

,

ð26Þ

where jAj denotes the dimensionality of the vector AðSt , at
, θÞ. The weight parameters of the target Q network must
be updated once per cycle during the training process. The
parameters of the updated network are updated by stochas-
tic gradient descent (SGD) to minimize the loss function.

Lloss = E TargetQ −Q St , at , θ
À ÁÂ Ã

: ð27Þ

The whole training process involves approximating the
Q value to the target Q value, so the target Q value is
expressed as:

TargetQ = R St , at
À Á

+ γQ S′, argminQ S′, a′, θ
� �

, θ′
� �

,

ð28Þ

where argminQðS′, a′, θÞ represents the action correspond-
ing to the maximum Q value in the current Q network.
The selected action is then used to calculate the target Q
value in the target network. The detailed process of the

caching strategy based on Dueling-DDQN is shown in
Algorithm 2.

5. Simulation Results

In this section, the experimental results of the proposed
algorithms are investigated, and the performance of four
other algorithms, namely, content caching algorithm based
on marginal gain, FL-based caching strategy, popularity-
based caching algorithm, and noncooperative caching strat-
egy, is taken as a reference.

5.1. Simulation Parameters. In the experiment, it is assumed
that the number of base stations M is [3,6], and the capacity
of base stations sm is set to [100,300] MB identically. The
number of users is 30, the users are randomly distributed
under different BSs, and the content size zf is set to [5,10]
MB. The data rate between each BS m and the CM is set to
128MB/s, and the data rate between the CM and cloud
server c is set to 32MB/s. The parameters used in the simu-
lation experiment are shown in Table 3.

5.2. Datasets. To evaluate the performance of the proposed
edge caching strategy, we use a real-world dataset-
MovieLens [33]. The MovieLens ([https://grouplens.org/
datasets/movielens/]) dataset contains rating data for multi-
ple movies by multiple users, movie metadata information,
and user attribute information. The MovieLens 100K data-
set contains 100,000 ratings for 1682 movies by 943 users.
Each user has reviewed at least 20 movies with ratings on a
5-star scale, from 0 to 5. This paper simulates the process
of users requesting content. We assume that the movie par-
ticipation score is the content requested by the user, and
each movie score corresponds to a content download. Liter-
ature [14, 28] take a similar approach to simulate the process
of a user requesting content.

5.3. Performance Metrics. This paper considers three perfor-
mance metrics: cache hit ratio (hit), average transmission
delay (time), and cost. The cache hit ratio represents the
ratio of satisfied requests to the total number of requests at
the edge node. It is defined as:

hit =
Rrequest − Rmiss

Rrequest
, ð29Þ

where Rrequest is the total number of requests received by the
edge server in each time slot, and Rmiss is the number of
missed requests. The average transmission delay represents
the average delay to transmit the content from the edge
server or the central server to the user. It is expressed as:

time = 〠
Nt

m

u=1
〠
F

f=1
xtu,m,f ·

zf
ϕu,m

+ xtu,i,f ·
2zf
ϕc,m

+
zf
ϕu,m

� �� �

+ xtu,c,f ·
zf /ϕc,o
À Á

+ zf /ϕc,m
À Á

+ zf /ϕu,m
À ÁÀ Á

Rrequest
,

ð30Þ

9Wireless Communications and Mobile Computing

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/


where the above equation is the ratio of the transmission
delay of all requests and the number of all requests between
time slot t. The cost is the optimization objective function in
this paper.

5.4. Results. To evaluate the performance, the proposed algo-
rithm is compared with the following four algorithms:

(1) Content caching strategy based on marginal gain
[30](CCBG): this strategy analyzes the marginal gain
in latency and cache cost to cache the content in the
edge server

(2) FL-based caching policy [28](FLBC): this algorithm
applies FL to user demand prediction and formulates
the caching problem as an integer linear program-
ming (ILP) problem

(3) Popularity-based caching algorithm [34](PBC): this
is a caching update scheme based on content popu-
larity, replacing low-popularity content with high-
popularity content

(4) Noncooperative caching strategy (no collaboration):
this algorithm does not consider cooperation
between base stations for content storage

In Figure 2, the predicted popularity is shown using the
proposed request prediction strategy. The predicted popu-
larity is very close to the actual popularity, which indicates

