TY - Jour A2 - Malinowski,Marek T. Au - Javadi,Sara Au - Bahrampour,Abbas Au - Saber,Mohammad Mehdi Au - Garrusi,Behshid Au - Baneshi,Mohammad Reza Py - 2021 Da - 2021/05/18 TI - 评价在存在伪变量SP-6668822 VL-2021 AB之间的相互作用存在下处理缺失二进制结果数据的多种估算方法 - 由链式方程(小鼠)的多重归档是用于抵抗缺失数据的最常用方法。在小鼠算法中,可以使用各种参数和非参数方法来执行归档。执行小鼠的默认设置是归纳模型,以将变量作为线性术语仅包含不同的互动,但省略交互条款可能导致偏置结果。使用模拟和实时数据集进行研究,是否递归分区在具有适当置信区间之间的避难和非偏见参数估计之间产生适当的可变性。我们对真实和模拟数据集进行了四种多重归纳(MI)方法。MI方法包括使用预测平均匹配与小鼠(小鼠交互),分类和回归树(推车)中的归纳模型中的相互作用术语,用于在小鼠(小鼠购物车)中的归纳模型,随机林的实现(RF)在小鼠(小鼠RF)和小鼠分层方法中。我们首先选择辅助数据,并设计了由40个场景(2×5×4)组成的实验设计,其模拟缺失数据速率不同(10%,20%,30%,40%和50%),缺失的机制(MAR和MCAR),和归责方法(小鼠相互作用,小鼠 - 购物车,小鼠RF和小鼠分层)。首先,我们随机绘制了700个观察,使用替换300次,然后创建了缺失的数据。 The evaluation was based on raw bias (RB) as well as five other measurements that were averaged over the repetitions. Next, in a simulation study, we generated data 1000 times with a sample size of 700. Then, we created missing data for each dataset once. For all scenarios, the same criteria were used as for real data to evaluate the performance of methods in the simulation study. It is concluded that, when there is an interaction effect between a dummy and a continuous predictor, substantial gains are possible by using recursive partitioning for imputation compared to parametric methods, and also, the MICE-Interaction method is always more efficient and convenient to preserve interaction effects than the other methods. SN - 1687-952X UR - https://doi.org/10.1155/2021/6668822 DO - 10.1155/2021/6668822 JF - Journal of Probability and Statistics PB - Hindawi KW - ER -