= 0.013 and 0.004, respectively; odds ratio 2.529, 95% confidence interval 1.325–4.827). The genotype and allele frequencies of the other 16 SNP sites were not found to be different between the PD group and the control group. rs2550936, rs3776510, and rs429699 were selected to construct the haplotypes; no significant difference was found in a frequency of 5 haplotypes between the PD group and the control group. These results suggest that the SLC6A3 variant in rs40184 A allele may increase the risk of PD in northwest Han population and may be a biomarker of PD."> SLC6A3的3'末端在西北汉族人口中的5'末端有帕金森 - 188bet体育t,188bet投注网站,188d博金宝官网

帕金森病了

帕金森病了/2019年/文章

研究文章|开放获取

体积 2019年 |文章ID. 6452471 | https://doi.org/10.1155/2019/6452471

Peiye Chang,永王福,平赵,春梅王,明芳江,瑞丽,玉林王 SLC6A3的3'末端在西北汉族人口中的5'末端有帕金森“,帕金森病了 卷。2019年 文章ID.6452471 7. 页面 2019年 https://doi.org/10.1155/2019/6452471

SLC6A3的3'末端在西北汉族人口中的5'末端有帕金森

学术编辑:Jan Aasly.
已收到 2019年3月29日
修改 06年6月2019年
公认 2019年6月29日
发表 2019年9月3日

抽象的

帕金森病(PD)是神经内科最常见的神经变性障碍之一。多学会和遗传因素可能与其发病机制有关。最近,已经有报道了导致PD的SLC6A3遗传变体。然而,在不同的族群中,在PD中的3'末末端在PD中的作用较少。为了探讨SLC6A3的3'末端在PD开发中的作用,360例Pd患者3'SLC6A3结束中的17个SNP遗址和392位驻留在中国西北部的392次正常控制。仅在RS40184中检测到PD和对照组之间基因类型和等位基因频率的显着差异(  = 0.013 and 0.004, respectively; odds ratio 2.529, 95% confidence interval 1.325–4.827). The genotype and allele frequencies of the other 16 SNP sites were not found to be different between the PD group and the control group. rs2550936, rs3776510, and rs429699 were selected to construct the haplotypes; no significant difference was found in a frequency of 5 haplotypes between the PD group and the control group. These results suggest that the SLC6A3 variant in rs40184 A allele may increase the risk of PD in northwest Han population and may be a biomarker of PD.

1.介绍

帕金森病(Pd)是一种神经变性疾病;它的流行随着年龄的增长而增加,PD影响了1%的人口超过60年[12].由于残疾率高和漫长的疾病过程,PD严重影响了中年和老年人的生活质量。在全球范围内,帕金森病的医疗费用负担从1990年的250万例患者上升到2016年的610万患者,26年来几乎翻了一番[3.].PD病因和发病机制的细节机制仍然未知。来自大多数研究的证据表明,PD是受环境和遗传因素影响的复杂的多因素疾病[4.5.,其中遗传因素起着关键作用[6.-8.].到目前为止,帕金森病的遗传易感性主要集中在PD家族新基因的筛选和患者易感基因的探索。患者的遗传易感性基因主要集中在多巴胺代谢系统基因中,包括儿茶酚胺羟甲基转移酶基因、单胺氧化酶基因、多巴胺受体基因、多巴胺转运体(DAT)基因(基因符号:SLC6A3),其中DAT基因在PD发病机制中起重要作用。DAT是一种跨膜蛋白,由突触前多巴胺神经元表达。DAT的主要功能是重新吸收释放到突触空间的多巴胺,并阻止神经细胞之间的信息传递[9.10].此外,神经毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)通过DAT进入Synapse细胞。最后,MPTP通过氧化应激破坏了黑色多巴胺能神经元。