1: Input: The capacity of the experience replay poll N , train starts TR, size of minibatch K , discount factor γ, ε-greedy exploration ε,
learning rate α, number of episodes E, target network update period C
2: Initialization: w,w′, TargerQ
3: For ep = 1, 2,⋯, E do
4: Input initial state space St .
5: For t = 1, 2,⋯ do
6: Choose an action at via ε-greedy policy
7: Execute action at and get the next status St+1 and reward RðSt , atÞ, judge whether St+1 is a terminal state.
8: Put the sample ðSt , at , RðSt , atÞ, St+1Þ into the experience replay pool.
9: If t%TR == 0 then
10: Randomly sample training samples with a minibatch size K from the experience replay pool N .
11: Calculate the target q value by formula (5)
12: Apply the SGD method to calculate equation (6) to update the weight w
13: End if
14: If t%C == 0 then
15: Update target Q network parameters w′ =w
16: End if
17: St = St+1
18: End for
19: End for

Algorithm 2: The edge cache algorithm based on Dueling-DDQN.

Table 3: Key notations and values.

Notation Description Value

M Number of BSs [3,6]

F Number of contents 1682

U Number of users [30,60]

sm Capacity of BSs [100,300]MB

zf Content size [8,16]MB

ϕo,m Data rate between each BS m and CM 128MB/s

ϕc,o
Data rate between CM and cloud

server c 32MB/s

0.030

0.025

0.020

0.015

0.010

0.005

0.000

0 20

Real
Predicted

40 60 80 100 120 140

Figure 2: Comparison of the predicted popularity and the real
popularity in the finite time horizon T .

10 Wireless Communications and Mobile Computing



that our proposed popularity prediction strategy can effec-
tively predict user requests.

Figure 3 shows the impact of the number of BSs on the
cache hit rate, average transmission delay, and cost. The
capacity of BSs is set to 100MB, and the number of BSs
is increased from 3 to 6. From Figures 3(a) and 3(b), it
can be seen that the cache hit ratio increases and the aver-
age transfer latency decreases for the four algorithms as the
number of BSs increases. In addition, the proposed algo-
rithm consistently outperforms the four baseline algo-
rithms. The reason is that as the number of BSs increases,
the amount of content that the collaborative baseline can
cache increases; however, the number of users in the collab-
orative range also increases, and the types of content

requests from users become more diverse. This scenario
leads to a gradual slowing of the hit rate variation and a
gradual decrease in the delay variation. The increase in
the number of users leads to an increase in the number of
requests, so the hit rate and latency still show an improving
trend. From Figure 3(c), the comparison shows that the
proposed service placement method outperforms the other
cache placement methods. The overall cost of the compar-
ison algorithm is increasing, and the total cost of the pro-
posed algorithm is decreasing. There is a downward trend
in transport costs as most requests can be responded to
locally. However, as the number of BSs increases, storage
costs also increase. The proposed algorithm is more opti-
mized for the transfer cost.

1.0

0.9

0.8

0.7

0.6

0.5

To
ta

l h
it 

ra
te

0.4

0.3

0.2

0.1

0.0
3 4 5 6

Number of BS

Proposed method
CCBG
FLBC

PBC
No collaboration

(a) Effect of the number of BSs on hit rate
Ti

m
e (

s)

5.0

4.5

4.0

3.5

3.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0

Number of BS

Proposed method
CCBG
FLBC

PBC
No collaboration

(b) Effect of the number of BSs on average latency

En
er

gy
 co

st 
(J

)

5000

4500

4000

3500

3000

2500
3 4 5

Number of BS

Proposed method
CCBG
FLBC

PBC
No collaboration

6

(c) Effect of the number of BSs on energy cost

Figure 3: Effect of the number of BSs on cache performance.

11Wireless Communications and Mobile Computing



Figure 4 shows the impact of the BS capacity on the
cache hit ratio, average transmission delay, and cost. The
number of BSs is set to 3, and the capacity of the BSs is set
to 100MB-300MB. As shown in Figure 4(a), as the storage
capacity of the BSs increases, the cache hit rate gradually
increases. That is because as the cache capacity of the BSs
increases, the BS can cache more files, so the cache hit rate
increases. As shown in Figure 4(b), as the storage capacity
of the BSs increases, the delay gradually decreases the num-
ber of times files are obtained from the cloud server
decreases, so the delay decreases. As shown in Figure 4(c),
as the BS storage capacity increases, the video provider’s cost
decreases. Because more content can be requested locally

without going through the cloud center, the content with
the most significant profit gain will be cached first as the
cache capacity increases. Hence, the hit rate, latency, and
profit curve tend to change faster initially and then more
slowly.

