TY - JOUR A2 - 张念非盟 - 李,吉盟 - 张汇强AU - 欧建平AU - 王,魏PY - 2020 DA - 2020年8月28日TI - 通过IIF-Net的深雷达信号识别方法学习模式SP - 8858588 VL - 2020 AB - 在现代战场上,如何快速准确地识别雷达信号的电磁环境日益复杂是在电子对抗领域的一个热点。在本文中,USRP N210,USRP-LW N210,和其他一般的软件无线电外设用于模拟发射和雷达信号的接收处理,和总共8个雷达信号,即,巴克,弗兰克,乱,P1,P2的,P3,P4,和OFDM,生产。信号取得时间频率图像(的TFI)通过崔 - 威廉斯分布(CWD)。根据雷达信号TFI的特点,一个全局特征平衡提取模块(GFBE)被设计。然后,用更少的网络参数,减少计算成本新IIF-Net的卷积神经网络已经被提出。The signal-to-noise ratio (SNR) range is −10 to 6 dB in the experiments. The experiments show that when the SNR is higher than −2 dB, the signal recognition rate of IIF-Net is as high as 99.74%, and the signal recognition accuracy is still 92.36% when the SNR is −10 dB. Compared with other methods, IIF-Net has higher recognition rate and better robustness under low SNR. SN - 1687-5265 UR - https://doi.org/10.1155/2020/8858588 DO - 10.1155/2020/8858588 JF - Computational Intelligence and Neuroscience PB - Hindawi KW - ER -