由于PD的特点是多巴胺能神经元的选择性缺失,影响多巴胺能神经元表达的基因可能成为PD的候选基因。来自遗传学研究的证据显示,SLC6A3的变异与PD相关[11-13].最广泛研究的多态性是SLC6A3基因的3'UNRANSLATED区域(UTR)中的可变数量的串联重复(VNTR)。然而,许多相关研究的结果尚未达成与其与Pd遗传相关的共识。此外,SLC6A3和Pd的3'末端的其他多态性少有问题。为了进一步研究西北汉族人群的SLC6A3和PD之间的相关性,我们在360个PD患者和392例健康对照中进行了3'SLC6A3结束的变体研究。

2。材料和方法

2.1.病人

360名中国汉族PD患者(63.5±10.4年)被纳入队列。所有患者均来自中国呼和浩特内蒙古医科大学附属医院和中国巴彦淖尔市医院,2015年至2018年。所有患者生活在中国西北地区,彼此之间没有亲属关系。所有患者均由经验丰富的神经科医生检查,PD诊断依据临床标准[14].该对照组由来自同一地理区域的392次和性别匹配的健康人(63.7±9.7岁)组成。本研究由中国内蒙古医科大学的机构审查委员会批准,中国呼和浩特。该研究获得了所有参与者的知情同意。

2.2。选择单核苷酸多态性(SNPS)

TAGSNPS选自中文HAPMAP数据库(http://www.hapmap.org.),基于成对R.2≥0.8,次要等位基因频率(MAF)≥0.1。本研究从SLC6A3的3 '端选择17个tagSNPs (rs2270913、rs27048、rs2270914、rs2550936、rs11133767、rs3776510、rs429699、rs11564759、rs27047、rs6347、rs40184、rs37022、rs10036478、rs2652514、rs2981359、rs365663、rs11133770)。

2.3.基因分型

使用血液DNA萃取试剂盒(天阵血DNA套件;天根Biotech,北京,中国)在外周血样品中从白细胞中提取基因组DNA,储存在-20°C中。使用聚合酶链反应(PCR)/连接酶检测反应测定进行基因键入。在上海的Hayu生物工程有限公司合成引物;引物的信息如表所示1.每组连接酶检测反应的探针由一个普通探针和两种类型的鉴别探针组成,如表所示2


基因 上游底漆 下游底漆 PCR长度

RS2270913 ggttcccctacctgtgctac. AACAGCTTCATCTCGTTTCCG 129
RS27048 AAAGGCGGAGGAGGTGTTC. ccaaactgcgttgactttgg. 135
RS2270914 ggttcccctacctgtgctac. AACAGCTTCATCTCGTTTCCG 129
rs2550936. ctcccaaataatcacggggc. GCAGTTGGGTTCCTTCCACC 124
RS11133767 gagagggtgagctcctgaag. TGCTTTTTGTCACCTGCAGC 139
RS3776510 AcagaggaAgggagaaaagtgc. gagaggggcgtggattttc. 139
rs429699 cctcacggagccttttttcag. TTTGGAGTGCTCATCGAAGC 126
rs11564759 AGCGCCCTTGGGAGTTCATG. CACCCAGGGCAGATCTTCC 131
RS27047. Acaaatcacacacgtcacac. ccacgtctaacctcacggg. 139
RS6347. gggttctgtttcaggcag. GATACCCAGGGTGAGCAGC 118
RS40184. TCTGATCAATACGCCCCAGAG. ccaacacacccttgacagg. 140
rs37022 tgcttgctttgacctttttg. ccagcgcccactctcagtg. 140
RS10036478. tcccagtagggagcagggag. Gagctaaaaggccatccc. 134
RS2652514 ccagaacccagcacagag. ATAGAGGCCAATGAGGGAGG 138
RS2981359 CAGAGTTTAGGAAAGGGAGGC CGCAGGCTGTTCTTTGGACC 140
RS365663. gtgagacgctgccatgtc. TTGCCAACCCTGAGGAACAC 138
rs11133770. Acacctctgaccacagtgtg. aaagcctgggttgtgtgtcatc. 125