Figure 5 shows the impact of the UE number on the
cache hit rate, average transmission delay, and cost. The
number of BSs is set to 3, the capacity of the BSs is set to
200MB, and the number of UEs served is increased from
30 to 60. As shown in Figure 5(a), as the number of UEs
increases, the cache hit rate shows a downward trend. This
is because as the number of UEs increases, the content
requested by users becomes diverse, and content requests

0.3

Size of BS

100 150 200 250 300

0.4

0.5

0.6

To
ta

l h
it 

ra
te

0.7

0.8

0.9

Proposed method
CCBG
FLBC

PBC
No collaboration

(a) Effect of the caching capacity for each BS on hit rate

4.5

4.0

3.5

Ti
m

e (
S)

Size of BS

3.0

2.5

100 150 200 250 300

Proposed method
CCBG
FLBC

PBC
No collaboration

(b) Effect of the caching capacity for each BS on average latency

4750

4500

4250

4000

3750

3500

En
er

gy
 co

st 
(J

)

3250

3000

2750

100 150 200 250 300

Size of BS

Proposed method
CCBG
FLBC

PBC
No collaboration

(c) Effect of the caching capacity for each BS on energy cost

Figure 4: Effect of the caching capacity for each BS on cache performance.

12 Wireless Communications and Mobile Computing



become scattered, so the hit rate decreases accordingly. As
shown in Figure 5(b), the delay increases gradually as the
number of UEs increases. It is because as the cache hit rate
of the BSs decreases, the number of times files are obtained
from the cloud server increases, so the delay also decreases.
As shown in Figure 5(c), the video provider cost increases
as the number of UEs increases. Because the number of
requests passing through the cloud server increases, the
overall cost of video providers increases.

6. Conclusion

In this paper, we propose a deep reinforcement learning-
based approach to collaborative content caching to optimize

video providers’ costs. First, the content caching problem is
represented as a CMDP. Then, the content caching process
is analyzed to construct a caching reward function. Finally,
deep Q-learning is used to obtain the optimal content cach-
ing strategy. In addition, considering the user’s content
request and privacy security, federated learning is used to
design the caching strategy to make distributed predictions
for the users in the nodes. Simulation results based on real
datasets show that the proposed algorithm optimizes the
cost of the video provider while achieving a high cache hit
rate.

Although the cooperative caching strategy proposed in
this paper has achieved good results, there are still some
shortcomings. The proposed algorithm is a centralized

To
ta

l h
it 

ra
te

Number of US

Proposed method
CCBG
FLBC

PBC

1.0

0.9

0.8

0.7

0.6

0.5

0.4
30 36 42 48 54 60

No collaboration

(a) Effect of the number of UEs on hit rate
Ti

m
e (

s)

4.1

3.7

3.3

2.9

2.5
30 36 42 48 54 60

Number of US

Proposed method
CCBG
FLBC

PBC
No collaboration

(b) Effect of the number of UEs on average latency

En
er

gy
 co

st 
(J

)

5000

4500

4000

3500

3000

2500
30 36 42 48 54 60

Number of US

Proposed method
CCBG
FLBC

PBC
No collaboration

(c) Effect of the number of UEs on energy cost

Figure 5: Effect of the number of UEs on cache performance.

13Wireless Communications and Mobile Computing



algorithm and may not be suitable for network scenarios
with a large number of base stations. Future work will aim
at designing a scheme for multiagent proxy DRL that can
learn the optimal caching policy where each BS acts as an
agent and makes its own caching decisions.

Data Availability

Data is openly available in a public repository. The data that
support the findings of this study are openly available in
[movielens] at [https://grouplens.org/datasets/movielens/].

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grants 61902112, and
62072159.

References

[1] R. Aghazadeh, A. Shahidinejad, and M. Ghobaei-Arani, “Pro-
active content caching in edge computing environment: a
review,” Software: Practice and Experience, 2021.

[2] H. Wu, Y. Fan, Y. Wang, H. Ma, and L. Xing, “A comprehen-
sive review on edge caching from the perspective of total pro-
cess: placement, policy and delivery,” Sensors, vol. 21, no. 15,
p. 5033, 2021.

[3] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32,
no. 2, pp. 281–294, 2021.

