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Using real-time production data of concrete to predict its 28-day compressive strength has great significance for improving the
engineering structure quality and overcoming the shortage of the traditional tests long period of concrete compressive strength.
The current research has the shortcomings such as insufficient prediction accuracy, inadequate matching between data
characteristics and model characteristics, and redundant input parameter information. This paper proposes a BP neural
network prediction model optimized by Spearman and PCA. The model first uses Spearman method to reduce the number of
the input variables by eliminating variables that have a low correlation with the compressive strength and then uses PCA to
eliminate the correlation between material-related variables. Following this, the new uncorrelated input variables optimized by
Spearman and PCA are input to the BP neural network-based model to predict the compressive strength of concrete. The
results showed that it yielded the mean absolute percentage error (MAPE) of 2.78% and the root mean-squared error (RMSE)
of 1.66MPa, far lower than the error of 4.82% and 2.92MPa obtained by the nonoptimized BP neural network, respectively.
The proposed model fully exploits real-time monitoring data from the concrete mixing station, and its results are close to
those of traditional tests. It has great practical significance to guide the concrete production and construction, shorten the
production cycle, and reduce the project cost.

1. Introduction

The compressive strength of concrete is an important param-
eter for determining the grade of its strength and an important
index to compare and evaluate the mechanical properties of
concrete [1]. Once concrete has been produced at the mixing
station, test pieces are formed from it, and their compressive
strength is tested after 28 days of curing. The results are used
to determine whether the grade of concrete strength is suitable
for the project at hand. Therefore, there is a time lag from pro-
duction to test, and the project quality management will also
cause demolition and rework due to unqualified concrete,
resulting in the increase of project cost.

To solve the management problems caused by the lag of
compressive strength test results, many researchers have
investigated methods to predict the compressive strength
of concrete by using concrete proportioning data. Zhu
et al. [2] proposed a method to predict the compressive

strength of recycled concrete aggregate based on gray corre-
lation analysis and explained the influence of the water-
cement ratio and the volume of the aggregate on its com-
pressive strength. Chen et al. [3], Wang et al. [4], Jiao et al.
[5], Tu et al. [6], and Pan et al. [7] used the water-binder
ratio, content of silica fume, and contents of the aggregate,
cement, and fly ash as inputs to the ANN neural network
and applied the dolphin partner method to it and the GA-
ANN to predict the compressive strength of concrete. Ma
et al. [8], Xu et al. [9], and Jovic et al. [10] used the water-
binder ratio as well as the contents of cement, coal gangue
powder, lithium slag, water reducer, and coarse and fine
aggregates as input variables, and the BP neural network
model, the multivariate regression-based model, and the
adaptive neural fuzzy inference system are used individually
to predict the compressive strength of stone powder con-
crete, lithium slag concrete, and silica fumes. Al-Jamimi
et al. [11] got a conclusion that support vector machine
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(SVM) and genetic algorithm (GA) as the mixed model
(SVM GA) had the best effect on the prediction of concrete
compressive strength. Naser et al. [12] proposed multivariate
adaptive regression splines (MARS) to predict the compres-
sive strength of ecofriendly concrete.