探针的名字 序列(5'-3') 异地恋的长度

RS2270913_Modify. p-gggggtctagggcagccgttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt-Fam
rs2270913_A TTTTTTTTTTTTTTTTTTCTCCCTGAGCATGCTGGCCGGGT 81.
rs2270913_G tttttttttttttttttttttttctcctgagcatgctgccggc. 83.
RS27048_Modify. p-agtctgcctgctggtagcagtttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt-Fam
rs27048_C tttttttttttttttttttttttttttttcgtcccctccacctccatccg. 89.
rs27048_T ttttttttttttttttttttttttttttttcgtcccctccacctccatcca. 91.
rs2270914_modify p-gacccccgcccgcgcagcatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt-Fam
rs2270914_G ttttttttttttttttttttttttttttttttgccttggccccggctgcccctac. 95.
rs2550936_modify. p-acggccccacacactccctgtttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt-Fam
rs2550936_a. ttttttttttttttttttttttttttttttggcaagatccctggggctcacgt. 97.
rs2550936_c. TTTTTTTTTTTTTTTTTTTTTTTTTTTTAGGCAAGATCCCTGGGCTCACGG 99.
rs11133767_modify. p-gctgcgcgcagctcctggggcttttttttttttttttttttttttttttttt-Fam
RS11133767_A ttttttttttttttttttttttttttttttttttttttttaacgtgccttccttcactgccct. 101
rs11133767_g. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAACGTGCCTTCCTTCCACTGCCC 103
rs3776510_modify p-gcttctccccatctccccgtgtttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt-Fam
rs3776510_C TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGGTGCAGGTCGCCAGGGCCG 105
rs3776510_T tttttttttttttttttttttttttttttttttttttttttgagggtgcaggtcgcggcgca. 107
RS429699_Modify. p-cccccggactcaccatagaattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt-Fam
rs429699_A tttttttttttttttttttttttttttttttttggggtgcggcttggctgcctt. 109
rs429699_G tttttttttttttttttttttttttttttttttttttggggtgccggcttggctgccctc. 111
RS11564759_Modify. p-ggtctcatgggggtctcgggggtttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt-fam
rs11564759_C tttttttttttttttttttttttttttttttttttaagatgcagatcctgactgggcg. 113
rs11564759_T TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAAGATGCAGATCCTGACTGGGCA 115
rs27047_modify P-TGTGCCTGGAAGGCGGAGGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-FAM
RS27047_C. ttttttttttttttttttttttttttttttttttttttttttttttgtgggaggagacctccttcctcg. 117
rs27047_t. ttttttttttttttttttttttttttttttttttttttttttttttttgtgggaggagacctcagcttcca. 119
rs6347_modify p-gaggacagagggagagcgtggcttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt-Fam
RS6347_A. tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttgaagaagaccaccgcgccagct. 121
RS6347_G. ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttgaagaagaccacgcgccaggcc. 123
rs2652514_T tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttgaagggatcaccaatgtttgaTCaccaAtgtttGGACA. 172
RS2981359_Modify. P-AAACAGGAGGCAGAGCCAAGCTGCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-FAM
RS2981359_C. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCTTTCCAAAGCGAAGATAGCCTCTGG 175
RS2981359_G. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCTTTCCAAAGCGAAGATAGCCTCTGC 177
rs365663_modify P-TTAGTGGGGCAGCTCAGCAGTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-FAM
RS365663_C. tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttcatgcacatggaggaagcaccg. 180.
RS365663_t. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTATTCATGGCACATGGAGGAAGCACCA 182.
rs11133770_modify P-TGATGGGATCAGTGAGGTGCTTAGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-FAM
rs11133770_a. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGGGGAGAGGCTTGGCACTGGTCCCTT 185.
rs11133770_c. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGGGGAGAGGCTTGGCACTGGTCCCTG 187.