[4] B. N. Bharath, K. G. Nagananda, D. Gündüz, and H. V. Poor,
“Caching with time-varying popularity profiles: a learning-
theoretic perspective,” IEEE Transactions on Communications,
vol. 66, no. 9, pp. 3837–3847, 2018.

[5] E. K. Markakis, K. Karras, A. Sideris, G. Alexiou, and E. Pallis,
“Computing, caching, and communication at the edge: the
cornerstone for building a versatile 5G ecosystem,” IEEE Com-
munications Magazine, vol. 55, no. 11, pp. 152–157, 2017.

[6] A. Ioannou and S. Weber, “A survey of caching policies and
forwarding mechanisms in information-centric networking,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 4,
pp. 2847–2886, 2016.

[7] Y. Jiang, Y. Hu, M. Bennis, F.-C. Zheng, and X. You, “A mean
field game-based distributed edge caching in fog radio access
networks,” IEEE Transactions on Communications, vol. 68,
no. 3, pp. 1567–1580, 2019.

[8] P. Ray, R. Kaluri, T. Reddy, and K. Lakshmanna, “Contempo-
rary developments and technologies in deep learning–based
IoT,” in Deep Learning for Internet of Things Infrastructure,
pp. 61–82, CRC Press, 2021.

[9] T. Shelatkar, D. Urvashi, M. Shorfuzzaman, A. Alsufyani, and
K. Lakshmanna, “Diagnosis of brain tumor using light weight
deep learning model with fine-tuning approach,” Computa-

tional and Mathematical Methods in Medicine, vol. 2022, Arti-
cle ID 2858845, 9 pages, 2022.

[10] K. Qi, S. Han, and C. Yang, “Learning a hybrid proactive and
reactive caching policy in wireless edge under dynamic popu-
larity,” IEEE Access, vol. 7, pp. 120788–120801, 2019.

[11] W.-X. Liu, J. Zhang, Z.-W. Liang, L.-X. Peng, and J. Cai, “Con-
tent popularity prediction and caching for ICN: a deep learn-
ing approach with SDN,” IEEE access, vol. 6, pp. 5075–5089,
2017.

[12] H. Feng, Y. Jiang, D. Niyato, F.-C. Zheng, and X. You, “Con-
tent popularity prediction via deep learning in cache-enabled
fog radio access networks,” in 2019 IEEE global communica-
tions conference (GLOBECOM), pp. 1–6, Waikoloa, HI, USA,
2019.

[13] Q. Fan, X. Li, J. Li, Q. He, K. Wang, and J. Wen, “PA-cache:
evolving learning-based popularity-aware content caching in
edge networks,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1746–1757, 2021.

[14] Y. Jiang, M. Ma, M. Bennis, F.-C. Zheng, and X. You, “User
preference learning-based edge caching for fog radio access
network,” IEEE Transactions on Communications, vol. 67,
no. 2, pp. 1268–1283, 2018.

[15] Z. Yu, J. Hu, G. Min et al., “Federated learning based proactive
content caching in edge computing,” in 2018 IEEE global com-
munications conference (GLOBECOM), pp. 1–6, Abu Dhabi,
United Arab Emirates, 2018.

[16] K. Qi and C. Yang, “Popularity prediction with federated
learning for proactive caching at wireless edge,” in 2020 IEEE
wireless communications and networking conference (WCNC),
pp. 1–6, Seoul, Korea (South)., 2020.

[17] Y. Wu, Y. Jiang, M. Bennis, F. Zheng, X. Gao, and X. You,
“Content popularity prediction in fog radio access networks:
a federated learning based approach,” in ICC 2020-2020 IEEE
International Conference on Communications (ICC), pp. 1–6,
Dublin, Ireland, 2020.

[18] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably
efficient online collaborative caching algorithm for multicell-
coordinated systems,” IEEE Transactions on Mobile Comput-
ing, vol. 15, no. 8, pp. 1863–1876, 2015.

[19] L. Wang, J. Li, M. Chen, S. Tang, and B. Zheng, “An incentive
caching mechanism in wireless networks based on stackelberg
game,” in In 2019 IEEE International Conference on Consumer
Electronics-Taiwan (ICCETW), Yilan, Taiwan, 2019.