The above research results shows that it is feasible to pre-
dict the compressive strength of concrete by using propor-
tioned data and the BP neural network. However, due to
deviations between the feeding system and the control system
ofmixing plant, differences existed between the actual produc-
tion data and the designed proportion data in practice. So,
how to use actual production data to predict its compressive
strength and the prediction accuracy requires further research.
Real-time production monitoring data of concrete from mix-
ing stations contain more than 10 material parameters, and
those parameters are highly correlated. If taking those param-
eters as the input values of ANN directly, the redundancy and
correlation of data will affect the predictive accuracy and con-
vergence speed of the ANN inevitably. Reducing the number
of input variables is the most direct method to improve the
predictive efficiency of the ANN. Researchers have used
machine learning models [13–15], support vector machine
algorithms [16], and clustering algorithms [17] to optimize
and reduce the dimensionality of the model parameters to
improve the accuracy of prediction. Vakharia and Gujar [18]
used the ten-fold cross method to verify the input parameters
and then used feature sorting to eliminate irrelevant features.
Yu et al. [19] use enhanced cat swarm optimization (ECSO)
to optimize the key parameters of SVM. The reduction of
the input variables can be performed from both the degree
of correlation between the variables with the predicted out-
come and the degree of correlation between the variables.
Spearman’s analysis is often used as a data reprocessing tool
for multifactor analyses, such as those reported by Fang et al.
[20], Gan et al. [21], and Li et al. [22]. They all use Spearman’s
method to identify the correlation degree between the input
variables and the target variable and to optimize the screening
parameters according to the strength of the correlation degree.
By using principal component analysis (PCA) to eliminate
correlations between input variables, the dimensionality of
the input variables in research on the seasonal predictions of
PM2 [23], phosphorus content at the endpoint of the con-
verter [24], and the throughput of cargo at ports [25] was
reduced. It can be seen from these studies that the Spearman
and PCA have shown good applicability in practice.

To sum up, the predicting model of the compressive
strength of concrete is a typical multi-input and single-
output nonlinear system, which is very close to the structure
of BP neural network model in ANN method. Compared
with the machine learning algorithm (such as SVM), BP
neural network has the advantages of strong fault tolerance,
generalization, and adaptability. So, this study uses real-time
monitoring data on concrete mixing to propose a BP neural
network model optimized by Spearman and PCA to predict
the compressive strength of concrete. The proposed model
uses Spearman’s analysis and PCA to reduce the dimension-
ality of the input variables for prediction and then uses them
in the BP neural network model of prediction to forecast the
compressive strength of concrete.

2. Proposed Model

2.1. Data Sources. The real-time production monitoring data
of concrete from mixing station were used as the input var-
iables for prediction, and the compressive strength of con-
crete achieved by the compressive strength test was used as
the output data for training and verification. The input var-
iables consisted of eight raw material consumption data per
mixing production process and five production proportion-
ing data. The eight raw material consumption data consist of
two kinds cementitious materials (cement and fly ash), four
kinds aggregates (crushed stone 1 with particle size from
16mm to 31.5mm, crushed stone 2 with particle size from
10mm to 20mm, crushed stone 3 with particle size from
5mm to 10mm, and sand), water, and water reducer. The
five production proportioning data consist of the total con-
sumption of cementitious materials per mixing production
process, the total consumption of four aggregates per mixing
production process, water-cement ratio (ratio of water con-
sumption per cubic meter of concrete to the consumption
of cement), water-binder ratio (ratio of water consumption
per cubic meter of concrete to the consumption of cement
and fly ash), and sand ratio (the ratio of sand consumption
to the consumption of all aggregates).

2.2. BP Neural Network Model Optimized by Spearman and
PCA. The 13 original inputs and their high correlation will
affect the prediction accuracy of BP neural network and its
operation efficiency. Therefore, Spearman’s correlation anal-
ysis and PCA are used to optimize the input variables of BP
neural network model. The model to predict the compres-
sive strength of concrete, optimized by Spearman and
PCA, is shown in Figure 1.

2.3. Optimization and Dimension Reduction of Input
Variables by Spearman and PCA

2.3.1. Spearman Correlation Analysis. Spearman correlation
analysis was used to examine the correlation between the
13 kinds of monitoring data on mixing-based production
and the compressive strength of concrete. The input vari-
ables with significant correlations were retained while those
with insignificant correlations were eliminated for dimen-
sion reduction. The steps of the calculation were as follows:

Step 1. calculate Spearman’s correlation coefficient ρsi.

