TY-JUR A2 - 段,赵议纪奥 - 刘,吴强奥阳,萧强奥金兴,沉PY - 2020 DA - 2020/11/27 TI - 基于双树复杂小波的滚动轴承综合故障识别方法包变换和广义复合多尺度幅度感知置换熵SP-8851310 VL - 2020 AB - 滚动轴承的健康状况,作为旋转机械的广泛使用部分,直接影响设备的工作效率。因此,及时检测和判断轴承的当前工作状态是提高生产率的关键。本文提出了一种用于滚动轴承的集成故障识别技术,其中包含两部分:故障预备和故障识别。在故障预先预测的部分中,定义了基于幅度感知置换熵(AAPE)的阈值以判断轴承是否具有故障。如果轴承中存在故障,则使用特征提取方法充分提取故障特征,该特征提取方法与双树复杂小波包变换(DTCWPT)和广义复合多尺度幅度感知置换熵(GCmaape)组合。首先,该方法通过具有良好时频分解能力的DTCWPT将故障振动信号分解为一组子带组件。其次,计算每个子带分量的Gcmaape值以生成初始候选特征。接下来,使用具有良好的非线性维度降低性能的T分布式随机邻居(T-SNE)建立低维特征样本,以从初始高维特征中选择敏感特征。之后,表示故障信息的特色样本被馈送到深度信仰网络(DBN)模型中以判断故障类型。 In the end, the superiority of the proposed solution is verified by analyzing the collected experimental data. Detection and classification experiments indicate that the proposed solution can not only accurately detect whether there is a fault but also effectively determine the fault type of the bearing. Besides, this solution can judge the different faults more accurately compared with other ordinary methods. SN - 1070-9622 UR - https://doi.org/10.1155/2020/8851310 DO - 10.1155/2020/8851310 JF - Shock and Vibration PB - Hindawi KW - ER -