多重PCR方法用于扩增靶DNA序列。每个受试者的PCR的最终体积为20 μl,含有1x PCR缓冲液,3.0 mm / L·MgCl2, 2.0 mM/L三磷酸脱氧核苷酸,0.5μmol /μl底漆混合,5 U/μl Qiagen HotStarTaq聚合酶(Qiagen,深圳,中国),1X Q-solution, 50ng /μl基因组DNA。热循环在Geneamp PCR系统9600(Norwalk,CT.06859,USA)中进行。在95℃下初始变性为2分钟,然后在94℃下进行40个变性,30s,在56℃下退火,在72℃下延伸1分钟。72°C的最终延伸是10分钟。

连接酶检测反应的总体积为10μl对于每个受试者,其中包含1x Neb Taq DNA连接酶缓冲液1 μL,2 pmol每个探针混合1 μl,5 U /μTaq DNA连接酶0.05μl(Biowing,江苏,中国)和4 μl多功能产品。在92℃的条件下,总共40个连接酶检测反应循环2分钟,94℃,50℃,50℃。通过棱镜3730(ABI)鉴定了连接酶检测反应的荧光产物。实验方法类似于Chang等人。[15].

2.4.统计分析

统计分析由社会科学统计计划进行(SPSS版本11.0)进行。通过使用CHI方向测试确定每组的Hardy-Weinberg平衡。使用SHESES软件研究了基团之间的等位基因和基因型频率[16].利用SHEsis软件计算了连锁不平衡系数D’,并建立了单倍型。频率小于3%的单倍型被认为是罕见且被忽略的。当D’大于0.8时,认为存在较强的连锁不平衡。一种 值为0.05认为有统计学意义。

结果

3.1.标记snp与PD的相关性研究

表汇总了SLC6A3基因3 '端基因型和等位基因频率3..在Pd和对照组中,没有偏离Hardy-Weinberg均衡( )。PD (AA 5.6%, AG 47.2%, GG 47.2%)与对照(AA 2.0%, AG 24.0%, GG 74.0%)在SLC6A3变异rs40184基因型和等位基因频率上差异有统计学意义。患者中次要A等位基因的频率为29.2%,对照组为14.0%。SLC6A3基因3 '端其他16个SNP多态性位点的基因型和等位基因频率无显著差异。


基因 等位基因/基因型 PD(N 控制 (N χ2 要么 95%CI.

RS2270913 C 698(1.000) 768(1.000)
C / C. 349(1.000) 384(1.000)

RS27048 C 620(0.912) 652(0.867) 0.939 0.332 0.585 0.620-4.0483.
T. 60(0.088) 100 (0.133)
C / C. 280 (0.824) 276(0.734)
C / T. 60 (0.176) 100 (0.266) 1.089 0.297 1.691 0.626-4.566.

RS2270914 G 700(1.000) 768(1.000)
G / G. 350 (1.000) 384(1.000)

rs2550936. 一种 651(0.930) 712(0.908)
C 49(0.070) 72 (0.092) 0.271 0.602 1.315 0.469-3.685.
A / A. 301(0.860) 320(0.816)
A / C. 49 (0.140) 72(0.184) 0.301 0.584 0.350 0.460 - -3.960

RS11133767 一种 31(0.043) 36(0.046)
G 669(0.956) 748(0.954) 0.011 0.914 0.930 0.245-3.539.
A / G. 31(0.089) 36(0.092)
G / G. 319(0.911) 356(0.908) 0.012 0.914 0.927 0.236-3.640

RS3776510 C 668 (0.954) 744(0.949)
T. 32(0.046) 40 (0.051) 0.074 0.786 1.201 0.321-4.495.
C / C. 318(0.909) 352(0.898)
C / T. 32 (0.091) 40(0.102) 0.078 0.780 1.212 0.314-4.686.

rs429699 C 500(0.714) 592 (0.755)
T. 200(0.286) 192(0.245) 0.452 0.502 0.811 0.440-1.495.
C / C. 190(0.543) 220(0.561)
C / T. 120 (0.343) 152(0.388)
T / T. 40(0.114) 20(0.051) 1.679. 0.43

rs11564759 C 403 (0.576) 443(0.589)
T. 297(0.424) 309(0.411) 0.076 0.783 0.924 0.531-1.611
C / C. 131(0.374) 116 (0.309)
C / T. 141(0.403) 211(0.561)
T / T. 78(0.223) 49(0.130) 3.303. 0.192

RS27047. C 450 (0.643) 488 (0.622)
T. 250 (0.357) 296(0.378) 0.092 0.762 1.092 0.619-1.926.
C / C. 150(0.429) 160(0.408)
C / T. 150(0.429) 168(0.429)
T / T. 50(0.143) 64(0.163) 0.094 0.954

RS6347. 一种 641 (0.914) 771 (0.920)
G 59(0.086) 67(0.080) 0.001 0.979 1.013 0.383-2.682
A / A. 291(0.831) 325 (0.829)
A / G. 59(0.169) 67 (0.171) 0.001 0.978 1.014 0.365-2.821

RS40184. 一种 210(0.292) 112 (0.140)
G 510(0.708) 688(0.860) 8.245 0.004. 2.529 1.325-4.827.
A / A. 20 (0.056) 8 (0.020)
A / G. 170(0.472) 96(0.240)
G / G. 170(0.472) 296 (0.740) 8.760. 0.013

rs37022 一种 314 (0.431) 402(0.502)
T. 406 (0.569) 398(0.498) 1.337 0.246 0.726 0.422-1.250
A / A. 73(0.194) 93(0.232)
168(0.472) 216(0.540)
T / T. 119(0.333) 91 (0.228) 1.83 0.340

RS10036478. C 614(0.853) 704 (0.880)
T. 106(0.147) 96(0.120) 0.507 0.476 0.756 0.3499 - -1.634
C / C. 262 (0.728) 309(0.773)
C / T. 90(0.250) 86(0.215)
T / T. 8(0.028) 5 (0.012) 0.753 0.686

RS2652514 C 577 (0.824) 693(0.866)
T. 123(0.176) 107(0.134) 0.736 0.392 0.722 0.343-1.523.
C / C. 238 (0.680) 299(0.748)
C / T. 101(0.289) 95(0.238)
T / T. 11(0.031) 6(0.015) 0.965 0.617

RS2981359 C 383(0.532) 388(0.485)
G 337 (0.468) 412(0.515) 0.680 0.410 1.255 0.731-2.154
C / C. 96(0.267) 104(0.260)
C / G. 191(0.530) 180(0.450)
G / G. 73(0.203) 116(0.290) 1.285 0.526

RS365663. C 420 (0.583) 517(0.646)
T. 300(0.417) 283(0.354) 0.862 0.353 0.771 0.444-1.337
C / C. 110(0.306) 165 (0.412)
C / T. 200(0.556) 187(0.468)
T / T. 50(0.139) 48 (0.120) 1.224 0.542

rs11133770. 一种 658(0.914) 737(0.921)
C 62(0.086) 63(0.079) 0.052 0.820 0.892 0.332-2.395.
A / A. 298 (0.828) 337(0.843)
A / C. 62 (0.172) 63(0.157) 0.056 0.812 0.882 0.314-2.482

或=赔率比;ci =置信区间;χ 2 = Pearson chi-square.
3.2.单的TagSNPs

研究中的SLC6A3的LD图显示在图中1.通过LeWontin标准化不平衡系数D'在标签中测量LD [17].在强LD (D ' > 0.8)、rs2550936、rs3776510和rs429699中相邻的SNPs具有强LD (D ' > 0.99),选择这些snp构建单倍型进行后续分析。共形成5个单倍型,单倍型频率见表4..在汉族人群中,PD组和对照组5种单倍型的频率无显著差异。


单体型 PD(N%) 控制 (N%) χ2 要么 95%CI.

一个C C. 450.10(0.643) 519.79(0.663) 0.094 0.759 0.914 0.516~1.620
行为 200.20(0.286) 192.08(0.245) 0.450. 0.502 1.233 0.668~2.275
C C C. 19.59(0.028) 32.14(0.041) 0.214 0.644 0.691 0.143〜3.336
C T C. 30.10(0.043) 39.98 (0.051) 0.075 0.784 0.831 0.222〜3.117.
c t t. 0.01 (0.000) 0.01 (0.000)
地球χ2 0.64
Fisher P. 0.89

或=赔率比;ci =置信区间;χ 2 = Pearson chi-square.

4。讨论

PD是由年龄和环境和遗传因素引起的复杂疾病。寻找PD的遗传敏感因素可能有助于识别风险的个人,并为它们设计更具体的预防或治疗方案。SLC6A3基因编码DAT,其中包含跨越60kb的15个外显子,5p15.32 [18].对SLC6A3编码区域的研究表明该基因高度保守[19];因此,研究人员将视角转向非编码区域。SLC6A3和PD的3'UTR中的40-BP VNTR多态性之间的相关性已经广泛研究,因为VNTR多态性可能调节基因转录并影响突触裂缝中的多巴胺的再摄血[20.].40-bp重复的可变数为3 ~ 13个拷贝;人类最常见的等位基因是9-和10-重复等位基因。许多研究表明SLC6A3的VNTR多态性与PD在不同人群中存在关联,但结果并不一致[21-24].研究发现,SLC6A3中的两个变异rs28363170和rs3836790与法国人群中的PD患者显著相关[25],而这两个位点的变异与汉族人群的PD无相关性[26].

在这里,我们对西北汉族人口752名参与者进行了案例控制研究,进一步调查了SLC6A3在PD发展中的3'末端的作用。我们发现,只有SLC6A3变体RS40184在基因型和等位基因中具有统计学意义的差异,其可能与PD相关。40184卢比的次要等位基因可能导致西北汉族中PD的风险增加,并且可能是PD的标志。然而,未发现其他16种多态性位点与PD相关。其他16位点具有负面结果的原因可能是本研究中的样本数量不足,并且这16个位点可能是汉族人群中的稀有基因型或等位基因。单倍型分析被认为比相关性研究中的单核苷酸多态性位点更强大[27].单倍型分析大大减少了测试样品和控制类型I错误的数量,尽管该方法将增加不可避免的II型错误的发生率[2829].少数研究报告了SLC6A3和PD的3'末端的单倍型之间的关联;我们在3个强大的LD标签中构建了单倍型,而PD与对照组之间没有发现差异。

目前,已知超过1,500个基因与疾病的发生密切相关。长期以来,编码区域是遗传疾病的主要研究方向,并且只有一小部分的非编码面积被证明是一种有用的组分,可以帮助待调节基因表达的基因以调节基因表达。基因的正常表达不能与调控元素的参与分离。某些调节组分的异常也可以导致相应的基因编码区中的突变。因此,我们可以假设SLC6A3的非分量区域中的变体RS40184可能导致我们的研究中PD易感性的差异。

综上所述,我们的研究结果表明SLC6A3基因变异rs40184的3 '端与西北汉族人群的PD存在联系。考虑到不同人群的遗传异质性和突变有特定的人群频率,需要更大的样本量研究来证实SLC6A3突变3 ' end与PD在独立的更大的队列和不同地理来源的相关性。此外,为了进一步了解SLC6A3在PD中的作用,还需要对SLC6A3的3 '端进行功能研究。进一步的研究可能会发现帕金森病的遗传变异是危险的或具有保护作用的,这对帕金森病的预防和治疗具有重要意义。

数据可用性

用于支持本研究结果的数据包括在文章中。

利益冲突

提交人声明有关本文的出版物没有利益冲突。

作者的贡献

常培业、傅永旺和赵平是共同第一作者。

致谢

我们感谢所有参与本研究的参与者和调查人员。该工作得到了中国区域项目国家自然科学基金(81760319)和内蒙古天然科学基金会项目(2016MS0825和2018007)的支持。

参考

  1. K. R. Chaudhuri和A.H.Schapira,“帕金森病的非运动症状:多巴胺能病理生理和治疗,”刺血针神经病学,第8卷,第2期5, pp. 464-474, 2009。查看在:出版商的网站|谷歌学术
  2. O.-B.Tysnes和A. Storstein,“帕金森病的流行病学”神经传输杂志号,第124卷。8,页901-905,2017。查看在:出版商的网站|谷歌学术
  3. W. a . Rocca,《帕金森氏症的负担:全球视野》,刺血针神经病学,卷。17,不。11,pp。928-929,2018。查看在:出版商的网站|谷歌学术
  4. A. Delamarre和W. G. Meissner,《帕金森病的流行病学、环境风险因素和遗传学》,lapressemédicale.第46卷,第46期2,页175-181,2017。查看在:出版商的网站|谷歌学术
  5. F. N.Mamzadeh和A. Surguchov,“帕金森病:生物标志物,治疗和危险因素”,神经科学的前沿, 2018年第12卷,第612页。查看在:出版商的网站|谷歌学术
  6. J.Clarimón和J.Kulisevsky,“帕金森病:从遗传学到临床实践”目前基因组学,卷。14,不。8,pp。560-567,2013。查看在:出版商的网站|谷歌学术
  7. A. MCinerney-Leo,“帕金森病的遗传学测试”,运动障碍,卷。20,没有。7,pp。908-909,2005。查看在:出版商的网站|谷歌学术
  8. C. M. Lill,“帕金森病的遗传学”,分子和细胞探针,卷。30,不。6,pp。386-396,2016。查看在:出版商的网站|谷歌学术
  9. K. M.LoHR,S.T. Masoud,A. Salahpour和G. W. Miller,“膜转运蛋白作为突触多巴胺动态的介质:对疾病的影响,”欧洲神经科学杂志,卷。45,不。1,pp。20-33,2017。查看在:出版商的网站|谷歌学术
  10. 盖恩斯迪诺夫,卡隆,j - m。Beaulieu和t.d. Sotnikova,“质膜多巴胺转运体的分子生物学、药理学和功能作用”,CNS和神经系统疾病 - 药物靶标,第5卷,第5期。1,pp.45-56,2006。查看在:出版商的网站|谷歌学术
  11. E. M. van de Giessen, M. L. de Win, M. W. T. tancj, W. van den Brink, F. Baas, and J. Booij,“多巴胺转运体基因SLC6A3多态性与纹状体多巴胺转运体可用性相关”,核医学杂志,卷。50,不。1,pp。45-52,2008。查看在:出版商的网站|谷歌学术
  12. C. H. van Dyck, R. T. Malison, L. K. Jacobsen等人,“与SLC6A3基因9重复等位基因相关的多巴胺转运体可用性增加,”核医学杂志第46卷,第46期5,pp。745-751,2005。查看在:谷歌学术
  13. S. V. Faraone, T. J. Spencer, B. K. Madras, Y. Zhang-James, J. Biederman,“多巴胺转运体基因型对体内多巴胺转运体功能的功能影响:一项meta分析,”分子精神病学,卷。19,没有。8,pp。880-889,2014。查看在:出版商的网站|谷歌学术
  14. R. B. Postuma, D. Berg, M. Stern等,“帕金森病MDS临床诊断标准”,运动障碍,卷。30,不。12,pp。1591-1601,2015。查看在:出版商的网站|谷歌学术
  15. P. Y. chang,L. Qin,P. Zhao和Z. Y. Liu,G蛋白信号传导(RGS5)基因变异性和蒙古和汉族的必需高血压协会,“遗传学与分子研究,卷。14,不。4,pp.17641-17650,2015。查看在:出版商的网站|谷歌学术
  16. Y. Y. Shi和L. He,“Shesis,一种强大的软件平台,用于分析的联动不平衡,单倍型构建和多态性基因座的遗传结合,”细胞研究,卷。15,不。2,pp。97-98,2005。查看在:出版商的网站|谷歌学术