ρsi =
∑m

j=1 Rj
i − Ri

� �
Sj − �S
À Á

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

j=1 Rj
i − Ri

� �2
∑m

j=1 Sj − �S
À Á2r , ð1Þ

where ρsi represents the coefficient for the correlation
between the i-th input variable and the output variable, m
represents the number of groups representing samples, Rj

i

and Ri represent the order of the j-th group of values of
the data samples and the average order of the m-th group
of data samples of the i-th input variable, respectively, and
Sj and �S represent the order and the average order of the
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compressive strength of the j-th group of sample data,
respectively.

Step 2. obtain Spearman’s correlation coefficient for the
hypothesis test by looking up the table of its critical values.
When the number of groups of samples was 38, the confi-
dence was 95%. Then, the input and output variables can
be considered to be related. If not, they can be removed.

2.3.2. Principal Component Analysis (PCA). PCA involves
mapping n-dimensional features to uncorrelated k-dimen-
sional orthogonal features. After the input variables were
reduced by Spearman, PCA is further used to remove the
correlation between the input variables. The solution to
PCA was obtained by programming in Python, and its pro-
cesses of analysis and solution were as follows.

(1) Step 1: Centralize the Sample Data. There are n data
items in m groups of samples fX1, X2,⋯, Xng, the j-th of

which is Xj = ½x1j , x2j ,⋯, xmj �T , (j = 1, 2,⋯, n). Calculate the
average value of each data item

�xj =
1
m
〠
m

i=1
xij, ð2Þ

where xij represents the value of the i-th sample data in the j
-th group.

Convert Xj = ½x1j , x2j ,⋯, xmj �T into an array with the cen-
ter of the sample as the origin

Xj = x1j − xj, x2j − xj,⋯, xmj − xj
h iT

: ð3Þ

(2) Step 2: Calculate the Covariance Matrix C of the Sample
Array. The covariance matrix C is used to measure the corre-
lation between random variables, and is calculated as follows:

C = 1
m

X1, X2,⋯, XmÂ Ã
⋅ X1, X2,⋯, XmÂ ÃT

: ð4Þ

(3) Step 3: Calculate the Eigenvalue λj of the Covariance Matrix
C and Its Contribution Rate αj. The contribution rate αj is the
proportion of the difference between the principal components
and the total difference in the original data. The higher the con-
tribution rate is, the stronger is the explanatory power of the
principal components with regard to the total difference. The
n eigenvalues λj of the covariance matrix and their correspond-
ing eigenvectors β = ½β1, β2,⋯, βn� are obtained by Equation
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small correlation with output (compressive strength) are

eliminated
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analysis, and k principal components Z1, Z2, ..., Zk with
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Figure 1: Spearman and PCA optimized BP neural network prediction model of the compressive strength of concrete.
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(5). The eigenvalues are arranged in descending order, and the
contribution rate αj of each as well as the cumulative contribu-
tion α of the first k principal components is calculated:

Cβj = λjβj, ð5Þ

αj =
λj

∑n
i=1λj

, ð6Þ

α =
∑k

j=1λj

∑n
j=1λj

: ð7Þ

(4) Step 4: Choose the Principal Components. When the value of
k causes the rate of cumulative contribution α ≥ 90%, take the
first k principal components Z1, Z2,⋯, Zk. The principal com-
ponent Z = ½Z1, Z2,⋯, Zk� can be obtained by calculating the
load of the principal components u = ½u1, u2,⋯, uk�

uj =
ffiffiffiffi
λj

q
βj, j = 1, 2,⋯, k, ð8Þ

Z = u1, u2,⋯, uk½ � ⋅

X1

X2

⋮

Xk

2
666664

3
777775: ð9Þ

2.4. BP Neural Network Prediction Model. The BP neural net-
work used to predict the compressive strength of concrete is a
multilayer feed-forward network based on the error back-
propagation algorithm. A flowchart of the analysis and calcula-
tion of the proposed model is shown in Figure 2, and the steps
are as follows:

Step 1. initialize the BP neural network, set the maximum
number of iterations of training to 10,000, and set the weights
between the neurons in the input layer to ωjl, those in the hid-
den layer and the output layer to ωo, and the thresholds al and
b0 to random numbers. Set the learning rate to 0.035 and the
target error to 1.1e-2, calculate the interval ½c1, c2� of the num-
ber of nodes in the hidden layer Nh according to Equation
(10), and determine the number of nodes in this layer by pre-
dicting the average value of the absolute error of the sample
and the coefficient R of sample fitting.

