TY - JOUR A2 - Medina, Rigoberto AU - Cao, Huaihuo PY - 2016 DA - 2016/12/08 TI - Global Solutions in the Species Competitive Chemotaxis System with Inequal Diffusion Rates SP - 5015246 VL - 2016 AB - This paper is devoted to studying the two-species competitive chemotaxis system with signal-dependent chemotactic sensitivities and inequal diffusion rates
u
1
t
=
Δ
u
1
-
∇
·
u
1
χ
1
v
∇
v
+
μ
1
u
1
1
-
u
1
-
a
1
u
2
,
x
∈
Ω
,
t
>
0
,
u
2
t
=
Δ
u
2
-
∇
·
u
2
χ
2
v
∇
v
+
μ
2
u
2
1
-
a
2
u
1
-
u
2
,
x
∈
Ω
,
t
>
0
,
v
t
=
τ
Δ
v
-
γ
v
+
u
1
+
u
2
,
x
∈
Ω
,
t
>
0
, under homogeneous Neumann boundary conditions in a bounded and regular domain
Ω
⊂
R
n
(
n
≥
1
)
. If the nonnegative initial date
(
u
10
,
u
20
,
v
0
)
∈
(
C
1
(
Ω
¯
)
)
3
and
v
0
∈
(
v
_
,
v
¯
)
where the constants
v
¯
>
v
_
≥
0
, the system possesses a unique global solution that is uniformly bounded under some suitable assumptions on the chemotaxis sensitivity functions
χ
1
(
v
)
,
χ
2
(
v
)
and linear chemical production function
-
γ
v
+
u
1
+
u
2
. SN - 1026-0226 UR - https://doi.org/10.1155/2016/5015246 DO - 10.1155/2016/5015246 JF - Discrete Dynamics in Nature and Society PB - Hindawi Publishing Corporation KW - ER -