  17. M. Slatkin,“联系不平衡 - 了解进化过去并映射医疗未来”,“自然评论遗传学,第9卷,第5期。6,第477-485页,2008。查看在:出版商的网站|谷歌学术
  18. D. J. Vandenbergh,A.M.Persico,A. L. Hawkins等,“人多巴胺转运蛋白基因(DAT1)映射到染色体5p15.3并显示VNTR”基因组学,卷。14,不。4,pp。1104-1106,1992。查看在:出版商的网站|谷歌学术
  19. F.Grünhage,T.G.Schulze,D.J.Müller等,“人多巴胺转运蛋白基因编码区(DAT1)的DNA序列变异的系统筛查”,分子精神病学,第5卷,第5期。3,pp。275-282,2000。查看在:出版商的网站|谷歌学术
  20. D.翟,李,Y. Zhao和Z.Lin,“SLC6A3是帕金森病的危险因素:十六年学习的荟萃分析”神经科学字母,卷。564,pp。99-104,2014。查看在:出版商的网站|谷歌学术
  21. B. R.Ritz,A. D. Manthripragada,S. Costello等,“多巴胺转运蛋白遗传变异和帕金森病的杀虫剂”,环境健康观点,第117卷,第117号6, pp. 964-969, 2009。查看在:出版商的网站|谷歌学术
  22. J.J.Lin,K.C. yueh,D. C. cav,C. Y. chang,Y.H. Yeh和S. Z.Lin,“Z.Lin”,可变数量串联重复多巴胺转运蛋白的Homozygote 10-拷贝基因型可以赋予帕金森病的男性,但不是女性患者的疾病“中国神经科学学报,卷。209,没有。1-2,第87-92,2003。查看在:出版商的网站|谷歌学术
  23. P.W.Leighton,D.G.SeCouteur,C.C.P.Pang等,“多巴胺转运蛋白基因和帕金森病在中国人口中”神经学,第49卷,第49期。6,第1577-1579页,1997。查看在:出版商的网站|谷歌学术
  24. G. Mercier, J. C. Turpin,和G. Lucotte,《多巴胺转运蛋白基因多态性与帕金森病:未发现关联》,神经病学杂志,卷。246,没有。1,pp。45-47,1999。查看在:出版商的网站|谷歌学术
  25. C. Moreau,S. Meguig,J.-C。Corvol等人,“多巴胺转运蛋白类型1基因的多态性改变了帕金森病的治疗反应”,卷。138,不。5,pp。1271-1283,2015。查看在:出版商的网站|谷歌学术
  26. Q. Lu,Z. Song,X. Deng等人,“SLC6A3 RS28363170和RS3836790在汉族患者孢子帕金森病的患者中,”神经科学字母,第629卷,第48-51页,2016。查看在:出版商的网站|谷歌学术
  27. Zhang K., P. Calabrese, M. Nordborg, and F. Sun,“单倍型块结构及其在关联研究中的应用:动力与研究设计,”美国人类遗传学杂志,卷。71,没有。6,pp。1386-1394,2002。查看在:出版商的网站|谷歌学术
  28. A. G. Clark,“单倍型在候选基因研究中的作用”,遗传流行病学,卷。27,不。4,pp。321-333,2004。查看在:出版商的网站|谷歌学术
  29. A. J. Lorenz, M. T. Hamblin,和J. L. Jannink,“大麦全基因组关联分析中单核苷酸多态性与单倍型的表现”,《公共科学图书馆•综合》,第5卷,第5期。11、Article ID e14079, 2010。查看在:出版商的网站|谷歌学术

版权所有©2019 Peiye Chang等人。这是分布下的开放式访问文章创意公共归因许可证如果正确引用了原始工作,则允许在任何媒体中的不受限制使用,分发和再现。


更多相关文章

PDF. 下载引用 引用
下载其他格式更多的
订单印刷副本订单
的观点430.
下载293
引用

相关文章

我们致力于尽可能快地分享与Covid-19相关的结果。我们将为已接受的研究文章提供无限的出版费用豁免,以及与Covid-19相关的报告和案例系列。评论文章被排除在此豁免政策之外。注册在这里作为评论员,帮助快速跟踪新的提交。