Nh =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni +No

p
+ u0, ð10Þ

where Ni,Nh,No represent the numbers of nodes in the input
layer, hidden layer, and output layer, respectively, and u0 is a
constant, u0 ∈ ½1, 10�.

Step 2. it is assumed that m groups of real-time samples of
monitoring data for the mixing-based production of con-
crete fX1, X2,⋯, Xmg are used as inputs. Of them, the sam-
ple of the i-th group Xi has n data items Xi = ½xi1, xi2,⋯, xin�.
Take the data of the i-th sample Xi and their corresponding
compressive strength pi as the input training set fðXi, piÞg

= 1. Then, the input vector and the expected output
response based on sequential assignment can be given as ½
p1, p2,⋯, pi�. When the number of training samples is not
sufficiently large, input them circularly.

Step 3. in the process of forward-propagation, calculate the
output of the i-th group of input samples in the hidden layer
Hl and the output of the output layer Oi, followed by the cal-
culation of the error ei between Oi and the expected value pi
of the network

Hl = f 〠
13

j=1
ωjlx

i
j − al

 !
, l = 1, 2,⋯,Nh, j = 1, 2,⋯, 13, i = 1, 2,⋯,m,

ð11Þ

where f ðÞ is an activation function. The sigmoid function ()
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Figure 2: Analysis and calculation of the nonoptimized BP neural
network model to predict the compressive strength of concrete.
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is commonly used as the activation function.

Oi = 〠
Nh

l=1
Hlωo − bo,

ei = pi −Oi:

ð12Þ

Step 4. in the back-propagation process, adjust the weights
between the neurons of each layer by using the error ei.
Update the thresholds al and bo of the nodes of the network
according to ei.

ωjl = ωjl + ηHl 1 −Hlð Þxijωoei,
ωo = ωo + ηHlei,

al = al + ηHl 1 −Hlð Þωoei,
bo = bo + ei:

ð13Þ

Step 5. judge whether the network satisfies the termination
conditions. If not, return to Step 3.

3. Verification of Cases and Analysis of Data

3.1. Data Processing and Verification of the Cases. The exam-
ples were taken from 380-day real-time production monitor-
ing data of C40 concrete with the same mixing proportions
from March 18, 2021 to April 2, 2022 and the compressive
strength of concrete achieved by the compressive strength
test. Because of the large amount of examples, we calculated
the average value of data with the same mixing ratio after
every 10 days to obtain one group of sample data. After pro-
cessing, 38 groups of sample data were obtained as shown in
Table 1.

Sample training, validation, and testing were performed
at a ratio of 6 : 2 : 2. The data of the first 20 groups (groups
1 to 20) in Table 1 were taken as the training data. The data
of the 21st to 29th groups and the 30th to 38th groups are
used as the verification group and prediction group, respec-
tively. To ensure the rationality of data grouping, the numer-
ical distribution of various data is analyzed through the half
violin chart to avoid the influence of outlier grouping on the
accuracy of the model.

3.2. Dimension Reduction of the Input Variables

3.2.1. Spearman’s Correlation Analysis of Input Variables.
Spearman’s correlation analysis was used to calculate the
correlation between the input variables and the output vari-
ables. The results are shown in Table 2.

The results showed that the values of jρsij of cement,
crushed stone 1, crushed stone 2, crushed stone 3, sand, fly
ash, cementitious materials, four aggregates, and water-
cement ratio were all higher than 0.321. The confidence level
of the test was 95%. It was concluded that these variables
were related to the compressive strength of concrete. How-
ever, the values of jρsij of water, sand ratio, water-binder
ratio, and water reducer were all less than 0.321, and it was

Table 1: Samples of proportional data and compressive strength of C40 concrete.

Group number (no.) 1 2 3 … 37 38

Compressive strength (MPa) 51.30 51.90 51.30 … 51.90 52.50

Cement (kg) 640.00 639.68 634.80 … 640.41 639.94

Water (kg) 246.00 230.00 265.77 … 227.99 236.00

Crushed stone 1 (kg) 632.62 638.13 626.40 … 631.86 632.23

Crushed stone 2 (kg) 1060.15 1067.58 1046.93 … 1060.64 1059.92

Crushed stone 3 (kg) 424.00 423.84 418.00 … 433.86 424.23

Sand (kg) 1402.00 1399.87 1366.80 … 1402.47 1410.31

Fly ash (kg) 273.15 274.02 272.50 … 274.04 274.53

Water reducer (kg) 9.15 9.15 9.05 … 9.15 9.13

Cementitious material (kg) 913.15 913.69 907.30 … 876.41 639.94

Four aggregates (kg) 3518.77 3529.42 3458.13 … 3528.82 3526.68

Water-binder ratio 0.27 0.25 0.29 … 0.31 0.43

Sand ratio 0.40 0.40 0.40 … 0.40 0.40

Water-cement ratio 0.38 0.36 0.42 … 0.43 0.43

Table 2: Results of the correlations between the input variables and
compressive strength.

Input variables Correlation coefficient

Cement (kg) 0.836

Water (kg) 0.303

Crushed stone 1 (kg) -0.749

Crushed stone 2 (kg) -0.72

Crushed stone 3 (kg) -0.786

Sand (kg) -0.696

Fly ash (kg) 7.14

Water reducer (kg) -0.065

Cementitious material (kg) 0.426

Four aggregates (kg) -0.756

Water-binder ratio -0.158

Sand ratio 0.017

Water-cement ratio -0.47
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concluded that they were not related to the compressive
strength of concrete. We, thus, eliminated these variables
from the model. This led to a reduction in the number of
input variables from 13 to 9.

3.2.2. PCA Analysis of Input Variables. Firstly, correlation
analysis is carried out among the 9 inputs optimized by
Spearman to confirm whether PCA principal component
analysis needs to be carried out further. The analysis results
are shown in Table 3.

It can be seen from the results that except for the water-
cement ratio, there is a high correlation between the input
variables. It is necessary to further reduce the dimension of
the input variables through PCA. The results are shown in
Table 4. The cumulative efficiency of contributions of the first
three principal components was 92.8461%, indicating that
they represented most of the information of the input vari-
ables and could be used as optimized inputs to the BP neural
network to predict the compressive strength of concrete.

According to Equation (9), the expressions of the first
three principal components are as follows:

3.3. Verification of Two BP Neural Network-Based
Prediction Models

3.3.1. Determining the Number of Nodes in Hidden Layer.
The input and output layers of the Spearman and PCA opti-
mized BP neural network model were 3 and 1, respectively,
and the interval of the number of nodes of the hidden layer
was [3, 12]. The input and output layers of the nonoptimized

BP neural network model were 13 and 1, and the interval of
its number of nodes in the hidden layer was [5, 14]. The first
20 groups of data were selected as training samples and the
followed 9 groups as testing samples. By predicting the com-
pressive strength of concrete using different numbers of
nodes of the hidden layer, we chose the number of nodes
that yielded the smallest prediction error as the optimal
number for the hidden layer of the prediction model. These

Table 3: Analysis of correlation between factors of 9 inputs.

Factors
Cement
(kg)

Crushed
stone 1 (kg)

Crushed
stone 2 (kg)

Crushed
stone 3 (kg)

Sand
(kg)

Fly ash
(kg)

Cementitious
material (kg)

Four
aggregates

(kg)

Water-
cement ratio

Cement (kg) 1.00 -0.86 -0.81 -0.90 -0.78 0.90 0.68 -0.86 -0.40

Crushed stone 1
(kg)

-0.86 1.00 0.93 0.97 0.85 -0.77 -0.60 0.96 0.10

Crushed stone 2
(kg)

-0.81 0.93 1.00 0.95 0.82 -0.72 -0.58 0.95 0.07

Crushed stone 3
(kg)

-0.90 0.97 0.95 1.00 0.88 -0.81 -0.65 0.97 0.22

Sand (kg) -0.78 0.85 0.82 0.88 1.0z0 -0.76 -0.59 0.95 0.15

Fly ash (kg) 0.90 -0.77 -0.72 -0.81 -0.76 1.00 0.67 -0.79 -0.35

Cementitious
material (kg)

0.68 -0.60 -0.58 -0.65 -0.59 0.67 1.00 -0.63 -0.51

Four aggregates
(kg)

-0.86 0.96 0.95 0.97 0.95 -0.79 -0.63 1.00 0.13

Water-cement
ratio

-0.40 0.10 0.07 0.22 0.15 -0.35 -0.51 0.13 1.00

Table 4: PCA of real-time monitoring data on the mixing-based
production of concrete.

Principal
component
Z

Characteristic
value λi

Contribution
rate αi (%)

Cumulative
contribution rate α

(%)

Z1 6.7604 75.1154 75.1154

Z2 1.2500 13.8884 89.0038

Z3 0.3458 3.8423 92.8461

Z4 0.2765 3.0724 95.9185

Z5 0.2200 2.4443 98.3628

Z6 0.0819 0.9096 99.2724

Z7 0.0493 0.5475 99.8199

Z8 0.0162 0.1801 100.0000

Z1 = −0:3606X1 + 0:3636X2 + 0:3552X3 + 0:3759X4 + 0:3484X5 − 0:3397X6 − 0:2845X7 + 0:3737X8 + 0:1135X9,
Z2 = −0:1267X1 − 0:1955X2 − 0:2232X3 − 0:0976X4 − 0:1354X5 − 0:1457X6 − 0:3947X7 − 0:1752X8 − 0:8126X9,
Z3 = −0:3265X1 − 0:0116X2 − 0:084X3 − 0:0626X4 − 0:0231X5 − 0:3207X6 − 0:837X7 − 0:0255X8 − 0:2764X9:

ð14Þ
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Table 5: Comparison of results of prediction of compressive strength of concrete by two BP-based models.

Group number (no.) Actual value/MPa
The Spearman and PCA optimized BP

model
Nonoptimized BP model

Predicted value (MPa) Relative error [%] Predicted value (MPa) Relative error (%)

21 46.9 47.82 1.96 48.11 2.58

22 48.9 49.22 0.66 48.70 -0.41

23 50.4 50.95 1.08 49.37 -2.04

24 51.5 50.18 -2.57 48.80 -5.24

25 46.6 48.99 5.12 48.53 4.14

26 45.7 47.61 4.19 48.17 5.40

27 45.7 44.21 -3.26 50.69 10.92

28 45.6 49.63 8.84 48.25 5.81

29 46.6 46.62 0.04 52.96 13.65

30 48.7 47.92 -1.60 47.40 -2.67

31 45.1 47.85 6.10 48.05 6.54

32 48.8 49.04 0.49 49.96 2.38

33 49.7 48.17 -3.08 49.58 -0.24

34 46.3 47.49 2.58 46.41 0.24

35 48.2 47.79 -0.86 47.01 -2.47

36 51.0 49.22 -3.49 56.49 10.76

37 51.9 49.98 -3.69 55.25 6.45

38 52.5 52.73 0.43 55.06 4.88

Mean absolute value 48.3 49.93 4.82 48.63 2.78

Group number (No.)
20
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BP neural network model
Spearman-PCA optimized BP neural network model

Figure 3: Prediction value comparison of the two BP neural network models.
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values were 6 and 5 for the Spearman and PCA optimized
BP neural network model and the nonoptimized model,
respectively.

3.3.2. Verifying the Predictions of the Models. Use the data of
the validation group and forecast group (the 21st group to
the 38th group) to verify and compare the prediction model
after training, the results are shown in Table 5. The mean
absolute percentage errors (MAPE) incurred by the Spear-
man and PCA optimized BP neural network and the nonop-
timized network were 2.78% and 4.82%, respectively.
Therefore, the optimized BP neural network model of pre-
diction was more accurate.

3.4. Analysis

3.4.1. Predictive Accuracy and Applicability. Figure 3 shows a
comparison of the prediction results of the nonoptimized

and the Spearman and PCA optimized BP neural networks.
The results of the latter were more consistent with the
empirically acquired values, and, thus, its predictions of the
compressive strength of concrete were more representative.

Figure 4 shows a diagram chart of the relative errors
incurred by the models. Table 6 shows the comparison of
predict errors incurred by the two models. The MAE
incurred by the Spearman and PCA optimized BP neural
network and the nonoptimized network were 1.30MPa
and 2.30MPa, respectively, and their RMSE were 1.66MPa
and 2.92MPa, respectively. It is clear that the proposed
Spearman and PCA optimized BP neural network model
had significantly smaller predictive errors than the nonopti-
mized model.

3.4.2. Analysis of Convergence Rate. Figure 5 compares the
processes of iterations of the two models. It is clear that
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Figure 4: Diagram comparison of the prediction errors of the two models.

Table 6: Comparison of the prediction errors of the two models.

Compare indicators Spearman and PCA optimized BP model Nonoptimized BP model

Mean value error 0.29MPa 1.60MPa

Variance 3.16MPa 8.48MPa

Standard deviation 1.77MPa 2.91MPa

Mean square error (MSE) 2.77 8.5

Root mean-squared errors (RMSE) 1.66MPa 2.92MPa

Mean absolute error (MAE) 1.30MPa 2.30MPa

Mean absolute percentage error (MAPE) 2.78% 4.82%

Root mean square (RMS) 48.66MPa 50.01MPa

Mean observation 48.30MPa 48.30MPa
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the latter converged more quickly, and its curve of iterations
stabilized after about 2,500 iterations. This shows that the
optimized model had a higher efficiency of calculation than
the nonoptimized one.

4. Conclusion

(1) This paper proposes the Spearman and PCA opti-
mized BP neural network model to predict the com-
pressive strength of concrete by using the real-time
production monitoring data, which solves the prob-
lems of long test period of traditional concrete, low
engineering efficiency, and high cost

(2) Spearman and PCA are used to reduce the quantity
and dimension of input variable, which effectively
solves the defects of traditional BP neural network,
such as low calculation efficiency and insufficient
prediction accuracy, caused by the original sample
data with many material variables and the large cor-
relation between each material variable

(3) Three principal components with a cumulative con-
tribution rate of 92.8461 are selected to establish a
BP model to predict the compressive strength. Refer-
ring to the actual test data, the results showed that
the MAPE of the Spearman and PCA optimized BP
model is 2.78%, the RMSE is 1.66MPa, and the
MAE is 1.30MPa, which is obviously superior to
the corresponding values of the nonoptimized BP
neural network: 4.82%, 2.92MPa, and 2.3MPa.
Compared with the reference [12], the MAE and
RMSE of machine learning model are 3.6MPa and
4.13MPa, respectively. It is verified that the pre-

dicted values of the model are more consistent with
the actual compressive strength
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