研究文章|开放访问
Liu Yang那 “A New Global Stable Conclusion on a Diffusive Leslie-Gower Predator-Prey System with Additive Allee Effect“,Discrete Dynamics in Nature and Society那 vol.2019那 文章ID.7.956015那 5. pages那 2019。 https://doi.org/10.1155/2019/7956015
A New Global Stable Conclusion on a Diffusive Leslie-Gower Predator-Prey System with Additive Allee Effect
Abstract
在这项工作中,重新考虑了在均匀的Neumann边界条件下对捕食添加剂的扩散leeslie-gower捕食者 - 猎物 - 猎物模型进行了重新考虑。通过使用比较方法而不是Lyapunov功能方法,为系统独特正平点的全球稳定性建立了新的充分条件。结果表明,我们的结果补充剂和补充了杨和钟,2015年的主要结果之一。此外,进行数值模拟以巩固分析发现。
1。Introduction
Taking into account the inhomogeneous distribution of the predators and their preys in different spatial locations, the authors [1] established the following diffusive Leslie-Gower predator-prey model with additive Allee effect: 哪里 and 表示时的猎物和捕食者的密度T.and positionX, 分别。mandB.是表明已经建模的符号效果的严重性的常数。在该模型中,通过捕食引起的展示效果。在这种情况下,捕食者率消耗通过单调函数方便地建模 那corresponding to a Holling I-type functional response.是拉普拉斯运营商,是一个具有平滑边界的有界域 那andNis the outward unit normal vector of the boundary 。 and是猎物和捕食者的扩散系数,以及初始数据are nonnegative continuous functions due to its biological sense.
对于漫游系统的全球稳定性(1)作者在[1],在大多数研究中使用了[1-4.]。In this paper, we will obtain a new global stability conclusion by the comparison method, which was used in [5.那6.]。
2.全球渐近稳定性
明显,if 那然后系统(1) has a unique positive equilibrium point (猎物和捕食者的共存)。首先,我们回顾以下结果[1]。
Theorem 1.If 那然后系统(1)是永久性的。
定理2。The positive constant steady state (1)如果是全球渐近稳定
在[1], Theorem 2 was proved by using a Lyapunov function. In this section, we will prove the global stability under some new conditions. Thus, our conclusion significantly improves and supplements the one given in [1]。我们的证据基于上下解决方法[5.那6.]。现在,我们给出了全球稳定性的独特正平均衡位置的结果 (1)。然而,在生物学上,快速或缓慢地漫射,它们将在空间上均匀地分布到无穷大。
定理3。Suppose that all parameters are positive constants and Then, the positive equilibrium point 系统(1)全球渐近稳定;也就是说,对于任何非负初始值 那系统的解决方案(1)有属性 统一 。
Proof.从定理证明1(i.e., Theorem 2 in [1]),如果是条件保持,然后系统(1) is permanent and has a unique positive equilibrium position and there exist positive constants以便 对于T.sufficiently large, andsatisfy The inequalities (6.) show that and 是一对耦合的系统上层和下解决方案(1) as in the definition [7.那8.], as the nonlinearities in (1) are mixed quasimonotone. It is clear that there exists这样 We define two iteration sequences and as follows: for and we denote and 。那么,对于 那我们可以得到它 and there exist and 这样 and then 因此,我们可以获得这一点 Simplifying (12.), we get 减去第一个等式(13.) from the second equation of (13.), we have If we assume that 那然后 Substituting (15.) into (13.), we have 因此,我们得到以下等式: 有两个积极的根源 。Equation (17.) can be rewritten as follows: Since 那we can easily get that (18.) cannot have two positive roots. Hence, 那因此, 。然后通过结果[7.那8.], 解决方案 系统(1) satisfies 统一 。然后,恒定的平衡 全球渐近系统稳定(1)。Thus, the whole proof is completed.
Remark 1.显然,定理中的参数区域3.未包含在定理给出的集合中2。也就是说,如果定理的条件2举行,那么定理3.may not hold. Then, our global stable conclusion complements the one in [1]。此外,利用正平均衡点是不方便的,不必要 缔结全球稳定。此外,我们只取决于定理中的参数值3.来conclusion. Therefore, it is more reasonable.
3.数值模拟
In this section, we give the numerical simulation to consolidate our theoretical finding.
Example 1.In system (1), supposeand initial value 对全部 。明显, 。Then, system (1) exists a unique positive equilibrium point 。Straightforward calculation shows that 那 然后,定理的所有条件3.hold. Hence, by Theorem3.,我们知道正常均衡状态 系统(1) is globally asymptotically stable. Figure1显示系统的动力学行为(1)。
(一种)
(b)
(C)
(d)
(e)
(F)
Remark 2.如 那然后是条件定理2不满意,所以我们无法判断系统的全球稳定性(1) with the above parameters by using Theorem2(i.e., Theorem 2 in [1])。
Data Availability
用于支持本研究结果的数据可根据要求可从相应的作者获得。
Conflicts of Interest
The author declares that there are no conflicts of interest.
Acknowledgments
这项工作得到了中国湖南省自然科学基金的支持(Grant No.209950399),湖南省教育署科研基金(授予No.19c1248),以及湖南艺术大学的博士启动基金科学(授予17Bsqd04)。
References
- L. Yang and S. Zhong, “Dynamics of a diffusive predator-prey model with modified Leslie-Gower schemes and additive Allee effect,”计算和应用数学,卷。34,不。2,pp。671-690,2015。View at:出版商网站|Google Scholar
- R. Xu,M.A.J.Chaplain和F.A. Davidson,“具有阶段结构和非局部延迟的反应扩散捕食者 - 猎物模型的全球融合”,计算和应用数学,卷。5.3.那No. 5, pp. 770–788, 2007.View at:出版商网站|Google Scholar
- Z. Lin, M. Pedersen, and L. Zhang, “A predator-prey system with stage-structure for predator and nonlocal delay,”非线性分析:理论,方法和应用,卷。72,没有。3-4,pp。2019-2030,2010。View at:出版商网站|Google Scholar
- E. M. Lotfi,M.Maziane,K. Hattaf和N.Oysfi,“具有空间扩散的疫情模型的部分微分方程”,International Journal of Partial Differential Equations,卷。2014, Article ID 186437, 6 pages, 2014.View at:出版商网站|Google Scholar
- S. Chen和J.Shi,“扩散HOLLING-TANNER捕食者 - 猎物模型的全球稳定性”应用数学字母,卷。25.那No. 3, pp. 614–618, 2012.View at:出版商网站|Google Scholar
- W. Yang, “Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response,”非线性分析:现实世界应用,卷。14.那No. 3, pp. 1323–1330, 2013.View at:出版商网站|Google Scholar
- C. V. Pao,“On nonlinear reaction-diffusion systems,”Journal of Mathematical Analysis and Applications,卷。87,没有。1,pp。165-198,1982。View at:出版商网站|Google Scholar
- C. V. Pao,Nonlinear Parabolic and Elliptic Equations那Plenum Publishing Corporation, New York, NY, USA, 1992.
Copyright
版权所有©2019刘阳。这是分布下的开放式访问文章创意公共归因许可证那which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.