[20] Y. K. Tun, A. Ndikumana, S. R. Pandey, Z. Han, and C. S.
Hong, “Joint radio resource allocation and content caching
in heterogeneous virtualized wireless networks,” IEEE Access,
vol. 8, pp. 36764–36775, 2020.

[21] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep reinforce-
ment learning-based edge caching in wireless networks,” IEEE
Transactions on Cognitive Communications and Networking,
vol. 6, no. 1, pp. 48–61, 2020.

[22] W. Jiang, G. Feng, and S. Qin, “Optimal cooperative content
caching and delivery policy for heterogeneous cellular net-
works,” IEEE Transactions on Mobile Computing, vol. 16,
no. 5, pp. 1382–1393, 2016.

[23] S. Sun, W. Jiang, G. Feng, S. Qin, and Y. Yuan, “Coopera-
tive caching with content popularity prediction for mobile
edge caching,” Tehnički vjesnik, vol. 26, no. 2, pp. 503–
509, 2019.

[24] L. Ale, N. Zhang, H. Wu, D. Chen, and T. Han, “Online proac-
tive caching in mobile edge computing using bidirectional

14 Wireless Communications and Mobile Computing

https://grouplens.org/datasets/movielens/


deep recurrent neural network,” IEEE Internet of Things Jour-
nal, vol. 6, no. 3, pp. 5520–5530, 2019.

[25] C. Li, L. Zhu, W. Li, and Y. Luo, “Joint edge caching and
dynamic service migration in SDN based mobile edge comput-
ing,” Journal of Network and Computer Applications, vol. 177,
article 102966, 2021.

[26] F. Zhang, G. Han, L. Liu, M. Martínez-García, and Y. Peng,
“Joint optimization of cooperative edge caching and radio
resource allocation in 5g-enabled massive iot networks,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 14156–14170,
2021.

[27] Y. Liu, Z. Ma, Z. Yan, Z.Wang, X. Liu, and J. Ma, “Privacy-pre-
serving federated _k_ -means for proactive caching in next
generation cellular networks,” Information Sciences, vol. 521,
pp. 14–31, 2020.

[28] T. Xiao, T. Cui, S. R. Islam, and Q. Chen, “Joint content
placement and storage allocation based on federated learn-
ing in f-rans,” Sensors, vol. 21, no. 1, p. 215, 2021.

[29] F. Jiang, W. Cheng, Y. Gao, and C. Sun, “Caching strategy
based on content popularity prediction using federated
learning for f-ran,” in 2021 IEEE/CIC International Confer-
ence on Communications in China (ICCC Workshops),
pp. 19–24, Xiamen, China, 2021.

[30] C. Li, Y. Zhang, M. Song, X. Yan, and Y. Luo, “An optimized
content caching strategy for video stream in edge-cloud envi-
ronment,” Journal of Network and Computer Applications,
vol. 191, article 103158, 2021.

[31] C. Li, Y. Zhang, Q. Sun, and Y. Luo, “Collaborative caching
strategy based on optimization of latency and energy con-
sumption in MEC,” Knowledge-Based Systems, vol. 233, article
107523, 2021.

[32] S. Rendle, “Factorization machines,” in 2010 IEEE interna-
tional conference on data mining, pp. 995–1000, Sydney,
NSW, Australia, 2010.

[33] F. M. Harper and J. A. Konstan, “The movielens datasets,”
Acm transactions on interactive intelligent systems (tiis),
vol. 5, no. 4, pp. 1–19, 2016.

[34] H. Nakayama, S. Ata, and I. Oka, “Caching algorithm for
content-oriented networks using prediction of popularity of
contents,” in 2015 IFIP/IEEE international symposium on inte-
grated network management (IM), pp. 1171–1176, Ottawa,
ON, Canada, 2015.

15Wireless Communications and Mobile Computing


	Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning
	1. Introduction
	2. Related Work
	3. System Architecture
	3.1. Network Model
	3.2. Content Request Model
	3.3. Local Popularity Model
	3.4. Cooperative Cache Model
	3.5. Request Cost Model
	3.6. Formalization

	4. Problem Solution
	4.1. FL-Based Content Popularity Prediction Model
	4.1.1. Creation of the Local Model
	4.1.2. Training of the Local Model
	4.1.3. Model Aggregation

	4.2. Deep Reinforcement Learning-Based Content Caching Decision

	5. Simulation Results
	5.1. Simulation Parameters
	5.2. Datasets
	5.3. Performance Metrics
	5.4. Results

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments



