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Network slicing makes it possible for future applications with a variety of adaptability requirements and performance requirements by
spliting the physical network into several logical networks. Radio access network (RAN) slicing’s main goal is to assign physical
resource blocks (RBs) to mMTC, eMBB, and uRLLC services while ensuring the Quality of service (QoS). Consequently, it is
challenging to determine the optimal strategies for 5G radio access network (5G-RAN) slicing because of dynamically changes in
slice needs and environmental data, and conventional approaches have difficulty addressing resource allocation issues. In this
paper, we present an energy-efficient deep deterministic policy gradient resource allocation (EE-DDPG-RA) method for RAN
slicing in 5G networks to choose the resource allocation policy that increases long-term throughput while satisfying the
requirements of B5G systems for quality of service. This method’s main goal is to remove unnecessary actions in order to lower the
amount of available action space. The numerical outcomes demonstrate that the proposed approach outperforms boundaries by

enhancing deep-rooted throughput and effectively managing resources.

1. Introduction

The fifth generation (5G) of the mobile network is being
added in order to satisfy user expectations and the business
requirements of network service providers in 2020 and
beyond. By 2035, it will be valued at more than $12.3 trillion,
predicted in [1]. The 5G standard makes it possible to pro-
duce a state-of-the-art end-to-end network with completely
mobile communication. The 5G system is well-matched with
an extensive variety of existing use cases, each of which has a
specific set of service needs. Multiple services are typically
grouped into the three categories of mMTC, eMBB, and
uRLLC [2]. The requirements for the eMBB are substantially
dissimilar from those for the uRLLC and mMTC. Due to
their specs, low data transfer volume, low power consump-
tion, and delay resilience, mMTC applications stand out
[3]. For run-time interaction, various uRLLC and mMTC
platforms support higher throughput and reduced latency.
eMBB applications stand out because of their higher data
rates, bandwidth, and mobility support over a large service
area. We demand substantial networks with step-based den-

sities, considerably higher bandwidths, network connectivity,
full coverage mobility, hyper security, and secrecy due to the
tremendous growth of users, potential uses, traffic volume,
and business practices [4].

Modern network slicing (NS) makes it possible to switch
from a static to a dynamic network infrastructure. Network
slicing is the main advance of 5G technologies, which uses
network virtualization, software-defined networks, and fog
computing as enablers to provide a range of network capa-
bilities based on user needs [5]. The ability to independently
change each slice is how the network works, assigns the
proper amount of network resources in line with business
needs, and enhances the overall flexibility, robustness,
dependability, and traffic models. A physical network might
be divided into numerous logical networks using network
slicing. The authors of [6] optimize the distribution of
diverse resources and offer suitable assistance to numerous
consumers of various services. Based on the needs of the
slice, an end-to-end digital network can adaptively offer
various services. Each network slice can offer resources,
including transmission power, processing resources, resource
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blocks (RBs), and bandwidth. Each slice runs autonomously
from the others because of their separation; hence, issues with
one slicing do not influence the functionality of the other
slices [7].

Core network (CN) and radio access network (RAN)
comprise a network slice. 5G core network slicing has gar-
nered much interest compared to RAN slicing, which has
so far attracted minimal interest from the research commu-
nity. Allocation of resources is a major problem with RAN
slicing. RAN slicing continues to be a key difficulty for users
while maintaining the quality of service (QoS) needs as the
radio access network environment changes in wireless link
transmission conditions, user expectations, and user density.
Resource selection in the RAN slice is more difficult than
core network slicing when user movement and radio chan-
nel circumstances are considered [8]. The primary purposes
of network slicing in 5G networks are resource scheduler
allocation [9]. Resources were distributed statically in the
previous research, with a set number of resources going to
each slice. This would cause resource under- or overutiliza-
tion, rendering the remaining resources useless and creating
multiple difficulties for different mobile services in order to
maintain QoS standards.

Resources will be underutilized without an adaptive
resource utilization approach, which can cause issues for
consumers using different services. In 5G network slicing,
the MDP can be viewed as resource allocation to consider
the importance of both SE (spectrum efficiency) and EE
(energy efficiency) in the network. Allocation of resources
is an NP-hard issue that is practically unsolvable when deal-
ing with enormous volumes of data. A machine learning
strategy can resolve NP-hard resource scheduling issues
[10]. Deep reinforcement learning (DRL), a machine learn-
ing component, has recently grown in popularity and is use-
ful for decision-making. DRL development is expanding in
robotics, cyber security, and video games [11, 12].

This paper introduces an enhance, efficient deep deter-
ministic policy gradient resource allocation (EE-DDPG-RA)
framework based on RAN architecture to increase the radio
resource allocation effectiveness of MVNOs. Radio resources
are distributed across eMBB, uRLLC, and mMTC users using
a Markov decision approach (MDP). For the purpose of allo-
cating system dynamics RB and energy infrastructure to each
client in a 5G network slice, a DRL-based resource allocation
mechanism is being taken into consideration. When assigning
resources to multiple users under this system, each customer’s
requirements in each slice are considered because the channel
circumstances changed. This is the first article that, as far as
the author is aware, addresses RAN resource allocation
through a partnership of deep learning and reinforcement
learning. To help RAN make accurate decisions, the signifi-
cance of online choice components and projections can be
dynamically adjusted.

(i) The primary contributions of this study are, in brief,
listed below

(ii) A dual optimization goal of RB allocation and
energy minimization is proposed for the resource
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scheduling problem to reduce energy consumption
and satisfy QoS criteria

(iii) An MDP can describe the continuous control prob-
lem known as the dual optimal problem because of
its broad solution area

(iv) The DDPG resource scheduling (DDPG-RS) algo-
rithm is proposed to obtain the optimal resource
scheduling scheme founded on the advantages of
DDPG in solving persistent control problems and
the scalability problem

(v) The DDPG approach enhances the entire system’s
performance by dynamically allocating the above-
mentioned resources to each slice

(vi) Finally, extensive simulations performed in Python
confirm the usefulness of the suggested framework

The remainder of the essay is structured as follows: there
is a study of the literature in Section 2. Section 3 discusses
the framework and problem definition. In Section 4, we sug-
gest the EE-DDPG-RA algorithm to solve the issue. The
simulation results are presented with an explanation of the
applicability and effectiveness of the suggested technique in
Section 5 outcomes. In Section 6, the conclusion is exten-
sively explained.

2. Literature Review

Numerous studies that looked at RAN slicing were pub-
lished in [13] with deep slice. This deep learning strategy
uses neural networks to tackle network access and load bal-
ancing concerns efficiently. Using the supplied KPIs, this
study trains the network for inbound traffic monitoring
and network slice projection for any user type. Load balan-
cing and efficient resource consumption across the available
network slices are made possible by intelligent resource
allocation.

Both the business and academic communities consider
slicing as the foundational innovation of the 5G network.
Network slicing, according to the International Mobile Tele-
communications Union (IMT) [14], is a crucial part of the
5G network. Several business sectors and organizations that
establish standards, like the International Telecommunica-
tions Union, have been actively discussing machine learning
methods for network slicing. For instance, the International
Communication Union is creating groups based on machine
learning to support future networks like 5G [15]. We noticed
the use of network RAN slicing in [16]. The standard
resources and radio hardware are parts of the wireless com-
munication system known as the RAN slices; they are less
elastic than the core network. In order to manage diverse
requests from various mobile services, each slice of a RAN
has a distinct air parameter.

In this work, RAN slicing is considered since the RAN
section of the network interacts closely with the competitive
SPs, network operators, mobile customers, and the SDN
scheduler responsible for all management plan decisions.
Network slicing for the allocation of resources has been the
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subject of many research studies. The efliciency of multite-
nant resource allocation during network slicing may be eval-
uated using game theory as a conceptual approach [26, 27].
Caballero et al. [28] developed a matching theoretic drive
prioritization algorithm to assist the network in becoming
unbiased concerning the networking source of the energy
challenge. This enables the communication between infra-
structure and service providers over an over-the-top (OTT)
network. In [29], Sun et al. investigated a resource allocation
technique called “share-constrained proportionality distri-
bution” in a framework of diverse network games.

An explanation of the relationship between the phone
devices (MUs) in fog RAN slicing, the global spectrum sharing
supervisor, and the local cognitive radio controller was pro-
vided by Xiao and Krunz in [30]. None of the preceding
articles has sufficiently defined the efficiency of resource
scheduling. Xiao et al. in [31] considered complex network
slicing for mobile edge computing systems in the context of
energy recovery techniques that are improving and becoming
more accessible. A Naive Bayes technique was recommended
in order to obtain the ideal resource-slicing architecture
between certain edge nodes. By trusting on the movements
of the statistics network, this method reinforces the necessity
for network density a priori statistical knowledge. With net-
work or spectrum resource slicing as their primary constraints,
these initiatives can offer basic mobile services [32].

On the contrary, network slicing becomes more agile
and adaptable to a changing network environment due to
intelligent learning. For extremely large service slices, the
authors of [33] developed a primary concern admittance
system that included two layers of approaches and the heu-
ristics technique. However, the 5G network is dynamically
ingrained [34]. The internet provider must optimize how
resources are allocated among the layers in order to satisfy
the shifting slice requirements because the consumption of
resources and the volumes of network activity vary over time
in the slice.

Despite significant efforts, the literature on the dynamic
and effective regulation of RAN slicing still had several holes.
We believe that not enough research has been done on
dynamic scheduling algorithms for network slicing. Q-learn-
ing is used to improve resource allocation to a single vertex
in a VNE in the dynamic resource strategy described in [17,
35]. Dispersion of resources differs from virtual network envi-
ronment (VNE) distribution. Dynamic resource planning in
5G network segmentation is becoming more and more diffi-
cult as we deal with reliant virtualized network functions
(VNFs) with prior orders and variable resource necessities,
as well as separate slices with different QoS criteria. Building
a flexible resource-scheduling technique for the various QoS
requirements of various network slice services is essential to
be able to maximize service productivity and resource con-
sumption effectiveness [18, 19].

3. The System Model and Problem Formulation
System Description and Assumption

3.1. Business Model. The main characteristics of the system
are listed below, coupled with an illustration of the most

basic wireless network configuration in Figure 1 showing a
variety of supplies used by tenants:

(i) Each tenant dynamically distributes difterent resources
to many user equipment (UE) units following the ser-
vice level agreement (SLA). Customers can access
multiple resource blocks to find various service slices
assigned to other UEs. The UE might be a network
device powered by the Internet of Things (IoT).
According to priority, each slice provides services to
a set of users in real time

(ii) Every tenant buys a portion of the network and asks
the network operator for a physical resource block
(PRB) on their portion’s behalf. The infrastructure
provider then maintains the network

(iii) The major component is the controller, which dis-
tributes networking PRB to the slicing and the rele-
vant slices’ customers

(iv) Because so many services are available, the control
will constantly adjust the resource allocation
approach for each slice to fit its needs

(v) In addition, the controller learns from prior errors
and assigns power and other resources to the UEs
following the observed rate or queuing information
of the specific slice. It is relevant in the following
two situations:

(a) The controller can allocate resources according
to any resource allocation strategy to schedule
UEs in order to avoid deadlock in the case of a
huge queue

(b) By sharing a channel with other users, users
may cause interference problems that increase
the likelihood of a service interruption

Consequently, the control must change the channel
allocation strategy for the network slices to ensure the
QoS slices.

3.2. System Model. We are considering a transmission situa-
tion in which a base station provides service to users across
various randomly selected coverage zones. U=1, 2, 3, ...
characterises a user’s set. The base station, DU, and other
parties exchange CSI whenever a data center is connected
to one, as well as the user equipment (Figure 1). Available
physical blocks that may be allocated to the eMBB, uRLLC,
or mMTC exist within each of the s distributed systems that
comprise up the physical network topology. x, y, and z stand
in for the slicing for eMBB, URLLC, and mMTC, respec-
tively. While in eMBB, URLLC, or mMTC, there are x, y,
and z total network slices, correspondingly (x +y +z=N).
To allocate the foundation network allocation to the net-
work element’s eMBB, URLLC, and mMTC slices, we used
three binary vectors, _el, _uJ, and _(m)L. Table 1 describes
the abbreviations used throughout the paper. Table 2
depicts the RL-based resource allocation algorithms, which
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represent the main focus, optimization objectives, and their
use case scenarios.

o, (x)=1,

=1 "
0 otherwise,

‘xu(y) = 1’

0 otherwise,

a,(z)=1, )

0 otherwise.

In wireless communication, the prevalent fading chan-
nel model is taken into consideration. We look into the
claim that variations may not impact the effectiveness of
the transmission channel because the user-driven learning
method employed in the DRL-based heterogeneous net-
work tries to manipulate explicit channel coefhicient infor-
mation. Written specifically, the channel coefficient coff
(bs, u) C between both the user u and ground station
(BS) is

COffbs,u = ﬁbs,ugbs,u . (4)

In this scenario, the substantially faded coefficient is
(bs, u), and the limited fading factor is g (bs, ) CN (0, 1).
In this arrangement, the following factors influence the high
bandwidth rate Rate, of UE k:

BS *
zbszl COffhs,uwbs,u
Rate, =log, | 1+ p , (5)
k

TaBLE 1: Abbreviation used in paper.

Notation Description

BS Base station

RB Resource block

eMBB Enhanced mobile broad band
uRLLC Ultrareliable low latency communication
mMTC Massive machine type communication
QoS Quality of service

RL Reinforcement learning

DL Deep learning

DRL Deep reinforcement learning
AWGN Additive white Gaussian noise
DPG Deterministic policy gradient
DDPG Deep deterministic policy gradient
UE User equipment

RAN Radio access network

CN Core network

DU Digital unit

CSI The channel state information
TTI Transmission time interval
CINR Carrier-to-interference and noise ratio
N Transport network

where the terms wbs)u” refers to noise power, and o?
refers to the downstream subcarrier parameter from the BS
(BS) to customer u. We used the NOMA systems to over-
come the disturbance from the surrounding subchannels.
We suppose that the base station uses a range of frequency
bands in order to reduce intercellular interference.
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TaBLE 2: RL-based resource allocation.

Use case/vertical

Ref. Algorithm Focus Optimization objective app Training Development
Improve resource consumption and slice Continuous bit
[17] DQN RAN P . Sump rate and lowest bit Centralized Simulation
isolation
rate
Maximization of resource use while
[18] Q-learning assembling the elements of successful Haptic Centralized Simulation
communication
Q-learning, . .
[19] SARSA, and RAN Assurapce of efficient resource use while Internet of Things Centralized Simulation
fulfilling the demands for low latency
Monte Carlo
DDQN and Max1.m1ze long.-term proﬁts. while offering the Manufa;turlng, . Emulation
[20, 21] . RAN services that different multitenant customers  automotive, and Centralized
duelling DQN . s (TensorFlow)
require utilities
Maximize the utilisation of radio resources eMBB, mIoT, and . . .
[22] DQN RAN while preserving QoS URLLC Centralized Simulation
E2E (RAN, SFC traffic variations should be Emulation
[23] DQN TN, CN, accommodated when VNF placement is eMBB Centralized ~ (OpenAl
edge) optimised gym)
It is necessary to maximize spectrum VoLTE, eMBB, . . .
(24, 25] LSIM RAN efficiency and the SLA satisfaction ratio and uRLLC Centralized  Simulation
(8] A3C RAN Making the most.of resources while preserving Undeclared Distributed Emulation
slice separation (TensorFlow)
3.3. Slice User Scheduling Model. Users are connected to the Time

proper routing slice in this system based on the numerous
requests they make once the network has determined what
kind of product or service the user needs. Each slice is
designed to serve a specific user type and has specific virtual
resource requirements, such as those for internet and power.
This article develops a distinct strategy for distributing
resources across each slice. To keep the traffic queue full,
each user continuously buffers incoming packets. To
decrease the amount of time, evidence needs to be delayed
in the pipeline until being transmitted requires careful queue
scheduling to maximize system capacity. The queues must
be properly scheduled to increase system capacity and
decrease buffer queuing wait times. Consider for a moment
that network slices are capable of supporting a variety of ser-
vices. Each slice contains u,s={1,2,3,--}, etc. users. The
user arrives at time slot t as A(#) A(t)Y A. In comparison,
A is the number of people who can physically fit in the space
at once. The total amount of people coming across all slices
is the same as the number of users entering at time slot #:

S
A(t)= ) At). (6)

A(t) shows the number of people who initiated slice s
while time slot ¢. Figure 2 displays the slice s request queue
as QF (1), QF () < co. First users access their particular net-
work slices in reply to the demands of various services at a
time f. The slice administrator then distributes all slice users
among various resource modules in compliance along with
the opportunity scheduling approach [36]. The NOMA sys-

Kouanbaxg

F1GURE 2: Allocation of resource block using slices.

tem’s receivers employ successive interfering elimination
(SIC) to multiple users of different power levels onto the
similar subchannel. The procedure specifies that multiplexed
users with higher channel gains can decode and remove
noise from multiplex customers with smaller channel quality
and accuracy [37]. Users often receive lower power alloca-
tions when there are strong channel gains, whereas users
typically receive larger power allocations when there are
low channel gains [22]. A scheduling system has been
developed to guarantee that clients connected to a single
subchannel have different channel gains. For accessing vari-
ous resource blocks (RBs) #n of section s, it is described as
Q:,(1), @, (t) < 0o p which is defined as the likelihood that
the consumer of slice s will be processed on RB n, n $ N,
where N shows the set of RBs, and | N | = N. The following



is a calculation for the total likelihood that slice i user will
receive attention during time slot #:

Y P,=1 (7)

neN;

In this equation, N, denotes a group of RBs with slice s
assigned to each of them. In order to slice s, denoted by N,
they divide a group of accessible bandwidths among one
another. Equation (2) indicates that the system accommodates
all targeted users. The user holds duration for sliced s on base
network » while time slot ¢ is represented as follows:

Q1) =Q, (). (8)

Slice s on RB #’s user queue length for prime time ¢ is spec-
ified as Q*(¢) = Q,,(t). An expression for queue data storage
at the time is provided after a statement for the queue caching
time:

=Y ) Q0. ©)

neN

Using equation (3) as an example, average queue caching
Q is as follows:

Q= lim sup ZE{Q (10)

teT

3.4. Resource Management Model. The slice operator takes
each user’s channel circumstances into account while deciding
which RB to allocate them to. The system’s networks in this
study are entirely independent, uniformly dispersed Rayleigh
fading channels, while the study’s channel noise is multiplica-
tive white Gaussian noise. Resource blocks are a type of net-
work resource used by the RAN.

A resources block (RB) is split into a frequency domain
and a time domain in Figure 2. The frequency is divided into
subcarrier units. TTI units are used to measure time. The
proportional fair scheduler gives a UE an RB for every
TTI. When standardized by the overall data transfer rate of
all UEs, the scheduler assigns far more RBs to the UE with
the greatest data rate. Therefore, fair distribution may be
carried out, and RBs may be allocated to UEs even when
the information rate is very low, as it is for UEs close to
the cell edge. The subcarriers of bandwidth B are divided
into numerous U (s, ¢) consumers of slice | that are clustered
on the multicarrier c in the equation C=1,2--- C.

The whole purpose of substantial subcarrier ¢ is charac-
terised by the symbol Pow ¢, where P, = ¥ ;* pow,, mpow. This
study examines the downlink transmission and ranks each user
according to their channel gains, as specified by the notation, in
which all the I is the encoding of the number of consumers
inside the subcarrier |u; | < -+-<|u;; [* < |u; [ < <|u, |
Users can be recognized based on power level and channel
gain. The subcarrier ¢’s overlying signal on the transmission
connector through the NOMA transmission is represented by
the symbol Sig,, which is as follows:

Wireless Communications and Mobile Computing

Sig,, = i \/pow; Trans, . (11)
i=1

The terms Trans,;, and pow;  in this context, refer,
respectively, to the data transmission of user I on multicarrier
c as well as the energy supplied to the customer I on subcarrier
¢. In RAN slicing, resource block isolation gives each slice
access to the greatest number of immediately available RBs.
In order to avoid using more RBs than were permitted, each
slice also allocates RBs to its UEs. An equation for the infor-
mation from client I on multicarrier c that the receiver picked
up is as follows:

Vie = h;Sig + w; . (12)

In (6), he detailed Rayleigh fading network parameter
between several BSs to the i-th user on transmit antenna ¢
and h; that are 0 complex AWGN random variables with
variances of 02 and w; , respectively.

