TY - JOUR A2 - Ali, Shaukat AU - Alam Khan, Zahid AU - Feng, Zhengyong AU - Uddin, M. Irfan AU - Mast, Noor AU - Ali Shah, Syed Atif AU - Imtiaz, Muhammad AU - Al-Khasawneh, Mahmoud Ahmad AU - Mahmoud,疾病可以对人类人口的生活质量产生巨大的影响。关键词:最优策略学习,疾病预防,强化学习人类一直在寻求一种策略,以避免危及生命或影响人类生活质量的疾病。有效利用人类现有资源来控制各种疾病一直是至关重要的。由于深度学习的普及,研究人员最近对寻找基于人工智能的解决方案来控制人类疾病更感兴趣。有许多监督技术一直被用于疾病诊断。然而,基于监督的解决方案的主要问题是数据的可用性,这并不总是可能的或不总是完整的。例如,我们没有足够的数据来显示人类的不同状态和环境的不同状态,以及人类或病毒采取的所有不同的行动是如何最终导致一种疾病最终夺走人类的生命。因此,需要找到基于无监督的解决方案或一些不依赖于底层数据集的技术。在本文中,我们探索了强化学习的方法。 We have tried different reinforcement learning algorithms to research different solutions for the prevention of diseases in the simulation of the human population. We have explored different techniques for controlling the transmission of diseases and its effects on health in the human population simulated in an environment. Our algorithms have found out policies that are best for the human population to protect themselves from the transmission and infection of malaria. The paper concludes that deep learning-based algorithms such as Deep Deterministic Policy Gradient (DDPG) have outperformed traditional algorithms such as Q-Learning or SARSA. SN - 1058-9244 UR - https://doi.org/10.1155/2020/7627290 DO - 10.1155/2020/7627290 JF - Scientific Programming PB - Hindawi KW - ER -