Shannon’s capability equation and the SIC technique at
the transmitters can be used to determine the maximum
attainable date frequency of the i-th consumer on subcarrier
¢ as follows:

Pow; I';

1,C™ 1,C

. (13)
+Z] 1+1p0 Js€ 1c

According to (7), each consumer can be viewed as hav-
ing a rate that will be considerably impacted by how much
power is given to new users. Here, B, is the subcarrier’s
bandwidth B, and I'; i is the i -th user’s CINR, which is

characterised as follows

Shannon; ,, = B, log, (1 +

(14)

The preceding is an equation for the entire slice rate; mean-
while, we supposed that slice S has access to C subcarriers:

C U
RatesC = Z Z Rate, ,

c=1u=1

c U
P I,
Rate’ = ZZBC log, | 1+ Wi ic .
1+ZJ l+lp0 Jjs€ zc

c=1u=1

(15)

The determined number of available bandwidths can be
allotted to satisty the slicing performance and latency necessi-
ties. The NOMA calculation includes the fading channels ¢
global path loss as follows:

Powy,, = 1 — PowRate{Vr; > Rate!™"},i={1,2, -
={1,2,---,S}.

NN

(16)

3.5. Problem Formulation. The problem requires a decrease in
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the overall quantity of experience delay «,(y) for many inter-
connections and URLLC users «,(y) for mMTC in order to
achieve an effective allocation of resources for MVNOs and
obtain a greater sum of data rate «,(x) for eMBB users. So, in
a coupled issue, we express the maximizing and minimization
problems of an MVNO MiM as follows:

Maximizationpe,gmance = { Z a;, af ,a; — Z af Delay; + Z a; Massive,},

i=U; jev; leU;
(17)

Subjectto 0 < Performance; < Performance,,,,., (18a)
Z Performance; < 1, (18b)
=,

0 < Performance, < Performance, ., (18¢c)

Throughput, > Throughput"", (18d)

Delay; < Delay ™, (18e)
Massive, = Massive"™". (18f)

While determining these values, the user’s requirements
and the protection of resources’ upper limits must be taken
into account. The constraint (18a) ensures that the frequency
fraction allocated falls between the range of 0 and
Performance,,,, the maximum value. There is a guarantee
that the channel capacity allotted to customers will not exceed
the bandwidth B; offered from the InP by constraint (18b).
Constraint (18d) ensures that an eMBB user’s data rate must
exceed a predetermined minimum standard. To ensure that
the maximum number of devices connected by an mMTC
user is more than a predetermined threshold, constraint
(18e) states that the URLLC subscriber’s data packet delay
should not exceed a specific limit (18f). Our network slicing
also aims to increase system throughput while guaranteeing
that the quality of service requirements of various network
slices are satisfied. To achieve the aim, we must consider three
crucial aspects of the system throughput:

Throughput of eMBB network slices (Thru,)

Throughput of URLLC network slices (Thru,)

Throughput of mMTC network slices (Thru,)

3.5.1. Throughput/Efficiency of eMBB Network Slice. The
symbol Thru,, u denotes the throughput for such eMBB net-
work slice request that a UE makes to the mobile operator:

X
Thrux’ u= Z ‘xe('x)fx,u’ RS’ (19)

x=1

where the pair f_ designates the resource bandwidth pro-
vided to a UE u inside the i-th eMBB slice (i, u). The fre-
quency restriction of UE should be bigger than Thru,, u,
and it should be highlighted.

Thru,, u > Thru (20a)

u,min *

The corresponding sum throughput for the eMBB par-
ticular portion is as follows:

s
Thru, = Z Thru, . (20b)

s=1

3.5.2. Throughput of uRLLC Network Slice. The UE k URLLC
slice’s throughput is

Y
Thru,, u = Z @, (0)f yo Ry (21a)
y=1

The symbol f; , designates the resource bandwidth given
to the UE k inside the j-th URLLC slice. According to our
research, one packet of data should theoretically be sent
within a single URLLC frame. The frame time should not
be exceeded by the maximal network delay D as [14].

Fy,k

<
Thru, u ~ D i

(21b)

whereD (y, k, max)is the maximum segment latency of
user equipmentkin they-th URLLC particular portion, and
F (y,k) is the packet size to user equipment k in the y-th
URLLC data object. The URLLC network slice’s connected
sum throughput is Thru, = ZleThruy)u.The packet length
for user equipment k in the y-th URLLC set of resources is
F, i and Dy ., maximal is the maximum segment delay
of UE k in the y-th URLLC set of resources. The related
sum throughput for the URLLC slice is Thru, = ¥,
Thru,,,.

3.5.3. Throughput of mMTC Network Slice. The mMTC slice
of user equipment k shares characteristics with the uRLLC
and eMBB slices in terms of their throughput by

z
Thru,, u = Z & (2)f . R (22a)
z=1

The UE inside the I-th mMTC slice has a resource band-
width (fl; k) assigned to it. Such as the eMBB and URLLC
slices, the mMTC slicing is not subject to a rate/latency
requirement. The formula for the suitable sum flow of an
mMTC slicing is Thru, = ZleThruz,u.

In decision, the following equation can be used to deter-
mine the total network bandwidth T (¢) entirely at the time ¢

Thru},,, = Thru! + Thru}t, + Thrul. (22b)

The problem of improving system throughput across T
time frames is expressed as follows:

T
, (*
Prob : maX{Thrui+Thru;+Thrui} Z Ttotal’ (23)
t=1



where the components of binary data are, appropriately,
Thru, + Thruj, + Thru; . Remember that the extra slices are

saved as a backup.

Due to the requirements of the dynamical slices and the
presence of data gained in the long-term optimum objective,
the novel optimization issue is highly difficult. As a result, it
is challenging to solve it directly using the traditional opti-
mization procedure. The problem can be formulated using
an MDP and the necessary reinforcement learning solution
approaches.

4. Basics of Deep Reinforcement Learning

Reinforcement learning (RL) is a field of artificial intelli-
gence and intelligent systems that deals with the issue of a
learning agent that is placed in a setting to accomplish a task.
The RL agent must learn by trial and failure how to behave
in order to acquire the highest reward, in contrast to rein-
forcement methods, where the learner’s structure receives
instances of good and bad performance [23]. In order to
do this work, the agent must perceive the environment’s
state at some level and act accordingly to create a new state.
The agent’s action results in a reward, which encourages it to
repeat the same behaviour in the future.

Modelling the environment’s state transitions depending
on the agent’s behaviours is also required to formulate the
challenge eventually. As a result, an MDP is created that
has the functionalities of S, A, R, and T, where S denotes a
set of environmental states, A denotes a set of potential
actions within a state, T denotes the function that switches
between states based on the actions, and R denotes the
reward for the specific pair of S and A.

4.1. DRL-Based Resource Allocation Model. We outline the
MDP’s formulation in this section. We establish the sub-
space, the activity floor plan, and the value function for
rewords in formulating the MDP issue.

4.1.1. State Space. Each agent keeps track of the status of the
environment at each temporal step ¢. The sort of unique vis-
itors and their obtained features is observed for each virtual
network mobile operator (MVNO). The sorts of users are
required since they establish the SLA’s requirements (SLA).
To allocate bandwidth effectively, estimating the strengthen-
ing between each related user on the communications plat-
form is required. Each MVNO periodically collects the
channel gains. In actuality, every MVNO sends out model
validation to all of its customers. Each user then calculates
the channel state data and transmits it back to their MVNO
through the controller.

The observed condition of MVNO mi at period ¢ is des-
ignated as State;(¢).

State;(t) = {channelg,;.,(t), U;(t)}. (24)

The list of user categories for the MVNO is characterised
by U, and U,, where channel Gain,(t) reflects the signal
strength among MVNO and its users during the time slot ¢
. The three numbersU,,U,,andU,are used to specify the
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many user groups and represented the priority of each cate-
gory. Users of URLLC are typically given higher priority rat-
ings since they have stricter delay requirements.

4.1.2. Action Space. Each MVNO receives the required band-
width fraction B; during each time slot from RIC. Users of
an MVNO are given B; factions. The following is the opera-
tion zone for every MVNO during time slot t:

Act;(t) = [0, Performance,,.]. (25)
Each action, a; Act; (t), is represented as a row vector,

Performance; ;(t).

4.1.3. Reward Function. An MVNO desires an activity g,
Act; (t) at time step t, in exchange for which it is given a
reward a; € Reward, (). Since the goal is to reduce the delay,
the incentive should be defined as a function of the latency
for uRLLC users regarding the data flow for eMBB users
and the maximum number of devices connected.

We specify a reward associated with each end user’s con-
tentment, with

17771 1

Reward,(t) = af, ,a], a’. (26)

These words can be used to convey the total reward:

N
Reward;(t) = Z Reward ;) if a; is valid,~0.1 otherwise.
i=1

(27)

If the average of the components is far less than 1 and
the fractions assigned result in latency and data speeds that
match the SLA values, the action g; € g; is deemed valid. A
significant reward is provided if the action is invalid in order
to deter the agent from making a similar decision in later
phases.

4.2. Proposed EE-Deep Reinforcement Learning-Based Resource
Allocation Algorithm. The valuation and policy-based subcate-
gories of prototype reinforcement learning systems can be used
to categorise policy modification. Value-based solutions give
the agent the ability to acquire the best policy by helping them
comprehend the value function. The action space is always
there in this piece. The value-based approach of the linear sys-
tem and the naive discretization of the action space lead to the
dimensional curse and the loss of crucial information about the
structure of the action domain. The policy-based approaches
make use of parameterized policies to successfully train proba-
bilistic policies for addressing high-dimensional data action
and state and action space challenges.

The following is a representation of the unpredictable
policy function 7ryat time step t: when a policy is parameter-
ized, action in 0 at state s follows the posterior distribution
with parameter.

7(a|state, 0 = P (Act, = a|State, = state 0, = 0)). (28)

Obj(1r) =E,_pr 4, [ (state, a,)].  According to the
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objective function’s specification, the subsidised official visi-
tor probability for a policy serves as a representation of the
expected return, denoted by p”. The gradient descent tech-
nique [38] uses the steep descent to get the optimum param-
eter 7. This is a representation of the parameter update:

0,11 =0, +av, Obj(my ). (29)

The sequential policy gradient (SPG) must carry out com-
plex calculations when the reaction is a high-dimensional ver-
tex in order to sample the action again for stochastic policy.
Instead of frequently sampling actions, the deterministic pol-
icy gradient (DPG) [39] immediately generates a deterministic
behaviour policy. The DPG optimization problem gradient is
described as follows:

VO™ (ug) = [Estate~pﬂ {Veue(S)VaQ“(StateW |a=ﬂe<state>} ‘
(30)

DPG-based techniques result in deterministic strategies as
opposed to studying the environment. Outside of official pol-
icy, exploitation, and exploration can coexist. Enough action
exploration is guaranteed via a stochastic behaviour policy.
The goal strategy is deterministic and effectively makes use
of efficient deterministic policies. As a result, the actor-
critical (AC) technique, which is detailed in the next section,
is used in the learning framework of the DPG technique.

4.2.1. Actor-Critic Method. The actor-critic method com-
bines the advantages of value-based techniques and policy-
based procedures. To put it another way, the actor generates
behaviour from a state that a policy function provides. The
critic develops an action-value function and usages the
TD-error to assess the action’s effectiveness (loss function).
The actor then uses the DPG technique to upgrade the pol-
icy variable with the critic’s output. The critical updates the
action function f using gradient descent [40]. Additionally,
the function approximations parameterized by 69 and 6,
the activity default value and the regulation variable are
taken into account. The following changes are made to the
linear combination parameter:

O, =1, +yQ (Statetﬂ,,u (state,,;|6") ‘9Q> - Q<statet, “t|9Q) >
6t +1)=02(t) + acétvqu<statet, a,|eQ) .

(31)

The actor uses the DPG mechanism to update policy
parameters 6%

0"(t +1) =0"(t) + a,Vupu(state, |6") VaQ<state,, a,|9Q>

a=p(state, )

(32)

4.2.2. Deep Deterministic Policy Gradient-Based Resource.
An algorithm for allocating resources using deep reinforce-
ment learning is introduced in this section. With the aid of

a special dual deep stochastic policy gradient technique,
the resource provisioning issue is addressed. The actor-
critic technique is unbalanced when deep neural networks
are utilized with function approximations. The experience
replay training method of the deep Q network algorithm
[41] can destroy the correlation between succeeding data
[42]. Based on the rewards of the DQN algorithm and
actor-critic method, the deep deterministic policy gradient
(DDPG) algorithm successfully operates over the continuous
state domain. The DDPG architecture is presented in detail
in Figure 2 [43, 44]. The solid red line and the blue lines with
full dots represent the training processes for actor or critic
networks, respectively.

(1) Experience Replay. The agent communicates with the
environment to collect data tuples (state,, a,, r,, state,,, Jand
keep them in replaying buffer D. The critique and actor ran-
domly select a minibatch of subsampling from D to modify
the dynamic programming variable and the regulation func-
tion parameter.

(2) Target Network. Deep neural networks used to execute Q
-learning directly have been shown to be unstable. The
network update usually differs from the original because
two protocols target networks, and the predicted network
shares a set of parameters. Duplicates of the actor network

' (State|6¥ ’) and critic network Q'(state, a|9Q,) are gener-
ated in order to ascertain the target value. DDPG employs
0" «—— 10 +1(1-1)0" soft target updates for the target net-
works’ weights. The learning stability could be enhanced
with 7« 1.

5. Experiments and Results

Simulation studies using TensorFlow and Python were
conducted to evaluate the dominance of the proposed
DDPG-based training set for the allocation of resources in
RAN slicing. A resource item and two resources, mainly
power capacity and bandwidth, are assigned to each physical
point. Five network slices, or a total of 25 VNFs, are ran-
domly distributed within the network during each episode’s
deployment. The needed resources for each VNF from the
inside of a slice are evenly split between one and twenty
resource units during each system cycle. The simulations
we could obtain are shown in the following figures. Using
the following resources, we selected different slices: 150
megahertz is the total bandwidth, and 175] of energy
resources is available.

Furthermore, in response to demands from the end user,
we altered the resources required for each job. In order to
fulfil the required quantity, it distributes resources as equally
as is practical, raising, or lowering them to the level that
most closely satisfies the needs of each slice. When a slice
demands more resources, the agents will try their best to
accommodate the request or assign as many of the resources
as is practical. However, after the resources have been allo-
cated, the agents will not reduce the resources, even if
resource utilization is low. In this method, the best agent
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emphases on reducing the SLA breach. The random agent
assigns a random amount of the demanding resources to
each request.

In addition, the DDPG environment looks like this. The
motivation discount in our simulations is fixed at 0.9, the
learning rate for a performer is set to 0.001, and the learning
rate for a critic is set to 0.001. This research will discuss the
simulation’s findings in the sections that follow. The efficient
deep causal gradient descent algorithm needs two continu-
ously trained efficient deep deterministic policy gradient-
based algorithms. At each encounter, T time frames are used
to repeatedly train the second efficient deep deterministic
policy gradient-based algorithm for user space adaptability
and the first efficient deep deterministic policy gradient-
based method for slice-level adaptive. Slice-level performers
and critic networks are taught once client-side actors and
critic networks have been trained. The second DDPG
method takes as input the result of the first DDPG algo-
rithm’s actor program.

The differences in reward systems based on the number
of episodes are shown in Figure 3. We can see that the pro-
posed DDPG-resource allotment approach converges after
about 200 sessions. We map the reward according to the
amount of training sessions during the training phase. We
see that as the number of training sessions climbs, the overall
incentive of DRL-NS increases quickly. As a result, as shown
in Figure 4, the compensation rises with each episode and
reaches a point of stability after around 200 episodes.

Figure 4 also demonstrates that the tenant’s general util-
ity is rising, which is the main objective of our suggested
plan, as indicated in the problem formulation section. RB
penetration and MVNO used to trade off against each other.
The MVNO rents more RBs from the systems integrator,
increasing MVNO consumption to provide more transmis-
sion resources to network operations and generate cash.

The bandwidth resource distribution with the number of
episodes is shown in Figure 5. When tried to be compared to
end user queries in slice 2, slice 1’s requests from bandwidth-
hungry end customers require more bandwidth. In contrast,
slice 2’s end users’ queries are distinct from those in slice 1’s
end users’ requests. Therefore, high bandwidth resources
were allocated to slice 1 using the proposed DDPG dynamic
resource allocation algorithm, while other resources were
allocated to slice 2. According to Figure 5, the suggested plan
allocated slice 1 after around 20-30% other resources and
70-80% bandwidth resources. The trends for other resource
distributions to slices are comparable. Variations in resource
capacity affect how much energy the MVNO operator or
controller gets. The size of the resource capacity determines
how much money the MVNO controller will make from
resource allocation.

Figures 6 and 7 depict the system throughput and alloca-
tion of energy resources to the delay needs. Slices 3 and 4’s
end user requests are slightly distributed normally. About
half of the requests necessitate a significant amount of
energy, whereas the other half demand system throughput.
As a result, slices 3 and 4 received roughly equal amounts
of energy resources and delayed requirements, respectively,
using the proposed DDPG dynamic resource allocation
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method. Figures 6 and 7 show that slices 3 and 4 get about
50% of the energy and 50% of the delay, respectively.

The DDPG algorithm is used for these wholly dynamic
resource assignments that should be emphasized. Figure 7
is an exception, where resource assignment varies by 400
episodes, possibly due to different end user request patterns.
The effectiveness of preserving resource actual values of an
MVNO controller’s usefulness is depicted in Figure 7. Every
algorithm gradually becomes more useful as additional
resources are made available. As a result, InP’s provision of
adequate resources is what makes MVNO controllers more
useful. The proposed DRL-based algorithm offers the most
utility. Figure 8 shows how to distribute resources to
improve system performance and reduce the need for delays.
The end user requests slice that correspond to the customary
resource allocation. The first half of the questions are inten-
sive, but the second half of the questions need the system to
be able to handle a lot of work.

6. Conclusion

This article looked at the number of MVNOs that use
resources when RAN slicing is in effect. We concentrated
on how to apply machine learning to create reliable slicing
patterns in various wireless communication environments.
After that, we suggested a DDPG to create a deep
reinforcement-learning system for distributing power and
bandwidth simultaneously. Slices of the eMBB, URLLC,
and mMTC types were taken into account in our scenarios.
We organised the problem as a specific virtual network
mobile operator’s MDP in order to allocate radio resources
to different user types (eMBB, mMTC, and URLLC). In
our proposal, we combined the benefits of policy-based
and value-based reinforcement learning techniques into an
actor-critic approach. Since the fractional bandwidth values
are constant, we simultaneously train a Q-function and a
policy using a deep deterministic gradient. This gradient
has an ongoing effect. To enhance how many MVNOs man-
age radio resource allocation cooperatively, we developed a
(EE-DDPG-RA) DRL-based technique on a RAN architec-
ture. Under numerous simulated situations with non-ii.d.
and uneven distribution of the end users, the effectiveness
of the suggested (EE-DDPG-RA) DRL technique is demon-
strated. Experience has shown that, in comparison to models
created independently by each MVNO, the model trained to
employ (EE-DDPG-RA) DRL is more resistant to environ-
mental changes.

We pointed up certain key concerns in order to fully exe-
cute the application of DDPGL in a larger meaning. In the
future, network slicing may benefit significantly from the
use of DRL, in our opinion. However, you should carefully
consider network slicing because it involves a number of ele-
ments before implementing DDPG: for network slicing to
succeed, a flexible and dynamic slice management strategy
is required, (a) limiting the acceptance of fresh slice requests.
How to use DDPG also provides a fascinating difficulty
because the state and action spaces must adjust to the mod-
ifications made to the “slice” space if new slice requests arise.
A quick policy-learning method is needed because of user
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activity and the time-varying nature of wireless channels in
(b) policy learning cost. However, the cost of policy train-
ing today is still less than the required learning rate. As a
result, there are still many intriguing questions that have
not been addressed.
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